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Abstract. The class of self-similar solutions to coupled (creep-damage) crack problems
is considered. The constitutive model is based on continuum damage mechanics. The
conventional Kachanov-Rabotnov creep-damage theory is utilized to study the asymp-
totic behavior of damage in the region very near the crack tip. The totally damaged zone
where the damage (integrity) parameter reaches its critical value is assumed to exist in
the vicinity of the crack tip. Using the similarity variable the asymptotic solutions to
mode I and mode III crack problems are obtained. The asymptotic stress, creep strain
rate and damage fields near the crack tip are analyzed by solving nonlinear eigenvalue
problems resulting in a new far stress distribution. The configurations of the totally
damaged zone governed by the new far stress field are found and analyzed.

1. INTRODUCTION

Analysis of effects of material damage on the stress and strain fields near crack tip
in non-linear materials is the very important problem for evaluation of crack behavior in
elements of structures. The influence of damage on crack-tip fields has been the subject
of many papers, especially for cracks in brittle materials [1], elastic-plastic-brittle cracks
[2, 3], creep cracks [4-6] and fatigue cracks [7]. Thus, the phenomenon of crack growth in
materials undergoing deformations coupled with damage has been investigated extensively
over the past twenty years. Some of the essential aspects of the considered set of two-
dimensional crack problems and the results obtained can be highlighted. 1. The damage
gives significant influence on the stress and strain (strain rate) fields near the crack tip.
2. The mathematical structure of governing equations is affected by the modelling of
damage. 3. While the Hutchinson-Rice-Rosengren (HRR) – field of non-linear fracture
mechanics always shows the stress singularity at the crack tip for any finite value of the
stress exponent, the preceding material damage in front of the crack tip decreases the
singularity, and may give non-singular stress field. 4. The totally damage and (or) active
damage zone (process zone) need be modelled in the crack tip region.

In the present work the asymptotic stress, strain rate and continuity fields in the
vicinity of mode I and mode III cracks in damaged materials are obtained using the
self-similar variable proposed by Riedel [8]. The form of the similarity solution has been
introduced by Riedel. However there exist no solutions where the similarity property of
damage mechanics equations is used. The advantage of a similarity solution is that it
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reduces the number of independent variables in the problem by one. This simplification
allows us to gain insight into the time evolution of the near tip stress fields and the far
field boundary condition.

In discussing crack growth on the basis of damage mechanics it is advantageous to
introduce the term "totally damaged zone". The totally damaged zone can be interpreted
as a zone occupied by microcracks oriented orthogonally to the main crack. Inside the
totally damaged zone (TDZ) the damage involved reaches its critical value (for instance,
the damage parameter reaches unity) and a complete fracture failure occurs. In view of
material damage stresses are relaxed to vanishing. Therefore one can assume that the
stress tensor components in the TDZ equal zero. Outside the zone damage alters the
stress distribution substantially compared to the corresponding non-damaging material.
Well outside that zone the damage parameter is equal to 1.

In the present study mode I and III crack problems for power-law creeping materials
are considered by employing the self-similar variable on the assumption that the TDZ in
the vicinity of the crack tip exists.

2. SIMILARITY SOLUTIONS TO DAMAGE-MECHANICS EQUATIONS

Let us consider a semi-infinite crack in a material with constitutive equations for-
mulated in the framework of continuum damage mechanics. The constitutive model to
be employed is the phenomenological model of Kachanov and Rabotnov. The integrity
(continuity) parameter ψ is assumed to affect the stress – strain rate relation according to

ε̇ij = (3/2)B (σe/ψ)n−1 sij/ψ, (1)

where ε̇ij is the creep strain rates, sij = σij − σkkδij/3 is the deviatoric stresses, σe =
√

3sijsij/2 is the equivalent tensile stress, B is the creep coefficient and n is the creep
exponent of Norton’s creep law. According to the conventional creep-damage theory of
Kachanov-Rabotnov the integrity parameter ψ evolutes as follows

dψ/dt = −A (σeqv/ψ)m , σeqv = ασ1 + βσe + (1− α− β)σ, (2)

where A,m (m > 0) are material parameters, σeqv is the damage equivalent stress, σ1

is the maximum principal stress, σ = σkk is the hydrostatic stress. Asymptotic remote
boundary conditions have the form

σij(r → ∞, θ, t) = [C∗/ (BInr)]
1/(n+1) σ̄ij(θ, n), (3)

where r and θ are polar coordinates centered at the crack tip. The dimensionless constant
In and the θ-variation functions of the suitably normalized functions σ̄ij depend only on
the creep exponent n.

If damage develops in the region which is small compared to the creep zone (the
small scale damage conception), the boundary conditions (3) require that the stress field
must approach the Hutchinson-Rice-Rosengren (HRR) field at large distances from the
crack tip.

Dimensional analysis of Eqs. (1) – (3) shows that the damage mechanics equations
must have similarity solutions of the form [8]

σij(r, θ, t) = (At)−1/m Σij (R, θ) , ψ(r, θ, t) = ψ (R, θ) (4)
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with the similarity variable

R = r (At)−(n+1)/mBIn/C
∗. (5)

The dimensionless functions Σij(R, θ) and ψ(R, θ) are as yet unknown. The validity of
these similarity presentations of the solutions should be verified by insertion of (4) into
governing equations and boundary conditions.

It should be noted that the asymptotic remote boundary condition can be formulated
in a more general form

σij(r, θ, t) → C̃rsσ̄ij(θ, n). (6)

Thus, if the far stress field is determined by the HRR-solution then C̃ = (C∗/(BIn))1/(n+1)

and s = −1/(n + 1). If damage develops within the region of dominance of the K field
(where K is the stress intensity factor), the remote boundary condition is

σij(r, θ, t) →
(

K/
√

2πr
)

σ̄ij(θ), (7)

where σ̄ij(θ) are normalized universal functions describing the angular variation of the
stress components and s = −1/2, C̃ = K/

√
2πr.

Dimensional analysis of (1), (2) and (6) shows that the damage mechanics equa-
tions must have similarity solutions of the same form (4), where the similarity variable is
expressed as

R = r
(

AtC̃m
)1/(sm)

, (8)

where the exponent shas to be found.

3. ANTIPLANE SHEAR CRACK. BASIC EQUATIONS AND
ASYMPTOTIC SOLUTION

A static mode III crack problem in a damaged creeping medium is considered. The
equilibrium and compatibility equations in the polar coordinate system in terms of the
similarity variable (8) can, respectively, be written as

∂

∂R
(RΣRz) +

∂Σθz

∂θ
= 0,

∂

∂R
(RΓθz) =

∂ΓRz

∂θ
, (9)

where Γij(R, θ) = 2ε̇ij(r, θ, t)(At)
−n/(sm)/(3B). The kinetic equation (2) takes the form

R∂ψ/∂R = −sm (Σ/ψ)m , Σ2 = Σ2
Rz + Σ2

θz. (10)

The traction-free condition on the crack surface yields

Σθz(R, θ = π) = 0. (11)

By virtue of symmetry the vanishing condition at θ = 0 holds

ΣRz(R, θ = 0) = 0. (12)

The remote boundary condition (6) can be expressed in terms of the similarity
variable as

Σij(R, θ) → Rsσ̄ij(θ, n). (13)
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It is assumed that the totally damaged zone where the integrity parameter reaches
its critical value and all the stress tensor components are equal to zero appears in the
vicinity of the crack tip. To obtain the shape of the totally damaged zone one can find the
solution at large distances from the crack tip (at large distances compared with the crack
length, the specimen sizes but at yet small distances compared with the characteristic
length of the totally damaged zone).

The asymptotic expansions of the effective stress (the stress referred to the surface
that really transmits the internal forces) and the integrity parameter for large distances
(R → ∞) from the crack tip are supposed to be separable and can be expressed as series
as

Σij

ψ
(R, θ) = Rsf

(0)
ij +Rs1f

(1)
ij + Rs2f

(2)
ij +Rs3f

(3)
ij +Rs4f

(4)
ij + o (Rs4) ,

ψ (R, θ) = 1 − Rγ1g(1) −Rγ2g(2) −Rγ3g(3) − Rγ4g(4) −Rγ5g(5) + o (Rγ5)

(14)

where f (k)
ij = f

(k)
ij (θ), g(k) = g(k) (θ); the index 0, 1, 2, 3, 4, 5. . . correspond to the zero-

order, first-order, second-order, third-order, forth-order and fifth-order fields, respectively,
s > s1 > s2 > s3 > s4 > ..., γ1 > γ2 > γ3 > γ4 > γ5 > ... . Based on the asymptotic
analysis of the kinetic equation (10) one has γ1 = sm, γk = sk−1 − s + sm, k > 1.

The asymptotic expansions of stress components are directly obtained from Eqs.
(14)

Σij (R, θ) = Rsτ
(0)
ij (θ) +Rs+smτ

(1)
ij (θ) + Rs+2smτ

(2)
ij (θ) + Rs+3smτ

(3)
ij (θ)

+Rs+4smτ
(4)
ij (θ) + o

(

Rs+4sm
)

,

sk = s+ ksm.

(15)

where τ (0)
ij (θ) = f

(0)
ij (θ), τ

(k)
ij (θ) = f

(k)
ij (θ)−

k
∑

l=1

f
(k−l)
ij (θ)g(l)(θ), k ≥ 1. The multi-term

asymptotic expansion of the effective stress has the form

Σ/ψ = Rsf
(

1 + Rsmτ (1) +R2smτ (2) + R3smτ (3) + R4smτ (4)
)

+ o
(

Rs+4sm
)

, (16)

where

τ (1) = τ (1) (θ) = f1f
−2/2, f2 =

(

f
(0)
Rz

)2
+

(

f
(0)
θz

)2
, fk (θ) =

k
∑

l=0

f
(l)
iz f

(k−l)
iz , i = R, θ,

τ (2) =
(

f2 − (1/4)f2
1f

−2
)

f−2/2, τ (3) =
[

f3 − (1/2)f1f2f
−2 + (1/8)f3

1f
−4

]

f−2/2,

τ (4) =
[

f4 − (1/2)f1f3f
−2 − (1/4)f2

2f
−2 + (3/8)f2

1f2f
−4 − (5/64)f3

1f
−4

]

f−2/2.

Substituting the stress expansion (15) into the equilibrium equation (9) one obtains

the sequence of ordinary differential equations with respect to f (k)
ij (θ)

τ
(k)
θz,θ + (s+ ksm + 1)τ

(k)
Rz = 0. (17)
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The fifth-term asymptotic expansion of the creep strain rate components is given as

Γiz(R, θ) = Rsnγ
(0)
iz (θ) + Rs(n+m)γ

(1)
iz (θ) + Rs(n+2m)γ

(2)
iz (θ) +

+Rs(n+3m)γ
(3)
iz (θ) +Rs(n+4m)γ

(4)
iz (θ) + o

(

Rs(n+4m)
)

,
(18)

where γ(0)
iz (θ) = fn−1f

(0)
iz (θ), γ

(k)
iz (θ) = fn−1

[

f
(k)
iz (θ) +

k
∑

l=1

cl(θ)f
(k−l−1)
iz (θ)

]

,

c1 =(n− 1)τ (1), c2 = (n − 1)

[

τ (2) + (1/2)(n− 2)
(

τ (1)
)2

]

,

c3 =(n− 1)

[

τ (3) + (n− 2)τ (1)τ (2) + (1/6)(n− 2)(n− 3)
(

τ (1)
)3

]

,

c4 =(n− 1)

[

τ (4) + (n− 2)τ (1)τ (3) + (1/2)(n− 2)
(

τ (2)
)2

+ (1/2)(n− 2)(n− 3)
(

τ (1)
)2
τ (2) + (1/24)(n− 2)(n− 3)(n− 4)

(

τ (1)
)4

]

.

By inserting the asymptotic expansions (18) into the compatibility equation (9) one
obtains the sequence of the ordinary differential equations

γ
(k)
Rz,θ = [s(n+ km) + 1] γ

(k)
θz . (19)

The damage evolution equation (10) allows us to find the relations among the an-
gular integrity parameter functions and the angular effective stress functions

g(1) (θ) =fm, g(2) (θ) =
1

2
mfmτ (1),

g(3)(θ) =
1

3
mfm

[

τ (2) +
1

2
(m− 1)

(

τ (1)
)2

]

,

g(4)(θ) =
1

4
mfm

[

τ (3) + (m− 1)τ (1)τ (2) +
1

6
(m− 1)(m− 2)

(

τ (1)
)3

]

,

g(5)(θ) =
1

5
mfm

[

τ (4) + (m− 1)τ (1)τ (3) +
1

2
(m− 1)

(

τ (2)
)2

+
1

2
(m− 1)(m− 2)

(

τ (1)
)2
τ (2) +

1

24
(m− 1)(m− 2)(m− 3)

(

τ (1)
)4

]

.

(20)

Eqs. (17), (19) and (20), where k = 0, 1, 2, 3, 4, are the final governing equations
for the zero-order, first-order, second-order, third-order and fourth-order asymptotic stress
fields. The system of Eqs. (17), (19) with the boundary conditions following from (11) and
(12) has been numerically integrated by a Runge-Kutta-Fehlberg method. After integration
it is possible to determine the shape of the TDZ by means of the asymptotic equation

ψ (R, θ) = 1− Rsmg(1) −R2smg(2) − R3smg(3) − R4smg(4) − R5smg(5) = 0

because it is assumed that on the boundary of the TDZ the integrity parameter reaches its
critical value. It is interesting to compare the boundaries of the TDZ given by the two-term,
three-term, four-term, five-term and six-term asymptotic integrity parameter expansion.
It is turned out that if the remote boundary condition is postulated as the condition of
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the asymptotic approaching the HRR-fields (the remote boundary condition (3)) then the
shapes of the TDZ given by the two-term and three-term asymptotic expansions differ
essentially from each other. Figure 1 shows the shapes of the TDZ determined by the
two-term and three-term asymptotic expansions in this case. Moreover it is not possible to
evaluate the boundary of the TDZ given by the four-term asymptotic integrity parameter
expansion since there are no roots of the algebraic equation

ψ (R, θ) = 1− Rsmg(1) (θ) − R2smg(2) (θ) −R3smg(3) (θ) = 0

corresponding to the physical meaning of the similarity variable (5).

Fig. 1. The contours of the TDZ in the vicinity of the antiplane shear crack tip:
1 – the contour given by the two-term asymptotic integrity parameter expansion,
2 – the contour given by the three-term asymptotic integrity parameter expansion

To elucidate the cause of this fact one can formulate the remote boundary condition
in a more general form (13) with an unknown exponent s which must be found as a part
of the solution under the condition of convergence of the TDZ boundary to some limit
contour.

It should be noted that Eqs. (17) and (19) for k = 0 in conjunction with the
boundary conditions describe a nonlinear eigenvalue problem

df
(0)
Rz

dθ
= f

(0)
θz

(sn+ 1)f2 + (n− 1)(s+ 1)
(

f
(0)
Rz

)2

(n− 1)
(

f
(0)
Rz

)2
+ f2

,

df
(0)
θz

dθ
= −(s + 1)f

(0)
Rz , f

(0)
θz (θ = π) = 0, f

(0)
Rz (θ = 0) = 0.

(21)

where the unknown eigenvalue s and the eigenfunctions f (0)
iz (θ) depend on the boundary

conditions and the creep exponent. One eigenvalue corresponding to the HRR-problem
s = −1/(n+1) is well-known. Previously [9, 10] the whole eigenspectrum of the nonlinear
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eigenvalue problem considered was established

λ =
n

(

λ2
0 + 2λ0 − 1

)

+ (λ0 − 1)2

2n(2λ0 − 1)
+

√

[

n
(

λ2
0 + 2λ0 − 1

)

+ (λ0 − 1)2
]2

− 4n2λ2
0 (2λ0 − 1)

2n(2λ0 − 1)
,

where λ = s + 1, λ0 refers to the linear problem. For the HRR-problem the eigenvalue
corresponding to the linear problem is λ0 = 1/2.

Thus, it is necessary to find an eigenvalue different from the eigenvalue of the HRR-
problem and resulting in the boundaries of the TDZ which are convergent to some limit
contour. The eigenvalues required are listed in Table 1.

Table 1. The eigenvalue s for different values of material constants

n = m = 1 s = −1.5
n = 2, m = 0.7n s = −1.230291
n = 3, m = 0.7n s = −1.183013
n = 4, m = 0.7n s = −1.164790
n = 5, m = 0.7n s = −1.155234
n = 6, m = 0.7n s = −1.149367
n = 7, m = 0.7n s = −1.145402
n = 8, m = 0.7n s = −1.142544
n = 9, m = 0.7n s = −1.140388
n = 10, m = 0.7n s = −1.138703

The configurations of the TDZ for the new far field stress asymptotics are shown
in Figures 2, 3, where the following notations are accepted: 1 – the contour given by the
two-term asymptotic expansion of the integrity parameter, 2 – the contour given by the
three-term asymptotic expansion of the integrity parameter, 3 – the contour given by the
four-term asymptotic expansion of the integrity parameter, 4 – the contour given by the
five-term asymptotic expansion of the integrity parameter, 5 – the contour given by the
six-term asymptotic expansion of the integrity parameter. It is clearly seen from Figure 2
and 3 that the boundaries of the TDZ converge to the limit contour.

4. FINITE DIFFERENCE SOLUTION OF MODE III CRACK PROBLEM

To justify the asymptotic solution obtained one can address to the direct numerical
integration of Eqs. (9) – (13) formulated in terms of the similarity variable. The numeri-
cal solution has been found by the finite difference method. The results of the numerical
calculations are presented by Figures 4 and 5. The stress and integrity distributions are
shown in Figure 4. It is interesting to represent the effective stress in double logarithmic
coordinates (Figure 5). It is seen that there are two rectilinear parts: one linear region
corresponds to the HRR-filed while the order linear part corresponds to the new interme-
diate asymptotic solution. The intermediate asymptotic solution is the stress and integrity
distributions valid for times and distances at which the influence of fine details of initial
and boundary conditions is lost [11-14].
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Fig. 2. The contours of the TDZ for n = 3, m = 0.7n and n = 5, m = 0.7n

Fig. 3. The contours of the TDZ for n = 7, m = 0.7n and n = 9, m = 0.7n

Fig. 4. Stresses and integrity distributions in the vicinity of the antiplane shear crack



An intermediate asymptotic solution of the coupled creep-damage crack problem in similarity variables 141

Fig. 5. Logarithmic plot of the effective stress showing that Σ is proportional to
the similarity variable R

5. MODE I CRACK. FUNDAMENTAL EQUATIONS AND
ASYMPTOTIC SOLUTION

A static mode I crack problem in a damaged creeping material under the plane strain
and plane stress conditions is considered. The equilibrium and compatibility equations in
the polar coordinate system can, respectively, be written as

∂σrr

∂r
+

1

r

∂σrθ

∂θ
+
σrr − σθθ

r
= 0,

∂σrθ

∂r
+

1

r

∂σθθ

∂θ
+ 2

σrθ

r
= 0, (22)

2
∂

∂r

(

r
∂ε̇rθ

∂θ

)

=
∂2ε̇rr

∂θ2
− r

∂ε̇rr

∂r
+ r

∂2 (rε̇θθ)

∂r2
. (23)

The creep power-law constitutive equations in the coupled creep-damage formulation
are described by

ε̇rr = −ε̇θθ =
3

4
B

(

σe

ψ

)n−1 σrr − σθθ

ψ
, ε̇rθ =

3

2
B

(

σe

ψ

)n−1 σrθ

ψ
, (24)

where σ2
e = 3 (σrr − σθθ)

2 /4 + 3σ2
rθ for plane strain conditions,

ε̇rr =
B

2

(

σe

ψ

)n−1 2σrr − σθθ

ψ
,

ε̇θθ =
B

2

(

σe

ψ

)n−1 2σθθ − σrr

ψ
,

ε̇rθ =
3B

2

(

σe

ψ

)n−1 σrθ

ψ
,

(25)

where σ2
e = σ2

rr + σ2
θθ − σrrσθθ + 3σ2

rθ for plane stress conditions.
The traction-free conditions on the crack surfaces yield

σθθ(r, θ = ±π) = 0, σrθ(r, θ = ±π) = 0. (26)
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The remote boundary condition has the form (6).
Analogously to the antiplane shear crack problem one can introduce the similar-

ity variable (8). The equilibrium and compatibility equations hold their forms while the
kinetics evolution law of damage takes the following form

R∂ψ/∂R = −sm (Σeqv/ψ)m , (27)

where Σeqv = αΣ1 + βΣe + (1 − α − β)Σ is the damage equivalent stress in terms of the
similarity variable.

The Airy stress potential F (R, θ) can be used to obtain

σθθ = F,rr, σrr = ∆F − σθθ, σrθ = −
(

r−1F,θ

)

,r
. (28)

It is assumed that the Airy stress function and the integrity parameter at large
distances from the crack tip (R→ ∞) are separable and can be expressed as series as

F (R, θ) = Rλ+1f (0) (θ) +Rλ1+1f (1) (θ) + Rλ2+1f (2) (θ) + o
(

Rλ2+1
)

,

ψ (R, θ) = 1 −Rγ1g(1) (θ) −Rγ2g(2) (θ) −Rγ3g(3) (θ) + o (Rγ3) ,
(29)

λ > λ1 > λ2 > .... The multi-term asymptotic stress expansions can be written in the
form

σRR(R, θ) =Rs
[

λf (0) + (f (0))′′
]

+ Rs1

[

λ1f
(1) + (f (1))′′

]

+Rs2

[

λ2f
(2) + (f (2))′′

]

+ o(Rs2),

σθθ(R, θ) =Rsλ(λ− 1)f (0) +Rs1λ1(λ1 − 1)f (1) + Rs2λ2(λ2 − 1)f (2) + o (Rs2) ,

σrθ(R, θ) =Rs(1− λ)(f (0))′ + Rs1(1 − λ1)(f
(1))′ + Rs2 (1− λ2) (f (2))′ + o(Rs2),

where s = λ− 1, s1 = λ1 − 1, s2 = λ2 − 1.
The three-term asymptotic creep strain rate expansions for plane strain conditions

are determined by the formulae

ε̇RR (R, θ) = −ε̇θθ (R, θ) = Rsnε
(0)
RR (θ) + Rs(n+m)ε

(1)
RR (θ) +Rs(n+2m)ε

(2)
RR (θ) + ...,

ε̇Rθ (R, θ) = Rsnε
(0)
Rθ (θ) +Rs(n+m)ε

(1)
Rθ (θ) +Rs(n+2m)ε

(2)
Rθ (θ) + ...,

(30)

where

ε
(0)
RR(θ) = fn−1

e

[

(

1 − λ2
)

f (0) +
(

f (0)
)

′′

]

, ε
(0)
Rθ(θ) = −fn−1

e λ
(

f (0)
)

′

, (31)

ε
(1)
RR =

1

2
fn−1
e

{[

(

1 − λ2
1

)

f (1) +
(

f (1)
)

′′

]

+

[

(

1 − λ2
)

f (0) +
(

f (0)
)

′′

]

[

(n − 1)f (1)
e + ng(0)

]

}

,

ε
(1)
Rθ = − fn−1

e

{

λ1

(

f (1)
)

′

+ λ
(

f (0)
)

′
[

(n− 1)f (1)
e + ng(0)

]

}

,

ε
(2)
RR =

1

2
fn−1
e

{[

(

1 − λ2
2

)

f (2) +
(

f (2)
)

′′

]

+

[

(

1 − λ2
1

)

f (1) +
(

f (1)
)

′′

]

[

(n− 1)f (1)
e + ng(0)

]

+
[(

1 − λ2
)

f (0) +
(

f (0)
)

′′
][

n
(n+ 1

2

(

g(0)
)2

+ g(1) + (n − 1)g(0)f (1)
e

)

+
n− 1

2

(

(n− 2)
(

f (1)
e

)2
+ 2F 2

e

)]}

,
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ε
(2)
Rθ = − fn−1

e

{

λ2

(

f (2)
)

′

+ λ1

(

f (1)
)

′
[

(n− 1)f (1)
e + ng(0)

]

+ λ
(

f (0)
)

′

[

n

(

n + 1

2

(

g(0)
)2

+ g(1) + (n− 1)g(0)f (1)
e

)

+
n − 1

2

(

(n− 2)
(

f (1)
e

)2
+ 2F 2

e

)]}

,

f (1)
e =

{[

(

1 − λ2
)

f (0) +
(

f (0)
)

′′

][

(

1 − λ2
1

)

f (1) +
(

f (1)
)

′′

]

+ 4λλ1

(

f (0)
)

′
(

f (1)
)

′

}

f−2
e ,

F 2
e =

1

2

[

f (2)
e −

(

f (1)
e

)2
]

, f (2)
e =

{[

(

1 − λ2
1

)

f (1) +
(

f (1)
)

′′

]2

+ 4λ2
1

[

(

f (1)
)

′

]2

+2

[

(

1 − λ2
)

f (0) +
(

f (0)
)

′′

] [

(

1 − λ2
2

)

f (2) +
(

f (2)
)

′′

]

+ 8λλ2

(

f (0)
)

′
(

f (2)
)

′

}

f−2
e .

Using the asymptotic expansions (30) and the compatibility equation (23) one finds

2(sn+ 1)ε
(0)
Rθ,θ = ε

(0)
RR,θθ − sn(sn+ 2)ε

(0)
RR, (32)

2 [s(n+m) + 1] ε
(1)
Rθ,θ = ε

(1)
RR,θθ − s(n +m) [s(n+m) + 2] ε

(1)
RR,

2 [s(n+ 2m) + 1] ε
(2)
Rθ,θ = ε

(2)
RR,θθ − s(n +m) [s(n+ 2m) + 2] ε

(2)
RR.

Taking into account Eqs. (31) one can obtain the nonlinear ordinary differential
equation with respect to f (0) (θ):

f2
e

(

f(0)
)IV {

(n− 1)
[(

1 − λ2
)

f(0) +
(

f(0)
)

′′
]2

+ f2
e

}

+ (n − 1)(n− 3)

×
{[(

1 − λ2
)

f(0) +
(

f(0)
)′′][(

1 − λ2
)(

f(0)
)′

+
(

f(0)
)′′′]

+ 4λ2
(

f(0)
)′(

f(0)
)′′}2

×
[(

1 − λ2
)

f(0) +
(

f(0)
)′′]

+ (n− 1)f2
e

{[(

1 − λ2
)(

f(0)
)′

+
(

f(0)
)′′′]2

+
[(

1 − λ2
)

f(0) +
(

f(0)
)

′′
](

1 − λ2
)(

f(0)
)

′′

+4λ2
[(

f(0)
)

′′2

+
(

f(0)
)

′
(

f(0)
)

′′′
]}

(33)

f2
e

(

f(0)
)IV {

(n− 1)
[(

1 − λ2
)

f(0) +
(

f(0)
)

′′
]2

+ f2
e

}

+ (n − 1)(n− 3)

×
[(

1 − λ2
)

f(0) +
(

f(0)
)

′′
]

+ 2(n− 1)f2
e

{[(

1 − λ2
)

f(0) +
(

f(0)
)

′′
][(

1 − λ2
)(

f(0)
)

′

+
(

f(0)
)

′′′
]

+ 4λ2
(

f(0)
)′(

f(0)
)′′}[(

1 − λ2
)(

f(0)
)′

+
(

f(0)
)′′′]

+ C1(n− 1)f2
e

{[(

1 − λ2
)

f(0) +
(

f(0)
)′′][(

1 − λ2
)(

f(0)
)′

+
(

f(0)
)′′′]

+ 4λ2
(

f(0)
)′(

f(0)
)′′}

×
(

f(0)
)

′

+C1f
4
e

(

f(0)
)

′′

− C2f
4
e

[(

1 − λ2
)

f(0) +
(

f(0)
)

′′
]

+ f4
e

(

1 − λ2
)(

f(0)
)

′′

= 0,

where, for brevity’s sake, the following notations are adopted

f2
e =

[

(1 − λ)2 f (0) +
(

f (0)
)

′′

]2

+ 4λ2
(

f (0)
)′2

,
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C1 = 4λ [(λ− 1)n+ 1] , C2 = (λ− 1)n [(λ− 1)n+ 2] .

The fourth order nonlinear ordinary differential equation (33)with the boundary conditions

f (0) (θ = ±π) = 0,
(

f (0)
)

′

(θ = ±π) = 0, (34)

defines a nonlinear eigenvalue problem in which the constant λ is the eigenvalue and f (0) (θ)
is the corresponding eigenfunction. Note that one eigenvalue of the nonlinear eigenvalue
problem (33), (34) is well-known. This eigenvalue λ = n/(n + 1) corresponds to the clas-
sical HRR-problem. However, this eigenvalue results in the contours of the TDZ given by
the two-term and three-term asymptotic integrity parameter expansions which are sub-
stantially different from each other. Therefore it is necessary to find a new eigenvalue
different from λ = n/(n + 1) and resulting in the shapes of the TDZ which are close to
each other. The boundary value problem (the new eigenvalue problem for the eigenfunc-
tion f (0)(θ) and eigenvalue λ (or s = λ − 1)) formulated is solved numerically using the
Runge-Kutta-Fehlberg and a shooting method. Numerical results are presented in Table 2.

Table 2

n m
Plane strain Plane stress

s
(

f (0)
)′′

(0) s
(

f (0)
)′′

(0)
1 1 -1.5 -0.75 -1.5 -0.75
2 0.7n -1.0 -0.5 -1.1540 -0.5686
3 0.7n -0.7716 -0.4372 -1.0 -0.5
4 0.7n -0.6684 -0.4092 -0.9133 -0.4658
5 0.7n -0.6179 -0.3985 -0.8580 -0.4428
6 0.7n -0.5901 -0.3950 -0.8197 -0.4261
7 0.7n -0.5732 -0.3943 -0.7919 -0.4134
8 0.7n -0.5621 -0.3948 -0.7708 -0.4035
9 0.7n -0.5543 -0.3958 -0.7543 -0.3955

The shapes of the TDZ obtained for the new stress asymptotics at large distances
from the crack tip for plane strain and plane stress conditions are shown in Figures 7,
8, where 1 – the contour given by the two-term asymptotic expansion of the integrity
parameter, 2 – the contour given by the three-term asymptotic expansion of the integrity
parameter, 3 – the contour given by the four-term asymptotic expansion of the integrity
parameter.

Returning to the original variables one can estimate the size of the TDZ and find a
law according to which the TDZ evolutes:

r0(t) = R(0)C̃−1/s (At)−1/(sm) . (35)

Differentiating Eq. (35) with respect to time and replacing time by the radial coor-
dinate through (35) give the rate of the TDZ:

dr0(t)

dt
= −

1

sm
[R(0)]−sm C̃mA [r0(t)]

1+sm .
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Fig. 6. The boundary of the TDZ for different values of material constants (plane
strain conditions)

Fig. 7. The boundary of the TDZ for different values of material constants (plane
stress conditions)

6. CONCLUSIONS

The effects of material damage on the asymptotic stress and creep strain rate fields
of mode I and mode III cracks were analysed on the basis of continuum damage mechanics
by postulating power-law creep damage theory.

Based on the similarity variable a stress analysis is carried out for the mode I crack
under plane stress and plane strain conditions and for the mode III crack and assuming
the existence of a totally damaged zone near the crack tip. It is found that the Hutchinson-
Rice-Rosengren solution can’t be used as the remote boundary condition and the actual
far field stress is obtained. The shape of the totally damaged zone is given and analysed.

It is shown that the new far field stress asymptotics can be interpreted as the inter-
mediate asymptotic valid for times and distances at which effects of initial and boundary
conditions on the stress and damage distributions are lost.

Higher order fields for damaged nonlinear antiplane shear and tensile crack problems
are analytically derived. The higher order fields obtained permit the shape of the totally
damaged zone modelled in the vicinity of the crack tip to be determined more exactly.
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MỘT LỜI GIẢI TIỆM CẬN TRUNG GIAN CHO BÀI TOÁN NỨT HƯ
HỎNG TRONG CÁC BIẾN ĐỒNG DẠNG

Lớp các lời giải tự đồng dạng cho bài toán nứt hư hỏng dão được quan tâm trong
bài báo. Mô hình cơ bản được dựa trên cơ học của môi trường liên tục bị hư hỏng. Lý
thuyết kinh điển hư hỏng dão của Kachanov-Rabotnov được sử dụng để nghiên cứu dáng
điệu tiệm cận của hư hỏng trong vùng rất gần với vết nứt. Vùng bị hư hỏng hoàn toàn nơi
mà các tham số thể hiện hư hỏng đạt tới giá trị tới hạn được giả sử tồn tại trong lân cận
của vết nứt. Sử dụng các biến đồng dạng, ta thu được những lời giải tiệm cận cho dạng I
và dạng III của bài toán nứt. ứng suất tiệm cận, tốc độ biến dạng dão và những vùng hư
hỏng gần với vết nứt được phân tích bằng cách giải bài toán giá trị riêng phi tuyến dẫn
tới một phân bố ứng suất mới. Hình dạng của vùng hư hỏng hoàn toàn chi phối bởi miền
ứng suất mới sẽ được tìm và phân tích.


