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Abstract. A material is suggested for future mechanical vibration textbooks. Both
mathematically and conceptually it is simpler than most of the material that is already
included in the existing textbooks. It pertains to the inverse vibration problem for in-
homogeneous beam, i.e. the beam with the modulus of elasticity that varies along the
axial coordinate. Specifically, the solution of the following problem is presented: Find a
distribution of the modulus of elasticity of an inhomogeneous beam such that the beam
would possess the preselected simple, polynomial vibration mode shape.

1. INTRODUCTION

The equation of the vibration of the uniform and homogeneous beam

EI
∂4w

∂x4
+ ρ

∂2w

∂t2
= 0 (1)

was first derived by Jacob Bernoulli and Leonhard Euler in 1730s. In Eq. (1) w(x, t) is
the transverse displacement, x= axial coordinate, t= time, E = modulus of elasticity, I
= moment of inertia, ρ = mass density, A = cross-sectional area.

Since then the solution of Eq. (1) for uniform beams for various boundary conditions
became a classic, and is rightfully included perhaps in all structural vibration textbooks
(see e.g., Timoshenko et al. 1974; Rao, 1995, Meirovitch, 2001).

We will recapitulate that solution briefly to define the motivation of this study. First
of all we look for harmonic vibrations in time, getting

w(x, t) = Y (x)eiωt, (2)

where Y (x) is the vibration mode, ω = natural frequency. Both are saught in conjunction
with the solution of Eq. (1) satisfying the appropriate boundary conditions. Substitution
of Eq. (2) into Eq. (1) leads to the ordinary differential equation for the vibration mode
Y (x) :

EI
d4Y

dx4
− ρAω2Y = 0 (3)
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We introduce a parameter

k4 =
ρAω2

EI
(4)

so that Eq. (2) becomes
Y IV

− k4Y = 0. (5)

All too familiar solution form

Y (x) = C exp(rx) (6)

leads to the characteristic equation

r4
− k4 = 0 (7)

with roots
r1,2 = ±ik, r3,4 = ±k. (8)

The solution of Eq. (6) reads

Y (x) = C1e
ikx + C2e

−ikx + C3e
kx + C4e

−kx (9)

or, in terms of trigonometric and hyperbolic functions

Y (x) = D1 sin kx + D2 cos kx + D3 sinh kx + D4 coshkx. (10)

To find k, and hence the sought natural frequency ω, as well as the mode shape Y (x)
we ought to satisfy the boundary conditions. This leads to the transcendental equations
that are listed below:

P − P : sin(kL) = 0, k = π/L
G − P : cosh(kL) = 0
C − F : cosh(kL) = −1
C − G : tan(kL) + tanh(kL) = 0
C − P : tan(kL) = tanh kL
C − C : cos(kL) cosh(kL) = 1

(11)

where “P ” stands for the pinned end, “C” signifies the clamped end, “F ” denotes free end,
whereas “G′” is associated with the guided end; L denotes the length of the beam. For
the uniform beam that either simply supported or sliding at both ends the closed form
solution is available for the fundamental natural frequency, reading

ω2

1
= π4EI

/

ρAL4. (12)

Now we pose the following question: Are these three cases, i.e. beams with any
combination of a simply supported and or a sliding end, the only ones that lead to the
closed-form solutions?

A German proverb maintains: “Don’t ask questions for you may well get an answer”.
Scientists naturally are not afraid to pose questions for they are looking for answers,
be they positive or negative. Likewise, we cannot be guided by the following American
proverb: “Ask no questions and get no lies”, for we do anticipate to get correct replies
to our queries. Likewise, and English proverb “Don’t ask questions about fairy tales” is
inapplicable for in our case the search for simple solutions is a real quest. If the reply
to our inquiry is negative we will learn that no simpler solution exist and that Euler’s
solution is the simplest one. If however, our search will lead to the affirmative reply, we
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may be rewarded by deriving a novel solution that may find its place in hopefully all or
at least some future texts.

Therefore, after the brief review of three above negative proverbs, we embrace pos-
itive ones: “Questioning is the door of knowledge” (Irish proverb) and “He that nothing
questions, nothing learns” (English proverb). Hereinafter, we submit a problem that is
conceptually different from Euler’s above problem, and leads to a simple, and elegant
solution.

An additional angle of looking at things can be derived once we note that the above
problem is a direct boundary-value problem. In other words, we have assumed that the
material and geometric properties are known and we are looking for the spectral charac-
teristics: the mode shape Υ(x) and the natural frequency ω. An alternative formulation
involves the knowledge of some of the output characteristics and looking for the cause. In
particular, we pose the following question: Is there a beam that possesses a preselected fun-
damental mode shape? This question, in perfect analogy to many inverse problems, may
have no answer; it may possess an unique answer, or an infinite amount of affirmative
replies. We hereinafter will follow “Okham’s razor”, maintaining that of a problem can be
explained by simple means, than the use of more complex explanation is done in vain. We
will consider simplest class of functions, namely the polynomials, and specify our question:
“Is there a beam that possesses a preselected polynomial mode shape?” We already have
seen that the uniform beams have mode shape that are combinations of trigonometric
and hyperbolic functions. Thus, the inspection of the direct problem’s solutions provides a
negative answer to our inquiry. Therefore a class of problems in which we will look for the
polynomial mode shapes ought to be enlarged. It is suggested herein that we ought to look
at an inhomogeneous and/or a nonuniform beam. Inhomogeneity involves a variation of
either modulus of elasticity and/or material density. In other words, we will be concerned
with the cause, namely, with either E or ρ or both depending upon the axial coordinate
x. Nonuniformity involves a variation of the cross sectional area A and/or of the moment
of inertia I . For specifity we will limit ourselves with inhomogeneous but uniform case,
i.e. when E and/or ρ vary along beam’s axis while the cross-sectional area and moment of
inertia are constant. Prior to investigating posed problem, another question arises: Which
polynomial expressions to consider as candidates for the mode shape?

2. CANDIDATE MODE SHAPES

Since the governing differential equation for the inhomogeneous beams

d2

dx2

(

E(x)I
d2Y

dx2

)

− ρAω2Y = 0 (13)

is of the fourth order, we ought to impose four boundary conditions (Note that for
E(x) =const, Eq. (13) reduces to Eq. 3). It makes sense therefore, to look for the polyno-
mial of the fourth degree

Y (x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4 (14)

We will perform a derivation for the S − S case, while the other cases are dealt by
in perfect analogy.
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In this case the boundary conditions for Y (x) read:

Y = 0 at x = 0 and x = L

EId2Y
/

dx2 = 0 at x = 0 and x = L
(15)

Satisfaction of the condition Y(0) = 0 results in the vanishing of the coefficient a0.
The condition EIY"(0)=0 leads to a2 = 0. The remaining conditions yield

a1L + a3L
3 + a4L

4 = 0 (16)

6a3L + 12a4L
2 = 0 (17)

From Eq. (17)
a3 = −2a4L (18)

Substitution into Eq. (16) leads to

a1 = a4L
3 (19)

The mode shape Y (x) becomes

Y (x) = a4

(

xL3
− 2Lx3 + x4

)

(20)

Thus we pose a somewhat puzzling inquiry of finding an inhomogeneous beam whose
mode shape is given by Eq. (20).

3. SOLUTION OF THE INVERSE PROBLEM

We will confine ourselves with the simplest case when the inhomogeneity is restricted
to the elastic modulus only; i.e.

E = E(x), ρ = const (21)

We immediately note that in order the polynomial solution to exist, it is necessary
both terms in Eq. (13) are to be represented by polynomial expressions, after substituting
into them Eq. (20). This implies we ought to look in the class of polynomial variations of
E(x). The question is how to determine its order, in order it to be compatible with the
demanded fourth order polynomial expressions of the mode shape.

The second term in Eq. (13), i.e. −ρAω2Y is a fourth order polynomial since Y (x)
is such a quantity. Since the first term contains four derivatives in order it to constitute,
fourth order polynomial E(x) itself ought to be a fourth order polynomial:

E(x) = b0 + b1x + b2x
2 + b3x

3 + b4x
4. (22)

We consider the case of the beam of constant mass density ρ=const. We substitute
Eqs. (20) and Eq. (22) into Eq. (13), to get

12I
[

2 (b0 − b1L) + 6 (b1 − b2L)x + 12 (b2 − b3L)x2 + 20 (b3 − b4L) x3 + 30b4x
4
]

− ρAω2
(

xL3
− 2Lx3 + x4

)

= 0
(23)

Which could be re-cast as a polynomial equation in increasing order of degrees of x:

24I (b0 − b1L) +
[

72I
(

b1 − b2L − ρAω2L3
)

x
]

+ 144I (b2 − b3L)x2

+
[

240I (b3 − b4L) + 2ρAω2
]

x3 +
(

360Ib4 − ρAω2
)

x4 = 0.
(24)
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Since this equation is valid for each value of x, the following algebraic equations
must be satisfied:

24I (b0 − b1L) = 0, (25)

72I (b1 − b2L) − ρAω2L3 = 0, (26)

144I (b2 − b3L) = 0, (27)

240I (b3 − b4L) + 2ρALω2 = 0, (28)

360Ib4 − ρAω2 = 0. (29)

We get five inhomogeneous equations with six unknowns, b0, b1, b2, b3, b4, and ω2.
The system has infinite amount of solution. We set one of the coefficients, namely, b4 as
an arbitrary constant. The natural frequency squared ω2 then becomes, from Eq. (29):

ω2 = 360b4I/ρA. (30)

Substitution of Eq. (30) into Eq. (28) results in b3 :

b3 = −2bL. (31)

Equation (27) suggests that

b2 = b3L = −2b4L
2. (32)

Bearing in mind Eqs. (29) and (32) we get from Eq. (26):

b1 = 3b4L
3. (33)

Finally, Eq. 25 yields
b0 = b1L = 3b4L

4. (34)

Thus, the coefficients b0, b1, b2, and b3, are expressed in terms of b4 . The function
describing the elastic modulus in Eq. (22) becomes:

E(x) = b4

(

3L4 + 3L3x − 2L2x2
− 2Lx3 + x4

)

(35)

This distribution of the modulus of elasticity can be rewritten in the different form
of we introduce a coordinate z measured from the middle the beam’s span:

x = z + L/2 (36)

The elastic modulus becomes in terms of z

E(z) =

(

69

16
L4

−
7

2
L2z + z4

)

b4 (37)

Since only even powers of z are present, we conclude that

E(z) = E(−z) (38)

In other words, the distribution of the elastic modulus is symmetric with respect to
the middle cross-section. Also, the elastic modulus in Eq. (37) can be rewritten as

E(z) =

[

(

z2
−

7

4
L2

)2

+
5

4
L4

]

b4 (39)
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which takes positive values for any z. This establishes that the derived solution confirms
with the physical realizability of the above elastic modulus distribution due to its posi-
tiveness.

4. CONCLUSION

Simple solution presented in this paper appears to be ideal for the classroom setting.
It takes only one hour to presentation, yet students can learn a lot about direct, inverse, and
semi-inverse problems. This material enhances both the appreciation and understanding
of the fundamentals of vibrations theory.
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MỘT VẤN ĐỀ SẼ PHÙ HỢP VỚI TẤT CẢ CÁC
SÁCH GIÁO KHOA VỀ DAO ĐỘNG CƠ HỌC

TRONG TƯƠNG LAI

Giới thiệu vấn đề cho các sách giáo khoa về dao động cơ học trong tương lai. Về cả
phương diện toán học và phương diện nguyên lý nó đơn giản hơn hầu hết các vấn đề đã
được nêu trong các sách giáo khoa hiện có. Điều này phục vụ cho bài toán ngược trong
dao động của dầm không đồng nhất, có nghĩa dầm với module đàn hồi thay đổi dọc theo
trục tọa độ. Đặc biệt trình bày lời giải của bài toán sau: Tìm phân bố của module đàn
hồi của một dầm không đồng nhất sao cho dầm sẽ có dạng dao động là dạng đa thức đơn
giản được chọn trước.


