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Abstract. The partial derivatives of scalar functions and vector functions with respect
to a vector variable are defined and used in dynamics of multibody systems. However
the partial derivative of matrix functions with respect to a vector variable is also still
limited. In this paper firstly the definitions of partial derivatives of scalar functions,
vector functions and matrix functions with respect to a vector variable are represented
systematically. After an overview of the matrix calculus related to Kronecker products
is presented. Two theorems which specify the relationship between the time derivative of
a matrix and its partial derivative with respect to a vector, and the partial derivative of
product of two matrices with respect to a vector, are then proved.

1. INTRODUCTION

The partial derivatives with respect to a vector variable of scalar functions, vector
functions and matrix functions have many practical applications in dynamics and control
of mechanical systems [1-10]. The partial derivatives with respect to a vector variable
of scalar functions and vector functions are defined and used in dynamics of multibody
systems [1- 5] also in robot dynamics [6-10]. However, the investigation of the partial
derivative of matrix functions with respect to a vector variable is still limited [6].

The purpose of this paper is to review the definitions of partial derivatives of scalar
function and vector function with respect to a vector variable. Based on these definitions,
the concept of partial derivative of matrix function with respect to a vector variable is
defined in Sec. 2. The matrix product and the Kronecker product are reviewed in Sec. 3.
The proofs of two theorems which specify the relationship between the time derivative of
a matrix and its partial derivative with respect to a vector, and the partial derivative of
product of two matrices with respect to a vector, are represented in Secs. 4 and 5.

2. PARTIAL DERIVATIVES OF A SCALAR, A VECTOR AND A
MATRIX WITH RESPECT TO A VECTOR

2.1. Partial derivatives of scalar with respect to a vector
In the paper, vectors are represented in column forms. For example, a vector x∈ Rn

is an n-dimensional column vector
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x =











x1

x2

...
xn











, x ∈ Rn (1)

and its row form is represented by xT , where (∗)T indicates the transpose of vector or
matrix (∗)

x
T = [x1 x2 ... xn] . (2)

Let a scalar α(x) be a function of vector x. Namely,

α = α(x) = α(x1, x2, ..., xn) (3)

Definition 1. Partial derivative of a scalar α(x)with respect to vector x is defined by [1-4]

∂α

∂x
= ∂α

1

∂xT
=

[

∂α

∂x1

,
∂α

∂x2

, ...,
∂α

∂xn

]

. (4)

2.2. Partial derivatives of a vector with respect to a vector
Let vector a = a(x) ∈ Rm be a function of vector x∈ Rn. Namely,

a =











a1(x)
a2(x)
...
am(x)











, x =











x1

x2

...
xn











(5)

Definition 2. Partial derivative of vector a(x) with respect to a vector x is defined by
[1-4]

∂a

∂x
=



















∂a1

∂x
∂a2

∂x
...
∂am

∂x



















=



















∂a1

∂x1

∂a1

∂x2

· · ·
∂a1

∂xn
∂a2

∂x1

∂a2

∂x2

· · ·
∂a2

∂xn
· · · · · · · · · · · ·
∂am

∂x1

∂am

∂x2

· · ·
∂am

∂xn



















. (6)

Example 1. Calculate
∂x

∂x
and

∂xT

∂x
, where vector x∈ Rn. Using the definition (6) we get

∂x

∂x
= In,

∂x
T

∂x
=

[

∂x1

∂x
,
∂x2

∂x
, ...,

∂xn

∂x

]

=
[

e
T
1 , eT

2 , ..., eT
n

]

where In is the n × n identity matrix, and

e1 =









1
0
...

0









, e2 =









0
1
...

0









, en =









0
0
...

1









.
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2.3. Partial derivatives of a matrix with respect to a vector
Let matrix A = A(x) ∈ Rm×p be a function of vector x∈ Rn, aij = aij(x). Namely,

A =









a11 a12 ... a1p

a21 a22 ... a2p

... ... ... ...

am1 am2 ... amp









, x =











x1

x2

...
xn











(7)

Definition 3. Partial derivative of matrix A(x) with respect to a vector x is defined by

∂A

∂x
=

[

∂a1

∂x

∂a2

∂x
· · ·

∂ap

∂x

]

=

















∂a11

∂x

∂a12

∂x
· · ·

∂a1p

∂x
∂a21

∂x

∂a22

∂x
· · ·

∂a2p

∂x
· · · · · · · · · · · ·
∂am1

∂x

∂am2

∂x
· · ·

∂amp

∂x

















=



















∂a11

∂x1

...
∂a11

∂xn

∂a12

∂x1

...
∂a12

∂xn

...
∂a1p

∂x1

...
∂a1p

∂xn
∂a21

∂x1

...
∂a21

∂xn

∂a22

∂x1

...
∂a22

∂xn

...
∂a2p

∂x1

...
∂a2p

∂xn

... ... ... ...
∂am1

∂x1

...
∂am1

∂xn

∂am2

∂x1

...
∂am2

∂xn

...
∂amp

∂x1

...
∂amp

∂xn



















. (8)

In Eq. (8) matrix
∂A

∂x
is a m × pn matrix.

Note that the partial derivative of scalar function α(x) with respect to a vector
variable x in Eq. (4) is a row matrix that is rarely used in the text. The common form
used is column matrix. Note also that, according to Eq. (6) the partial derivative of vector
function a(x) with respect to a vector x , whose elements are scalar functions of the vector
variable x, is a matrix. Thus, the partial derivative of vector function a(x) with respect
to vector x is the column vector, whose elements are partial derivatives of scalar elements
ai(x) of the vector a(x) with respect to vector x. Based on the above definitions, the
partial derivative of a matrix function A(x) with respect to a vector x is defined by Eq.
(8). This is a matrix, whose elements are partial derivatives of scalar elements aij(x) of
the matrix A(x) with respect to a vector x. If A(x) is a m×p matrix and x is a n-vector,

then
∂A

∂x
is a m × pn two-dimensional matrix.

However, according to the definition in Ref. [6] the partial derivative of matrix
function A(x) with respect to a vector x is a three-dimensional matrix. In viewpoint of
the matrix calculus, the equation (2.15) in page 20 of this book is not correct.



272 Nguyen Van Khang

3. AN OVERVIEW OF THE MATRIX PRODUCT AND THE
KRONECKER PRODUCT OF TWO MATRICES

Let us review some basic concepts from matrix calculus that will enable us to better
understand the proof of the following theorems which are useful to establish dynamical
equations of mechanical systems.

3.1. Matrix product of two matrices
Let A be a m × p matrix and let B be a p × s matrix, which are written in the

following form

A =









a11 a12 ... a1p

a21 a22 ... a2p

... ... ... ...

am1 am2 ... amp









, B =









b11 b12 ... b1s

b21 b22 ... b2s

... ... ... ...

bp1 bp2 ... bps









. (9)

where elements of matrices A and B are functions of vector x.
Definition 4. Matrix product of two matrices A(x) ∈ Rm×p and B(x) ∈ Rp×s is matrix
C(x) ∈ Rm×s defined by [11]

C = AB =









c11 c12 . . . c1s

c21 c22 . . . c2s

. . . . . . . . . . . .

cm1 cm2 . . . cms









, cij =

p
∑

k=1

aikbkj. (10)

Remark. By matrix multiplication, the number of columns in matrix A must be equal to
the number of rows in matrix B. If A is a m× p matrix and B is a p× s matrix, then C
is a m × s matrix.

3.2. Kronecker product of two matrices
Definition 5. Kronecker product of two matrices A(x)∈ Rm×p and B(x) ∈ Rq×s, denoted
by A ⊗B, is a mq × ps matrix as [10, 12]

A ⊗B =









a11B a12B . . . a1pB

a21B a22B . . . a2pB

. . . . . . . . . . . .

am1B am2B . . . ampB









. (11)

Example 2. we obtain the following expression for matrix A ∈ Rn×n and vector b

A⊗ b =









a11b a12b . . . a1nb

a21b a22b . . . a2nb

. . . . . . . . . . . .

an1b an2b · · · annb









.

It follows that

In ⊗ b =









b 0 . . . 0

0 b . . . 0

. . . . . . . . . . . .

0 0 · · · b









.
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If b ∈ Rp, then In ⊗ b is a np × n matrix. Using the definition in Eq. (11), it can
be verified that

b⊗ In =











b1In

b2In

...
bpIn











.

That is a np × n matrix. However In ⊗ b 6= b⊗ In.

4. RELATIONSHIPS BETWEEN THE TIME DERIVATIVE OF MATRIX
AND ITS PARTIAL DERIVATIVE WITH RESPECT TO A VECTOR

Theorem 1. When matrix A(x)∈ Rm×p is a function of vector x∈ Rn, and x is a function
of the time, we have the following rule

dA(x)

dt
=

∂A(x)

∂x
(In ⊗ ẋ) (12)

Proof. The time derivative of a matrix A is given by

dA(x)

dt
=





ȧ11(x) ... ȧ1p(x)
... ... ...

ȧm1(x) ... ȧmp(x)





=











∂a11

∂x1

ẋ1 + ... +
∂a11

∂xn

ẋn · · ·
∂a1p

∂x1

ẋ1 + ... +
∂a1p

∂xn

ẋn

· · · · · · · · ·
∂am1

∂x1

ẋ1 + ... +
∂am1

∂xn

ẋn · · ·
∂amp

∂x1

ẋ1 + ... +
∂amp

∂xn

ẋn











. (13)

The partial derivative of the matrix A with respect to vector x can be calculated
as follows

∂A

∂x
=



















∂a11

∂x

∂a12

∂x
· · ·

∂a1p

∂x

∂a21

∂x

∂a22

∂x
· · ·

∂a2p

∂x
· · · · · · · · · · · ·

∂am1

∂x

∂am2

∂x
· · ·

∂amp

∂x



















=























∂a11

∂x1

· · ·
∂a11

∂xn

∂a12

∂x1

· · ·
∂a12

∂xn

· · · ∂a1p

∂x1

· · ·
∂a1p

∂xn
∂a21

∂x1

· · ·
∂a21

∂xn

∂a22

∂x1

· · ·
∂a22

∂xn

· · ·
∂a2p

∂x1

· · ·
∂a2p

∂xn

· · · · · · · · · · · ·
∂am1

∂x1

· · ·
∂am1

∂xn

∂am2

∂x1

· · ·
∂am2

∂xn
· · ·

∂amp

∂x1

· · ·
∂amp

∂xn























.

(14)
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Using the definition of Kronecker product of two matrices, it can be verified that

In ⊗ ẋ =









ẋ 0 . . . 0

0 ẋ . . . 0

. . . . . . . . . . . .

0 0 · · · ẋ









. (15)

Using Eq. (14) and Eq. (15), one yields

∂A(x)

∂x
(In ⊗ ẋ) =











∂a11

∂x1

ẋ1 + ... +
∂a11

∂xn

ẋn, · · ·
∂a1p

∂x1

ẋ1 + ... +
∂a1p

∂xn

ẋn

· · · · · · · · ·
∂am1

∂x1

ẋ1 + ... +
∂am1

∂xn

ẋn, · · ·
∂amp

∂x1

ẋ1 + ... +
∂amp

∂xn

ẋn











. (16)

Comparing Eq. (13) with Eq. (16) yields the rule expressed by Eq. (12).

5. PARTIAL DERIVATIVE OF THE PRODUCT OF TWO MATRICES
WITH RESPECT TO A VECTOR

Let the matrices A ∈ Rm×p and B ∈ Rp×s be functions of a vector x ∈ Rn. Namely,

A =









a11 a12 ... a1p

a21 a22 ... a2p

... ... ... ...

am1 am2 ... amp









, B =









b11 b12 ... b1s

b21 b22 ... b2s

... ... ... ...

bp1 bp2 ... bps









, x =











x1

x2

...
xn











. (17)

5.1. Theorem on partial derivative of product of two matrices with respect to
a vector

a) Lemma. Partial derivative product of two scalar functions γ(x) = α(x)β(x) with respect
to vector x of is defined by the following rule

∂

∂x
(α(x)β(x)) =

∂α(x)

∂x
β(x) + α(x)

∂β(x)

∂x
. (18)

Proof. By using the definition of the partial derivative of the scalar function with respect
to a vector, we obtain

∂γ(x)

∂x
=

[

∂γ

∂x1

,
∂γ

∂x2

, ...,
∂γ

∂xn

]

=

[

∂α

∂x1

β + α
∂β

∂x1

,
∂α

∂x2

β + α
∂β

∂x2

, ...,
∂α

∂xn

β + α
∂β

∂xn

]

=

[

∂α

∂x1

β,
∂α

∂x2

β, ...,
∂α

∂xn

β

]

+

[

α
∂β

∂x1

, α
∂β

∂x2

, ..., α
∂β

∂xn

]

=
∂α(x)

∂x
β(x) + α(x)

∂β(x)

∂x
.
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b) Theorem 2. Partial derivative of the product of two matrices A(x)B(x) with respect to
a vector x is defined by the following rule

∂

∂x
(A(x)B(x)) =

∂A(x)

∂x
(B(x)⊗ In) + A

∂B

∂x
, (19)

where In is the n × n identity matrix.
Proof. From the definition of the product of two matrices (10) we have

C(x) = A(x)B(x) =









c11 c12 . . . c1s

c21 c22 . . . c2s

. . . . . . . . . . . .

cm1 cm2 . . . cms









, cij =

p
∑

k=1

aikbkj. (20)

Using Eq. (8) and the lemma according to Eq.(18) we obtain

∂(AB)

∂x
=

∂C

∂x
=











∂c11

∂x

∂c12

∂x
· · ·

∂c1s

∂x
· · · · · · · · · · · ·

∂cm1

∂x

∂cm2

∂x
· · ·

∂cms

∂x











∂(AB)

∂x
=













p
∑

k=1

∂a1k

∂x
bk1, · · · ,

p
∑

k=1

∂a1k

∂x
bks

· · · · · · · · ·
p
∑

k=1

∂amk

∂x
bk1, · · · ,

p
∑

k=1

∂amk

∂x
bks













+













p
∑

k=1

a1k

∂bk1

∂x
, · · · ,

p
∑

k=1

a1k

∂bks

∂x

· · · · · · · · ·
p
∑

k=1

amk

∂bk1

∂x
, · · · ,

p
∑

k=1

amk

∂bks

∂x













= KKK1 + KKK2

(21)

where symbols K1 and K1 denote the first term and the second term in the right-hand
side of Eq. (21)

K1=











∂a11

∂x1

b11+
∂a12

∂x1

b21+· · ·+
∂a1p

∂x1

bp1

∂a11

∂x2

b11+
∂a12

∂x2

b21+· · ·+
∂a1p

∂x2

bp1 · · ·

· · · · · · · · ·
∂am1

∂x1

b11+
∂am2

∂x1

b21 + · · ·+
∂amp

∂x1

bp1

∂am1

∂x2

b11+
∂am2

∂x2

b21+· · ·+
∂amp

∂x2

bp1· · ·











. (22)

Note that

B⊗ In =









b11In b12In . . . b1sIn

b21In b22In . . . b2sIn

. . . . . . . . . . . .

bp1In bp2In . . . bpsIn
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B⊗In =





























b11 0 . . . 0
0 b11 . . . 0
. . . . . . . . . . . .

0 0 . . . b11

b12 0 . . . 0
0 b12 . . . 0
. . . . . . . . . . . .

0 0 . . . b12

. . .

. . .

. . .

. . .

b1s 0 . . . 0
0 b1s . . . 0
. . . . . . . . . . . .

0 0 . . . b1s

. . . . . . . . . . . .

bp1 0 . . . 0
0 bp1 . . . 0
. . . . . . . . . . . .

0 0 . . . bp1

bp2 0 . . . 0
0 bp2 . . . 0

. . . . . . . . . . . .

0 0 . . . bp2

. . .

. . .

. . .

. . .

bps 0 . . . 0
0 bps . . . 0

. . . . . . . . . . . .

0 0 . . . bps





























(23)

∂A

∂x
=



















∂a11

∂x

∂a12

∂x
· · ·

∂a1p

∂x

∂a21

∂x

∂a22

∂x
· · ·

∂a2p

∂x
· · · · · · · · · · · ·

∂am1

∂x

∂am2

∂x
· · ·

∂amp

∂x



















JJJ =























∂a11

∂x1

· · ·
∂a11

∂xn

∂a12

∂x1

· · ·
∂a12

∂xn
· · ·

∂a1p

∂x1

· · ·
∂a1p

∂xn

∂a21

∂x1

· · ·
∂a21

∂xn

∂a22

∂x1

· · ·
∂a22

∂xn

· · ·
∂a2p

∂x1

· · ·
∂a2p

∂xn
· · · · · · · · · · · ·

∂am1

∂x1

· · ·
∂am1

∂xn

∂am2

∂x1

· · ·
∂am2

∂xn

· · ·
∂amp

∂x1

· · ·
∂amp

∂xn























.

(24)

Using Eqs. (23) and (24), one yields

∂A

∂x
(B⊗ In)

=











∂a11

∂x1

b11 +
∂a12

∂x1

b21 + · · ·+
∂a1p

∂x1

bp1 · · ·
∂a11

∂xn

b1s +
∂a12

∂xn

b2s + · · ·+
∂a1p

∂xn

bps

· · · · · · · · ·
∂am1

∂x1

b11 +
∂am2

∂x1

b21 + · · ·+
∂amp

∂x1

bp1 · · ·
∂am1

∂xn

b1s +
∂am2

∂xn

b2s + · · ·+
∂amp

∂xn

bps











. (25)

Combining Eq. (22) with Eq. (25) we obtain

K1 =
∂A

∂x
(B⊗ In). (26)

Similarly, we get the matrix K2

K2 =











a11

∂b11

∂x
+ a12

∂b21

∂x
+ · · ·+ a1p

∂bp1

∂x
· · · a11

∂b1s

∂x
+ a12

∂b2s

∂x
+ · · ·+ a1p

∂bps

∂x
· · · · · · · · ·

am1

∂b11

∂x
+ am2

∂b21

∂x
+ · · ·+ amp

∂bp1

∂x
· · · am1

∂b1s

∂x
+ am2

∂b2s

∂x
+ · · ·+ amp

∂bps

∂x
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=











a1r

∂b1

∂x
a1r

∂b2

∂x
· · · a1r

∂bs

∂x
· · · · · · · · · · · ·

amr
∂b1

∂x
amr

∂b2

∂x
· · · amr

∂bs

∂x











=









a1r

a2r

. . .

amr









[

∂b1

∂x

∂b2

∂x
. . .

∂bs

∂x

]

(27)

where

air =
[

ai1 ai2 . . . aip

]

, bj =











b1j

b2j

...
bpj











.

Eq. (27) can be rewritten in the following form

K2 = A
∂B

∂x
. (28)

Substituting Eqs. (26) and (28) into Eq. (21) we obtain the same rule as shown in
Eq. (19)

∂(AB)

∂x
=

∂A

∂x
(B⊗ In) + A

∂B

∂x
. (29)

5.2. Consequences
From the theorem on partial derivative of the product of two matrices A(x)B(x)

with to vector, Eq. (19), the following important consequences can be found:
a) Consequence 1. Let matrix A ∈ Rm×p and vector b ∈ Rp be functions of the vectorx ∈

Rn, we have
∂

∂x
(A(x)b(x)) =

∂A(x)

∂x
(b⊗ In) + A

∂b

∂x
. (30)

b) Consequence 2. Let vector b ∈ Rp and scalar α(x) be functions of vector x ∈ Rn, it is
follows from the rule (19)

∂

∂x
(b(x)α(x)) =

∂b

∂x
(α ⊗ In) + b

∂α

∂x
. (31)

c) Consequence 3. Let scalar α(x) and scalar β(x) be two functions of vector x ∈ Rn, we
obtain

∂

∂x
(α(x)β(x)) =

∂α

∂x
(β ⊗ In) + α

∂β

∂x
. (32)

Remark. From the expression

∂α

∂x
(β ⊗ In) =

[

∂α

∂x1

∂α

∂x2

· · ·
∂α

∂xn

]









β 0 . . . 0
0 β . . . 0
. . . . . . . . . . . .

0 0 . . . β









=
[

β
∂α

∂x1

β
∂α

∂x2

· · · β
∂α

∂xn

]

= β
∂α

∂x
,

it follows
∂

∂x
(α(x)β(x)) = α

∂β

∂x
+ β

∂α

∂x
. (33)
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d) Consequence 4. Let vector a ∈ Rm and vector b ∈ Rm be two vector functions of vector
x ∈ Rn, we obtain

∂(aT
b)

∂x
=

∂a
T

∂x
(b⊗ In) + a

T ∂b

∂x
. (34)

Note that the matrix
∂(aTb)

∂x
is a row matrix.

Example 3. Let us be a quadratic function of the component of vector x ∈ Rn such that

Q(x) = x
T
Ax = x

T
b(x)

where A ∈ Rn×n is a symmetric matrix with constant elements. Show that

∂Q(x)

∂x
=

∂

∂x
(xT

Ax) = 2xT
A.

From the rule (29) follows that

∂

∂x
(xT

Ax) =
∂

∂x
(xT

b) =
∂xT

∂x
(b⊗ In) + x

T ∂b

∂x

=
[

e
T
1
, eT

2
, . . . , eT

n

]









b1In

b2In

. . .

bnIn









+ x
T ∂

∂x
(Ax)

=
[

b1e
T
1 In + b2e

T
2 In + · · ·+ bne

T
n In

]

+ x
T

[

∂A

∂x
(x⊗ In) + A

∂x

∂x

]

= [b1, b2, . . . , bn] + x
T
AIn = b

T + x
T
A = (Ax)T + x

T
A = 2xT

A.

6. CONCLUSIONS

The partial derivatives of scalar functions, vector functions and matrix functions
with respect to a vector variable have an important role in computer aided kinematics and
dynamics of mechanical systems. The partial derivatives of scalar functions and vector
functions with respect to a vector variable are defined and used in dynamics of multibody
systems. Eq. (8) is a generalization of the definitions of partial derivatives with respect to
a vector variable of scalar function and vector function to matrix function. The theorems
of the relationship between the time derivative of a matrix and its partial derivative with
respect to a vector and the partial derivative of product of two matrices with respect to a
vector according to Eqs. (12) and (19) are simple and very convenient to use.

The theoretical results investigated in this paper can also be applied to develop a
new matrix form of Lagrangian equations and to derive the balancing conditions of spatial
mechanisms that will be presented in other works.
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ĐẠO HÀM RIÊNG THEO BIẾN VÉC TƠ CỦA HÀM MA TRẬN

Đạo hàm riêng theo biến véc tơ của hàm vô hướng và hàm véc tơ đÓ được định
nghĩa và được sử dụng nhiều trong động lực học hệ nhiều vật. Tuy nhiên đạo hàm riêng
theo biến véc tơ của hàm ma trận còn ít được nghiên cứu. Trong bài báo này, trước hết
chúng tôi trình bày các định nghĩa đạo hàm riêng theo biến véc tơ của hàm vô hướng,
hàm véc tơ và hàm ma trận một cách hệ thống. Sau đó giới thiệu tóm tắt phép nhân hai
ma trân và phép nhân Kronecker hai ma trận. Cuối cùng chứng minh định lý về quan hệ
giữa đạo hàm theo thời gian và đạo hàm rêng theo biến véc tơ của hàm ma trận và định
lý về đạo hàm riêng theo biến véc tơ của tích hai ma trận.


