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NONLINEAR DYNAMICS OF PIPELINE WITH LIQUID
IN A VICINITY OF CRITICAL FLOW VELOCITIES

O. Limarchenko, Yu. Vasilevskiy
Kiev National University, Ukraine

Abstract. We developed the nonlinear model of pipeline dynamics with high-speed
liquid motion. On the basis of the variational methods we constructed the nonlinear
discrete model and numerical algorithm for investigation of problems of dynamics and
dynamical stability of pipeline. We considered examples of dynamical behavior of the
system for different velocities of liquid flowing, including the case of critical velocity of
flow, when loss of straight line stability of pipeline is possible.

Pipeline with flowing liquid is considered as a system, which consists of elastic
pipeline and liquid. We consider that longitudinal motion of liquid is given, liquid is ideal
and pipeline is modeled on the basis of beam theory. The objective of the article is devel-
opment of nonlinear model of dynamics of pipeline with liquid and analysis of its validity
on reflection of system behavior for different liquid flow velocities, including the domain of
critical velocities, when loss of straight-line shape of pipeline is manifested. This model is
aimed at investigation of the system behavior on transient motion. In particular such class
of problems is of interest for modeling transient motions of pipelines for accidental break
of pipelines, for damping vibrations of pipelines. Construction of mathematical model of
the system is done on the basis of the Hamilton-Ostrogradskiy variational principle. It is
necessary to note that on the use of this variational principle some methodical difficulties
originate due to mixed description of motion of system components, namely, lquid mo-
tion is considered in the Euler variables and beam motion is described in the Lagrange
variables. At the same time total motion of liquid particles consists of sum of these compo-
nent motions. This results in the necessity of considering the Lagrange variable of lateral
deformation of the beam as u(x, t)(here x is longitudinal coordinate, ends of the beam
correspond to coordinates x = 0 and x = l, t is time) as the Euler variable with further
taking into account convective component of acceleration in motion equations.

The Lagrange function for the beam can be given as [1, 2]
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where l beam length, µ is linear density of beam material, EJ is bending rigidity of the

beam, F is square of beam cross-section, z is lateral coordinate, u′ =
∂u

∂x
.

We assume that potential energy of liquid is equal to zero. On determination of
kinetic energy it is necessary to take into account that particles of liquid participate in
complicated motion, which caused by longitudinal flow of liquid and motion of pipeline.
In spite of the fact that according to its nature u is the Lagrange variable for pipeline, for
liquid the variable ushould be considered as the Euler variable, therefore, the expression
for velocity and acceleration must include not partial derivative of time, but total one. In
this case components of particles velocities for axes x and z can be represented as

Vx = V cos θ; Vz = V sin θ +
du

dt
.

Here V = V (t) is a given longitudinal velocity of liquid flow along pipeline, θ is
turn angle of beam element about the Ox axis. Here from geometrical considerations and
because of tgθ = ∂u

∂x it follows that
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Finally taking into account that on determination of kinetic energy integration is
done over the arc ds =

√
1 + u′2dx the Lagrange function for liquid takes the form (here

ρ is linear density of liquid)
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Further we restrict ourselves by the assumption that pipeline deformations are small,
so we substitute nonlinear terms in components of the Lagrange function for their poly-
nomial approximations. Here we shall take into account in expressions of the Lagrange
function terms up to the fourth order of smallness relative to beam deflection (finally this
results in obtaining the motion equations accurate to the third order of smallness). So, we
obtain the Lagrange function for the investigated dynamical system as
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Let us analyze nature of terms of the Lagrange function. Two first terms of the
Lagrange function represents kinetic energy of the beam. The third and fourth terms,
represent, correspondingly, potential energy of bending deformations. Here the second
and fourth terms are nonlinear. Potential energy of longitudinal compression (stretching)
of beam material is represented by the fifth addend. It is necessary to note that in contrast
to results of publication of the book [3] this factor is considered in differential form, but
not in a simplified integral one. Five first terms of the Lagrange function correspond to
dynamics of pipeline, which is considered on the basis of the beam theory. Let us consider
now another component of the Lagrange function, which is connected with liquid. The
sixth and seventh (nonlinear) addends are connected with centrifugal forces, caused by
liquid motion along arc trajectory. The eighth, ninth and tenth addends of kinetic energy
are connected with components caused by non-stationary motion of pipeline. Here a part
of this energy is connected namely with velocity of pipeline bending motion and partially
with effects caused by centrifugal and Coriolis acceleration (it is necessary to note that
analysis shows that Coriolis acceleration does not violate plane motion of the system). The
eleventh term of expression for the Lagrange function, which contains the PF multiplier,
represents potential energy, which appears owing to internal pressure of liquid. Description
of this energy component is done according to results of the publication [3, 4]. The last
term in the relation (1) is actually a constant and it can be eliminated from consideration.

For derivation of the motion equations and dynamic boundary conditions we make
use of the Hamilton-Ostrogradskiy variational principle. Let us realize variation of the

action function δ
t2
∫

t1

Ldt = 0. We note that derivation of dynamic boundary conditions

and internal forces of interaction of pipeline walls with liquid for the considered system
is complicated enough problem. However, application of the variational approach makes
it possible to obtain these dynamic characteristics automatically as a result of use of
traditional technique of variation [1, 2].

Let us write the motion equations for the pipeline with liquid, which are derived as
a result of variation of the Lagrange function (1)

∂2u

∂t2
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Here we used for convenience the following denotations
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The motion equations (2) are nonlinear and contain nonlinearities up to the third
order of smallness. The generating equation for the equation (2) is the biharmonic equation
of beam motion. Analytical solving of this nonlinear problem for different cases of motion
excitation is practically impossible, therefore, we state the problem of construction of the
approximate method for investigation of dynamic behavior of the system on the basis of
the method of modal decomposition [2, 5].

Let us consider a problem about construction of discrete model of the system on the
basis of the Kantorovich method with use of decomposition of system motion by normal
modes (variant of the Kantorovich method)

u(x, t) =
∑

i

ci(t)Ai(x). (3)

Here ci (t) are amplitude parameters of oscillations, which are functions of time,
Ai (x) are normal modes, which form complete orthogonal system of functions [1, 6].

If we substitute the form of solution (3) into the Lagrange function (2), after inte-
gration over spatial variable x we obtain the discrete Lagrange function.
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Here we used the following denotations of different coefficients, which represent
quadratures of known normal modes and their derivatives on the segment [0, l] and can
be easily calculated
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Let us construct the Lagrange equations of the second kind for the Lagrange function
(4). After solving the obtained system relative to the second derivatives of amplitude
parameters, which is done on the basis of methods of nonlinear mechanics with the use of
the property that the system of equations relative to amplitude parameters includes only
terms of the first and third order of smallness (terms of the second order are absent), we
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obtain the following motion equations for the system
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The system of equations (6) is equations of nonlinear discrete model of the system
pipeline with liquid in amplitude parameters. The first six terms of this system are linear
and the rest ones are nonlinear terms of the third order of smallness. These equations by
means of introduction of new variables and reduction of order of differentiation can be
easily transformed to the Cauchy form. Further this enables the use of numerical methods
for investigation of transient modes of motion.

On the basis of the developed approach we investigated behavior of pipeline with
liquid for different velocities of liquid flow. Integration of the system of ordinary differential
equations was done by the Runge-Kutta method for the model, which includes 10 normal
modes.

For examples we accept hinging boundary conditions on edges

u(x, t) |x=0,l = 0;
∂2u

∂x2

∣

∣

∣

∣

x=0,l

= 0, (7)

however, the developed method can be used for arbitrary cases of pipeline fixing.
We consider hinged from both edges steel pipeline of 1 m length, internal radius is

2 cm, pipeline thickness is 1 mm. Initial motion of the system is caused by deviation by
the second normal mode. Thus, initial conditions of the problem can be represented as

c2 (0) = 0.02, ci(0) = 0, i = 1, 10 (i 6= 2); ċi(x, 0) = 0, i = 1, 10. (8)

In numerical examples we consider motion of liquid with constant velocity, physical
parameters for liquid are accepted as for water.

It is known [5, 6], that there is critical velocity V 1
cr of flow in the system pipeline-

liquid, for which frequency of oscillations of pipeline with flowing liquid turns to be zero.
Critical velocity is determined on the basis of linear model and it is threshold of loss
of stability of straight-line shape of pipeline. Let us write linearized motion equation for
amplitude of the first normal mode

c̈1 = ω2c1, (9)

where on the basis of linearized motion equations the value of frequency is determined as
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For numerical simulation we consider three cases of liquid motion 1 – V = 0; 2 –
V = 0.5V 1

cr; 3 –V = V 1
cr.

By analogy with publication [7] we consider initial motion of the system caused
by perturbation of only the second normal mode. In the case of V = 0 redistribution of
energy occurs only between the second and sixth modes, which is caused by the property
that cubic nonlinearity for frequency of the second mode (it is two times greater than
frequency of the first normal mode) promotes interaction with the sixth mode. However,
this interaction is weak enough. Oscillation process is stable and during 10 periods of
oscillations by the first normal mode criteria of instability were not manifested.

In the case than liquid moves with velocity equal to half of critical velocity, process
remains to be stable. Energy is redistributed among all modes, but maximal amplitude
parameters are peculiar to the second, initially perturbed mode. Excitations of the first
and third mode are substantial (commensurate). The following normal modes are excited
insignificantly.

In the case of liquid motion with critical velocity the process changes fundamentally
and becomes unstable. Initial deviation by the second normal mode results in oscillations
with large amplitudes by the first normal mode (up to 8 cm on the considered interval
of calculations), which increase in time. Thus, for liquid motion in a vicinity of the first
critical velocity foreseen by linear model motion instability occurs [5, 6]. Oscillations by
other normal modes are performed with small amplitudes.

In Figures 1-3 we showed variation in time of amplitudes of the first, second and
third normal modes. We denote by 1 curves of amplitudes of oscillations for zero velocity
of liquid flow, by 2 curves for flow with half of critical velocity and by 3 when liquid flows
with critical velocity.

It is necessary to note that for zero velocity of liquid flow the first normal mode is
not excited. In the case of half critical velocity oscillations are perturbed insignificantly
(about 30% of the value of amplitude of the second normal mode), however nonlinear
non-harmonic law of dependence in time is noticed considerably. Behavior of the system
considerably differs in a vicinity of critical velocity. Amplitudes of the first normal mode
increase significantly, their contribution becomes dominating, distortion of harmonic law
becomes more noticeable (manifestation of superharmonics is evident).

Analysis of variation of amplitude of the second normal mode (Figure 2) shows, that
influence of high harmonics is insignificant, dependency of amplitude of this harmonics
on liquid velocity is not essential, however, on increase of velocity of liquid flow both
decrease of oscillation frequency and intensity of energy redistribution between amplitudes
of normal modes are manifested (decreasing character of modulation of curves 2 and 3
testifies this). Curve 3, which corresponds to critical value of velocity indicates considerable
modulation of oscillations already on initial stage of process development.
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Fig. 1. Amplitudes of the first normal mode Fig. 2. Amplitudes of the second normal mode
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Fig. 3. Amplitudes of the third normal mode Fig. 4. Influence of superharmonics on am-

plitudes of the third normal mode

On analysis of variation of the third normal mode amplitude it is seen that man-
ifestation of superharmonics is considerable. If we consider oscillations for greater time
interval (15 periods of oscillations by the first normal mode), then it is clearly seen (Fig-
ure 4) that influence of harmonics with higher frequencies is evident. This effect is caused
by manifestation of internal combination resonance, which further promotes the observed
energy redistribution.

In Figure 5 for increased time interval we showed effect of modulation of oscilla-
tions of amplitude of the third normal mode in time. Modulation effects for other normal
modes are manifested weaker. The presence of modulation confirms the necessity of simu-
lation of system behavior on the basis of multimodal approach. This approach is especially
significant on studying transient modes of the system motion, when, first, the external dis-
turbance has multi-frequency character, and, second, intense variation of dynamical pa-
rameters of the system requires including into consideration high-frequency normal modes,
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which must provide high steepness of variation of parameters of oscillations in the system.
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Fig. 5. Manifestation of the effect of modulation for the third normal mode
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For all three cases oscillations caused by initial excitation of the second normal
mode are prevalent. However, in the case of system motion in a vicinity of critical velocity
the first normal mode (symmetric) dominates, namely growth of which results in loss of
stability of straight-line shape of pipeline with liquid.

Variations in time of amplitudes of three first normal modes of oscillations (num-
bers of curves correspond to the numbers of normal modes) for half critical and critical
velocities of liquid flow are shown in Figures 6-7 correspondingly. Then velocity of flow
does not tend to critical one oscillations by the second normal modes dominate, energy
redistribution in the system promotes nonlinear mechanism of excitation of the first and
third normal modes, which is reflected in character of their dependence in time. Influence
of superharmonics manifests considerably in variation of the first and third normal modes,
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for the second normal mode such influence is of less significance, and its variation in time
differs from harmonic law slightly.

On approach to critical velocities of liquid flow character of system behavior changes
considerably. Amplitude of the first normal mode becomes major, while the second and
third normal mode are smaller and their average become changeable and values vary in
concordance with changes of the first normal mode. Contribution of the third normal
mode is insignificant, however it shows complicated nonlinear mechanisms of excitation of
oscillations.

For all examples manifestation of normal modes amplitudes interdependency and en-
ergy redistribution is considerable. This property reflects development of nonlinear mecha-
nisms of interaction in the system, which essentially intensify due to liquid motion. At the
same time processes become more complicated in a vicinity of critical velocities of liquid
flow because of manifestation of instability of correspondent normal modes. Although this
instability is predetermined by linear effects, increase of amplitudes of oscillations result
in manifestation of nonlinear mechanisms of interaction, therefore, to new mechanisms of
energy redistribution.

CONCLUSIONS

On the basis of variational statement of the problem about motion of elastic pipeline
with flowing liquid, methods of modal and amplitude decomposition of motions we con-
structed nonlinear discrete model of system dynamics (nonlinear system of ordinary differ-
ential equations relative to amplitude parameters). The model is aimed at investigation of
transient modes of system motion and includes great number of normal modes of system
oscillations (for numerical examples we consider ten first normal modes). The considered
problems testify expediency of taking into account the great number of normal modes. In
particular, namely nonlinear interaction between normal modes defines effects of modu-
lation of oscillations and the present of superharmonics in resulting laws of variation of
amplitudes. For initial excitation of oscillations by the first anti-symmetric mode (the sec-
ond mode of oscillations) oscillations by the sixth normal mode are excited significantly
even in the case of the absence of liquid flow, which is caused by frequency relation be-
tween these normal modes and the presence of cubic nonlinearities. In the case of liquid
flow nonlinear mechanisms become stronger and all normal modes entrained in motion,
but the first and third normal mode are excited more significantly.

The developed nonlinear mathematical model of pipeline with liquid leads to results,
which are in qualitative concordance with real phenomena. Analysis of energy redistribu-
tion between normal modes of pipeline oscillations indicates significant influence of liquid
flow velocity on character of manifestation of nonlinear mechanisms. Behavior of the sys-
tem becomes more complicated when velocity of flow tends to critical value. In this case
liquid flow promotes increase of pipeline deformation mainly be the first normal mode,
which becomes dominating, and mutual influence of normal modes and energy redistribu-
tion become stronger.

We plan to use the developed mathematical model for analysis of dynamical phe-
nomena on pipeline break, as well as for working-off new promising types of damping
devices (unilateral friction forủes and unilateral recovering forces for dynamic off-tuning
of resonant phenomena [7, 8]) with the purpose of reduction of negative influence of tend-
ing velocity to critical value, as well as for estimation of influence of impulse and vibration
loadings on pipelines.
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ĐỘNG LỰC HỌC PHI TUYẾN ĐƯỜNG ỐNG CHỨA CHẤT LỎNG
CHẢY VỚI VẬN TỐC LÂN CẬN VẬN TỐC TỚI HẠN

Chúng ta đã phát triển mô hình phi tuyến của động lực học đường ống chứa chất
lỏng chảy với vận tốc cao. Trên cơ sở của các phương pháp khác nhau chúng ta đã xây
dựng được mô hình rời rạc phi tuyến và thuật toán số để giải bài toán động lực học và
ổn định động học của đường ống. Chúng ta đã xét các ví dụ của ứng xử động học của hệ
với các vận tốc dòng chảy khác nhau của chất lỏng, bao gồm trường hợp vận tốc giới hạn,
khi có sự mất ổn định đường thẳng của hệ ống.


