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Abstract. The transmission ratio of the planar fourbar, i.e. the ratio of the angular
velocities of input link and output link, is a function of the input angle. Freudenstein
[1] showed how to calculate stationary values of the transmission ratio. In the present
paper a new method is described. Like Freudenstein’s method it results in a sixth-order
polynomial equation.

1. INTRODUCTION

The planar fourbar is composed of four links, namely the fixed link of length ` ,
the input link of length r1 , the output link of length r2 and the coupler of length a
(see the fourbar A0ABB0 in Fig. 1). The angles of rotation of input link and of output
link relative to the fixed link, both positive counter-clockwise, are denoted ϕ and ψ ,
respectively. The transfer function determines ψ as function of ϕ . The time derivative
of this function yields an expression for the transmission ratio i = ϕ̇/ψ̇ as function
of ϕ . Subject of investigation are stationary values of i(ϕ) . In ref.[1] Freudenstein gave
a sixth-order polynomial equation for a certain geometrical variable. The roots of this
equation determine the input angles at which i(ϕ) is stationary. In the present paper
a new sixth-order polynomial equation with cosϕ as variable is formulated. It is shown
that the coefficients of this polynomial are invariant with respect to an interchange of `
and r1 . From this it follows that two fourbars with interchanged link lengths ` and r1
have stationary transmission ratios imax and imin , respectively, at identical input angles
ϕ . Under certain conditions on the link lengths the polynomial is of fifth or of third or
of second order. It is not shown in the present paper that also Freudenstein’s equation
can be written in a symmetrical form and that it leads, under the same conditions on link
lengths, to fifth-, third- and second-order equations1.

1For relationships to Freudenstein’s method see the monograph Wittenburg: Kinematics (to appear)
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2. TRANSFER FUNCTION

In the x, y -system shown in Fig. 1 the end points A and B of input link and output
link have the coordinates

xA = r1 cosϕ , xB = `+ r2 cosψ ,
yA = r1 sinϕ , yB = r2 sinψ .

}

(1)

Fig. 1. Fourbar F and the associated fourbar F∗ with link lengths r1 and ` interchanged

The constant length a of the coupler requires that (xB − xA)2 + (yB − yA)2 = a2 .
This results in the transfer function f(ϕ, ψ) = 0 :

f = 2r2(`− r1 cosϕ) cosψ − 2r1r2 sinϕ sinψ − 2`r1 cosϕ+ r21 + `2 + r22 − a2 = 0 (2)

or

f = 2`r2 cosψ − 2`r1 cosϕ− 2r1r2 cos(ϕ− ψ) + r21 + `2 + r22 − a2 = 0 . (3)

Equation (2) has the form

A(ϕ) cosψ +B(ϕ) sinψ = C(ϕ) (4)

with coefficients

A = 2r2(`− r1 cosϕ), B = −2r1r2 sinϕ , C = 2r1` cosϕ− (r21 + `2 + r22 − a2) . (5)



Stationary values of the transmission ratio of the planar fourbar 361

For every angle ϕ there exist two solutions ψ1 and ψ2 . They are determined through
their sines and cosines:

cosψ1,2 =
AC ∓ B

√
A2 + B2 − C2

A2 +B2
,

sinψ1,2 =
BC ±A

√
A2 + B2 − C2

A2 +B2
.















(6)

These expressions depend on three parameters only, namely on r1/` , r2/` and a/` .
Equations (5) yield

A2 +B2 = 4r2
2
(`2 + r2

1
− 2r1` cosϕ) = −4r2

2
(C + r2

2
− a2) , (7)

A2 + B2 − C2 = 4r2
2
a2 − (C + 2r2

2
)2 = −[C + 2r2(a+ r2)][C − 2r2(a− r2)] (8)

= −[2r1` cosϕ− (r21 + `2) + (r2 + a)2][2r1` cosϕ− (r21 + `2) + (r2 − a)2] . (9)

The angles ψ1 and ψ2 are real for all angles ϕ satisfying the condition A2+B2−C2 ≥ 0 .
Let φ denote all angles ϕ for which the equality sign is valid. From Eq.(9) the cosines of
these angles are obtained:

cosφ1,2 =
r2
1

+ `2 − (r2 ∓ a)2

2r1`
. (10)

These angles are limit angles of fourbars in which the input link cannot rotate full circle.
The limit positions are characterized by collinearity of output link and coupler.

3. INTERCHANGE OF INPUT LINK AND FIXED LINK

In Fig. 1 the fourbar A0ABB0 with link lengths ` , r1 , a , r2 is called fourbar F.
Broken lines parallel to the fixed link and to the input link define the point P. The
quadrilateral B0PAB is drawn one more time in dotted lines. The dotted quadrilateral
is called fourbar F∗ . Its fixed link has length r1 and its input link has length ` . Both
fourbars have the same coupler and the same output link. If F is a foldable fourbar then
also F∗ is foldable. If F is a double-rocker of first kind (of second kind) then also F∗ is
a double-rocker of first kind (of second kind). If F is a double-crank then F∗ is either a
double-crank or a crank-rocker. If F is a crank-rocker then F∗ is either a double-crank
(if fixed link and crank are interchanged) or a crank-rocker (if fixed link and rocker are
interchanged).

In Fig. 1 F and F∗ have one and the same input angle ϕ . The relation between
the output angles ψ and ψ∗ is seen to be

ψ + ψ∗ ≡ ϕ+ π . (11)

For a given angle ϕ Eqs.(6) determine in the fourbar F two angles ψ1 and ψ2 and in
the fourbar F∗ with coefficients A∗ = 2r2(r1 − ` cosϕ) , B∗ = −2`r2 sinϕ , C∗ = C two
angles ψ∗

1
and ψ∗

2
. The coordination of these pairs of angles is as follows: ψ1+ψ∗

2
≡ ϕ+π .

This is verified by substituting A,B, C and A∗, B∗, C∗ into the equation cosψ1 cosψ∗

2
−

sinψ1 sinψ∗

2
≡ − cosϕ .
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4. TRANSMISSION RATIO

The angular velocity ratio i = ϕ̇/ψ̇ is called transmission ratio of the fourbar. An
analytical expression for the ratio 1/i is found by differentiating the transfer function
f(ϕ, ψ) = 0 with respect to time:

ϕ̇
∂f

∂ϕ
+ ψ̇

∂f

∂ψ
= 0 . (12)

This yields
1

i
=
ψ̇

ϕ̇
= −∂f

∂ϕ

/∂f

∂ψ
. (13)

Equation (3) yields

∂f

∂ϕ
= 2`r1 sinϕ+ 2r1r2 sin(ϕ− ψ) ,

∂f

∂ψ
= −2`r2 sinψ − 2r1r2 sin(ϕ− ψ) , (14)

whence follows
1

i
=
r1
r2

(15)

× ` sinϕ+ r2 sin(ϕ− ψ)

` sinψ + r1 sin(ϕ− ψ)
=
r1
r2

` sinϕ+ r2(sinϕ cosψ − cosϕ sinψ)

` sinψ + r1(sinϕ cosψ − cosϕ sinψ)

and with Eqs.(6)
1

i
=
r1
r2

(16)

×
`(A2 + B2) sinϕ+ r2

[

(A sinϕ− B cosϕ)C ∓ (B sinϕ+ A cosϕ)
√
A2 + B2 − C2

]

`
(

BC ±A
√
A2 + B2 − C2

)

+ r1

[

(A sinϕ −B cosϕ)C ∓ (B sinϕ +A cosϕ)
√
A2 +B2 −C2

] .

From Eqs.(5) it follows that

A sinϕ− B cosϕ = 2r2` sinϕ ,

B sinϕ+ A cosϕ = 2r2(` cosϕ− r1) ,

`B + r1(A sinϕ−B cosϕ) = 0 .







(17)

These equations in combination with Eqs.(7) and (8) yield the final formula

2

i
=

(cosϕ− p1)
√

λ2 − (cosϕ− p4)2 ± (cosϕ− p3) sinϕ

(cosϕ− p2)
√

λ2 − (cosϕ− p4)2
(18)

with dimensionless constants

λ =
r2a

r1`
, p1 =

r1
`
, p2 =

r2
1

+ `2

2r1`
, p3 = p2 −

r2
2
− a2

2r1`
, p4 = p2 −

r2
2
+ a2

2r1`
. (19)

These constants are related as follows:

p2

2 − 1 = (p1 − p2)
2 , (p4 − p2)

2 − λ2 = (p3 − p2)
2 . (20)

From the first relation in combination with the definition of p2 it follows that p2 ≥ 1 .
The equality sign applies if and only if r1 = ` and with this p1 = p2 = 1 . This, in turn,
has the consequence that the denominator expression cosϕ − p2 in Eq.(18) is zero only
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if the two conditions ϕ = 0 and r1 = ` are satisfied which implies that also r2 = a . This
indicates the folding position of a rhomboid fourbar. The square root in the denominator
of Eq.(18) is zero only if ϕ is one of the limit angles φ1,2 of the input link which must
then be a rocker (see Eq.(10)).

With the exception of p1 all constants in Eqs.(19) are invariant with respect to
an interchange of base length ` and input link length r1 . Because of the first Eq.(20)
this is true also for (p1 − p2)

2 . A relation between the ratios 1/i and 1/i∗ of the two
fourbars with interchanged link lengths is obtained by differentiating the identity Eq.(11)
with respect to time:

1

i
+

1

i∗
=
ψ̇

ϕ̇
+
ψ̇∗

ϕ̇
≡ 1 . (21)

5. STATIONARY VALUES OF TRANSMISSION RATIO

Let P1 be the center of rotation of the output link relative to the input link, and
let P2 be the center of rotation of the coupler relative to the fixed link. The former is
the point of intersection of coupler and fixed link (also referred to as base line), and the
latter is the point of intersection of output link and input link. Freudenstein [1] discovered
that a stationary value of the transmission ratio occurs in positions in which the line
P1P2 is orthogonal to the coupler. Based on this general rule Freudenstein developed an
analytical method for the determination of the associated angles ϕ. In the present paper
Freudenstein’s rule is applied only to the special case that a stationary value occurs at
ϕ = 0 or at ϕ = π . In these cases, P1 and P2 are located on the base line, and the coupler
is orthogonal to the base line. Then, the parameters satisfy the condition

stationary value at ϕ = 0 : (`− r1)
2 + a2 = r2

2

stationary value at ϕ = π : (`+ r1)
2 + a2 = r2

2
.

}

(22)

The new method is based on Eq.(18). With the abbreviation x = cosϕ this equation
is written in the form

2

i(x)
=

(x− p1)P ± (x− p3)Q

(x− p2)P
, P =

√

λ2 − (x− p4)2 , Q =
√

1 − x2 . (23)

The stationarity condition d(1/i)/dx = 0 has the form (the prime denotes the derivative
with respect to x )

∓(p1 − p2)P
2 = (p3 − p2)PQ+ (x− p2)(x− p3)(PQ

′ −QP ′) . (24)

Now, P ′ = −(x − p4)/P and Q′ = −x/Q are substituted. The resulting equation is
multiplied by PQ . This eliminates the case sinϕ = 0 . Whether this is a solution is
checked with Eq.(22). After this multiplication the equation has the form

± (p1 − p2)[(x− p4)
2 − λ2]

√

(x2 − 1)[(x− p4)2 − λ2]

= (p3 − p2)(x
2 − 1)[(x− p4)

2 − λ2]

− (x− p2)(x− p3)[p4(1 + x2) + x(λ2 − p2

4 − 1)].

(25)
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The special case r1 = ` is characterized by p1 = p2 = 1 and, therefore, by the
third-order equation

(p3 − 1)(1 + x)[λ2 − (x− p4)
2] + (x− p3)[p4(1 + x2) + x(λ2 − p2

4 − 1)] = 0 . (26)

The equation is quadratic if, in addition, also a = ` .
In the general case r1 6= ` Eq.(25) is squared. The squared equation is invariant

with respect to the interchange of r1 and ` (see the comments following Eqs.(19) and
(20)). Because of the sign ± no extraneous roots are introduced by squaring. Equation
(25) with the positive sign has the meaningless root x = p2 > 1 . This is verified with the
help of Eqs.(20). From this it follows that the squared equation is divisible by (x− p2)

2 .
Following this division it is a sixth-order equation. The division is performed in two steps.
Squaring results in the equation

(x2 − 1)[(x− p4)
2 − λ2]2{(p1 − p2)

2[(x− p4)
2 − λ2]− (p3 − p2)

2(x2 − 1)}
= (x− p2)F (x){(x− p2)F (x)− 2(p3 − p2)(x

2 − 1)[(x− p4)
2 − λ2]} (27)

with the third-order polynomial

F (x) = (x− p3)[p4(1 + x2) + x(λ2 − p2

4 − 1)] . (28)

Taking into account Eqs.(20) the expression in curled brackets on the left-hand side is
written in the form (x− p2)(Ax+B) with constants

A = (p1 − p2)
2 − (p3 − p2)

2 , B = p2A− 2p4(p1 − p2)
2 . (29)

Thus, division of Eq.(27) by (x− p2) produces the equation

(x2 − 1)[(x− p4)
2 − λ2]{[(x− p4)

2 − λ2](Ax+ B) + 2(p3 − p2)F (x)}
= (x− p2)F

2(x).
(30)

The expression in curled brackets is a third-order polynomial K3x
3 +K2x

2 +K1x + K0

with coefficients

K3 = A+ 2p4(p3 − p2) ,
K2 = B − 2p4A+ 2(p3 − p2)(λ

2 − p2
4
− 1 − p3p4) ,

K1 = −2p4B + A(p2

4
− λ2) + 2(p3 − p2)[p4 − p3(λ

2 − p2

4
− 1)] .







(31)

Division by (x−p2) produces the second-order polynomial K3x
2 +(x+p2)(K2+p2K3)+

K1 . With this expression Eq.(30) yields the desired sixth-order equation

(x2 − 1)[(x− p4)
2 − λ2][K3x

2 + (x+ p2)(K2 + p2K3) +K1] − F 2(x) = 0 . (32)

The coefficient of x6 is

K3 − p2

4 = (p1 − p2)
2 − (p3 − p2 − p4)

2 =
(`2 − a2)(a2 − r2

1
)

(r1`)2
. (33)

From this it follows that the equation is of fifth order if a = ` and/or a = r1 . Only real
roots |x| ≤ 1 are significant. For every such root it is checked to which sign in Eq.(25) the
root belongs. With the same sign Eqs.(23) and (6) determine the corresponding stationary
value of 1/i and the angle ψ . Like Freudenstein’s method also this method does not make
any statement about the number of stationary values.
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Example: A fourbar with parameters ` = 3 , r1 = 5 , a = 7 and r2 = 6 is a
double-crank, and a fourbar with parameters ` = 5 , r1 = 3 , a = 7 and r2 = 6
( ` and r1 interchanged) is a crank-rocker. With both sets of parameters Eq.(32) has
the four real roots x = cosϕ ≈ −0.084 , 0.9882 , 1.11 and 4.02 . The first two roots
determine the angles ϕ ≈ 94.8◦ and ϕ ≈ 8.8◦ , respectively (arbitrarily positive, because
to every position (ϕ , ψ ) exists the symmetric position (−ϕ , −ψ )). For the double-crank
Eq.(25) is satisfied with the lower sign for x ≈ −0.084 and with the upper sign for
x ≈ 0.9882 . From this it follows that the double-crank has the two positions of stationarity
(ϕ ≈ 94.8◦ , ψ2 ≈ 195.5◦ ) with (1/i)min ≈ 0.42 and (ϕ ≈ 8.8◦ , ψ1 ≈ −88.6◦ ) with
(1/i)max ≈ 2.7 . For the crank-rocker the two positions of stationarity are (ϕ ≈ 94.8◦ , ψ1 ≈
79.3◦ ) with (1/i)max ≈ 1 − 0.42 = 0.58 and (ϕ ≈ 8.8◦ , ψ2 ≈ −82.5◦ ) with (1/i)min ≈
1 − 2.7 = −1.7 . It may be checked that in all four positions the line P1P2 is orthogonal
to the coupler. End of example.

Summary: The inverse of the transmission ratio i = ϕ̇/ψ̇ of the planar fourbar is
formulated as function of x = cosϕ . The stationarity condition d(1/i)/dx = 0 is a
sixth-order polynomial equation. Its roots are invariant with respect to an interchange
of the link lengths ` (fixed link) and r1 (input link). This has the consequence that
two fourbars with interchanged link lengths ` and r1 have stationary transmission ratios
istat and i∗stat at identical input angles ϕ . Moreover, the relationship between the two is
1/istat + 1/i∗stat = 1 .
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CÁC GIÁ TRỊ DỪNG CỦA TỶ SỐ TRUYỀN ĐỘNG CỦA
HỆ BỐN THANH PHẲNG

Tỷ số truyền động của hệ bốn thanh phẳng, tức là tỷ số của các vận tốc góc giữa

các liên kết đầu vào và đầu ra, là một hàm của góc đầu vào. Ông Freudenstein [1] đã
chỉ ra cách tính các giá trị dừng của tỷ số truyền động. Trong bài báo này một phương
pháp mới sẽ được trình bầy. Cũng giống phương pháp của Freudenstein, nó đưa đến một
phương trình đa thức bậc 6.


