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Abstract. As shown in [1] solutions of the Mathieu’s equation were classified on three
fundamental kinds depending mainly on its parameters. These solutions were constructed
in the form of infinite series. This paper presents a new approach in which approximated
analytical solutions of the Mathieu’s equation are constructed in the finite form. De-
pending on parameters of Mathieu’s equations general solutions may obtain following
behaviors: either bounded almost periodic, or infinitely increased combining with infin-
itely decreased and or infinitely increased combining with periodic.

1. INTRODUCTION

Consider a Mathieu’s equation

ẍ + ω2(k + p cosωt)x = 0 (1)

solutions of which have important role in investigation of stability problems and in search-
ing solutions of other non-linear differential equations. Consequently, since 1947 McLachlan
N.W.[1] presented methods for constructing solutions of the equation (1) and showed the
stability domain of solutions in plane (k, p) [see 1, pp. 40-41]. These results later were
referenced in works of Kauderer 1961 [see 2, pp. 572-573] and Nguyen Van Dao et al. 2005
[see 3, p.123]. Solution kinds of the Mathieu’s equation and their stability domain are
fundamental scientific results taking attention of many scientists, but to now there is a
little similar research.

The stability domain of solution in plane (k, p) was defined by curves of the form

k = m2 + α1p + α2p
2 + α3p

3 + ..., m = 0, 1, 2, 3, ... (2)

where α1, α2, α3... are coefficients to be determined in the solving process. The relations (2)
are so-called characteristic relations. For example, the characteristic relation corresponds
m=1 [1]

k = 1 + p − 1
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according to which the expression of solution is

x =cos t − 1
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(4)

Note that expressions (3), (4) and other similar expressions corresponding to differ-
ent values m were presented in infinite series.

In the present paper the authors propose a new approach in formulation of charac-
teristic relations and approximated analytical solutions of the Mathieu’s equation in the
finite form.

2. IDEA IN FORMULATION OF AN APPROXIMATED
ANALYTICAL SOLUTION

Consider an equation

ü + ω2h(t)u = 0. (5)

In general it has no an exact solution, except the case when h(t) has special form
such as

h(t) ≡ h1(t) =
2(λ2

β2 − 1)

(λ
β + cos ωt)2

−
2(λ2

β2 − 1)αβ
ω2 + 3λ

β

λ
β + cosωt

+
2(λ2

β2 − 1)αβ
ω2 + 3λ

β + ω2

αβ

ω2

αβ + λ
β + cosωt

(6)

and Eq.(5) has an exact solution [5]

u =

ω2

αβ + λ
β + cos ωt

λ
β + cos ωt
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t
∫
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(

λ
β + cos ωt

)2
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(

ω2

αβ + λ
β + cos ωt

)2






. (7)

When h(t) ≡ g1(t) = k1 + p1 cosωt, the equation (5) may have not an exact solution, but
it may be seen that (7) is an approximated analytical solution when functions h1(t) and
g1(t) are equal approximately to each other with all t. For the reason h1(t) and g1(t) are
equal approximately to each other with all t, it is necessary to satisfy following conditions:
(i) Values of functions h1(t) and g1(t) at extremum points t = 2nπ

ω and t =
(2n+1)π

ω must
be equal to each other

h1

(

2nπ

ω

)

= g1

(

2nπ

ω

)

, h1

(

(2n + 1)π

ω

)

= g1

(

(2n + 1)π

ω

)

. (8)

(ii) Functions h1(t) and g1(t) have no other extremum points, except points t = 2nπ
ω and

t =
(2n+1)π

ω , i.e.

d

dt
[h1(t)] = f(t) sinωt, with f(t) 6= 0 for al t;

d

dt
[g1(t)] = −ωp1 sin ωt. (9)
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From (8) it follows [5]

λ
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∆
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1)(k

2
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1 − 1), (10)

with sign “+′′ when p1 > 0 and sign “−′′ when p1 < 0;
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+
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According to condition
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∣ > 1 and f(t) 6= 0, we have [5]
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Relations (12) define a domain in plane (k1,p1), which is called a characteristic
domain (see Fig. 1).

Fig. 1. Characteristic domain

The boundary of characteristic domain is determined by characteristic curves
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1 = 0, (13)

∣

∣

∣

∣

(

4

3
− k2

1 − p2
1 − k1

k2
1 − p2

1 + k1

)

λ2

β2
− 1

3

∣

∣

∣

∣

=

∣

∣

∣

∣

2
λ

β

∣

∣

∣

∣

. (14)

If (k1, p1) belongs to the characteristic domain, then the relations (12) are satisfied
and Eq. (5) with h(t) = g1(t):

ü + ω2(k1 + p1 cos ωt)u = 0

has an approximated analytical solution of the form (7).
So that the relations (12) and solution (7) are called new characteristic relations

and approximated analytical solution. They are presented in finite form.
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3. THE KINDS OF SOLUTIONS

3.1. Solutions of the first kind
Conditions for Eq. (1) obtaining a solution of the first kind are k = k1, p = p1,

where (k1, p1) belongs to the characteristic domain. Obviously this is the solution in form

(7) with
λ

β
defined by (10), and
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- by (11) and the integral term may be evaluated

as
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Consequently the solution (7) can be rewritten in the form

u = u1(t)[C1 + C2u2(t)] + C2u1(t)[t + u3(t)], (15)

where
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As seen in (15) the solution in this case consists of two terms: one term increasing

infinitely with respect to t and other periodic term of period
2π

ω
. The solution (15) is called

a solution of the first kind. The integral constants are determined by initial conditions.
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Suppose at t = 0, u(0) = u0, u̇(0) = u̇0 we obtain

C1 =

λ

β
+ 1

ω2

αβ
+

λ

β
+ 1

u0, C2 =

ω2

αβ
+

λ

β
+ 1

λ

β
+ 1

u̇0

Now we go on to formulate the solution; when (k, p) does not belong to the charac-
teristic domain. First of all it needs an auxiliary determination.

3.2. Auxiliary determination
Consider a special equation

ü +

[

d

dt

(

1

2

ȧ

a

)

−
(

1

2

ȧ

a

)2
]

u = 0. (17)

According to [5] this equation has an exact solution

u =
1

a1/2
[C1 + C2

t
∫

0

adt],

where a(t) is an arbitrary function.
When (k, p) does not belong to the characteristic domain, we use a transformation

x = ueiϕ, (18)

where u is a solution of Eq. (17), ϕ is a function to be determined in the solving process
an i is a properly imaginary number (i2 = −1).

Substituting (18) into Eq. (1) and equating the real part and imaginary part to null
we obtain

ü + ω2(k + p cosωt)u − ϕ̇2u = 0, (19)

ϕ̈u + 2ϕ̇u̇ = 0. (20)

From Eq. (20) it follows ϕ̇ =
c

u2
, where c is an integral constant. According to (17)

we take a particular solution

u = a−
1

2 and then ϕ̇ = ca. (21)

Eliminating ü from Eqs. (17), (19) and taking into account (21) we obtain

ω2(k + p cosωt) − [
d

dt
(
1

2

ȧ

a
) − (

1

2

ȧ

a
)2] = c2a2. (22)

Eq. (22) allows to seek function a(t), but it is difficult to find a(t) satisfying exactly
this equation. That is why to find function a(t) satisfying Eq. (22) approximately. For this
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reason we take
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where h1(t) has the form of expression (6).
If (k1, p1) belongs to the characteristic domain, then h1(t) may be equal approxi-

mately to g1(t) with all t

h1(t) ≈ ω2(k1 + p1 cos ωt) (25)

Taking into account (23)÷(25) Eq. (22) can be rewritten as following
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Repeating similar discussion as in previous section 2 in order that functions k2(t)
and g2(t) may be equal approximately to each other with all t, the following conditions
must be satisfied.
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Relations (27) can be rewritten in the other form
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where
λ

β
and

ω2

αβ
+

λ

β
in own turn depend on k1, p1 such as expression (10) and (11).

Relations (28) and (29) are called characteristic relations differing from ones in [1], here
they have the finite form.

When a couple of parameters (k, p) and Eqs. (10), (11) are given, then the equation
(28) is an equation of two variables k1, p1, where k1 changes in the range [-0.7; 0], p1 –
in the range [-1.684; 1.684] and k1 - in the range [0; 0.28098], p1 - in the range [-0.8998;
0.8998] (see Fig. 1). It is necessary to find (k1, p1) belonging to the characteristic domain
and satisfying Eq. (28). In the principle we can draw the curve k1 − p1 according to Eq.
(28). If this curve intersects the characteristic domain, so we can choose a couple (k1, p1)
satisfying the proposed desire. But in reality, it is difficult to draw the curve k1−p1 because
of complexity in formulation of this curve from complicated relations (10), (11), and (28).
Therefore, instead of the choice (k1, p1) satisfying the proposed desire we consider either
this curve intersects the boundary of characteristic domain or not. Consequently, it leads to
find a solution of the set of equations (28) and (13) or (28) and (14). A numerical program
was formulated for solving this set of equations to give k1, p1 and then c according to Eq.
(29).

Table 1. Some results obtained from formulated program

k p k1 p1

( c

ω

)2

-0.7 0.45 -0.0325958 0.133351788 -0.00594
-0.7 0.854 -0.0838084 0.330159378 -2.6.10−5

0.5 0.386 -0.551283432 1.437018653 0.000888
0.5 0.425 -0.6068069 1.531798374 0.000774

From the results in the Table 1, we can see that points (k, p) lie outside the char-
acteristic domain, but points (k1, p1) belong to the characteristic domain, they lie on the
boundary curve (13) of the characteristic domain. The value of c may be taken as a real
number or a properly imaginary number.

3.3. Solutions of other kinds
When (k, p) does not belong to the characteristic domain, the Mathieu’s equation

(1) has solutions of the second and the third kinds.
(i) Solution expressions
According to (18) solution of the Mathieu’s equation has the form of a complex

function x = ueiϕ = u cos ϕ + iu sinϕ, where u and ϕ are determined by relations (21)
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and (23)

u =
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αβ
+
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β
+ cos ωt
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β
+ cosωt
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β
+ cosωt
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By use of expressions (16) function ϕ can be represented as

ϕ = c[t + u3(t) + u2(t)], (30)

then solutions of the Mathieu’s equation may be expressed in three cases as follows
a) Case c = θ, where θ is a real number

x =

ω2

αβ
+

λ

β
+ cos ωt

λ

β
+ cosωt

(cos ϕ̄ + i sin ϕ̄) (31)

b) Case c = iθ

x =

ω2

αβ
+

λ

β
+ cos ωt

λ

β
+ cosωt

e−ϕ̄ (32)

c) Case c = -iθ

x =

ω2

αβ
+

λ

β
+ cosωt

λ

β
+ cosωt

eϕ̄ (33)

where denote ϕ̄ = θ[t + u3(t) + u2(t)].
Equation (1) is a linear differential equation, from expressions (31)-(33) general

solutions of the Mathieu’s equation (1) can be represented as follows:

x =

ω2

αβ
+

λ

β
+ cos ωt

λ

β
+ cosωt

(C1 cos ϕ̄ + C2 sin ϕ̄) (34)

x =

ω2

αβ
+

λ

β
+ cosωt

λ

β
+ cos ωt

(C1e
−ϕ̄ + C2e

ϕ̄) (35)

The solution (34) is a solution of the second kind, which obtains bounded and
almost periodic characters. The solution (35) is a solution of the third kind which obtains
infinitely increased combining with infinitely decreased characters.
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(ii) Determination of integral constants
From (34) and (35) it follows that

ẋ =
ω3 sinωt

αβ
(λ

β
+ cosωt
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, (36)
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λ

β
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ω2

αβ
+

λ

β
+ cosωt

, (37)

Suppose at

t = 0; x(0) = x0, ẋ(0) = ẋ0 (38)

According to relations (34), (36) and initial conditions (38) the integral constants
of the second kind solution can be determined as
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λ

β
+ 1
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+
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+ 1
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In accordance of relations (35), (37) and initial conditions (38) the integral constants
of the third kind solution may be evaluated as
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1
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2
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4. CONDITIONS FOR FINDING APPROXIMATED
ANALYTICAL SOLUTIONS

We summarize two conditions to be satisfied for finding approximated analytical
solutions of the Mathieu’s equation

(i) Condition 1. Either relations (12) must be satisfied, or point (k1, p1) belongs to
the characteristic domain (see Fig. 1) and/or h1(t) is equal approximately to g1(t) with
all t, where h1(t) is evaluated by (6) and g1(t)=k1+p1cosωt.

(ii) Condition 2. Either relations (28), (29) must be satisfied, or h2(t) is equal
approximately to g2(t), where

h2(t) =
( c

ω

)2

(

λ

β
+ cosωt

)4

(

ω2

αβ
+

λ

β
+ cosωt

)4 , g2(t) = k − k1 + (p − p1) cosωt.



228 Dao Huy Bich, Nguyen Dang Bich, Nguyen Anh Tuan

Herein parameters must satisfy relations (28), (29), for example, parameters k, p,
k1, p1, c are given in the Table 1.

5. SOLVING PROCEDURE AND APPLIED EXAMPLES

5.1. Solving procedure
Step 1. Input given parameters k, p, ω, x0 , ẋ0

Step 2. If k = k1, p = p1 belongs to the characteristic domain, solution of the first
kind is taken according to the formulus (15)

Step 3. If (k, p) does not belong to the characteristic domain, then by use of nu-
merical program to find k1, p1 and c satisfying relations (28), (29)

Step 4. If k−k1 > 0, solution of the second kind is taken according to formulus (34)
Step 5. If k − k1 < 0, solution of the third kind is taken according to formulus (35)
Step 6. Checking conditions for finding approximated analytical solution: h1(t) and

g1(t) or h2(t) and g2(t) are equal approximately to each other with all t.
5.2. Applied examples

The following Figs. 2÷7 present obtained solutions of three kinds of the Mathieu’s
equation corresponding to different combinations of parameters.

Fig. 2a. Graph of x(t) of 1st kind: k1=-

0.3773536, p1=1.110166042, ω = 1.732,

x0=0.1, ẋ0=0.5

Fig. 3a. Graph of x(t) of 1st kind: k1=-

0.01396638, p1=0.057500748, ω = 0.425,

x0=0.1, ẋ0=0.5

Fig. 2b. Graph of h1(t) and g1(t) of 1st:

k1=-0.3773536, p1=1.110166042, ω=1.732,

x0 = 0.1, ẋ0 = 0.5

Fig. 3b. Graph of h1(t) and g1(t)

of 1st: k1=-0.01396638, p1=0.057500748,

ω=0.425, x0 = 0.1, ẋ0 = 0.5
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Fig. 4a. Graph x(t) of 2nd kind: k1=-

0.55283432, p1=1.437, k = 0.5, p=0.234,

ω = 1.732, x0 = 0.1, ẋ0 = 0.5

Fig. 5a. Graph x(t) of 2nd kind: k1=-

0.6068069, p1=1.531798374, k = 0.5,

p=0.425, ω = 1.732, x0 = 0.1, ẋ0 = 0.5

Fig. 4b. Graph h1(t) and g1(t) of 2nd

kind: k1=-0.55283432, p1=1.437, k = 0.5,

p=0.234, ω = 1.732, x0 = 0.1 ẋ0=0.5

Fig. 5b. Graph h1(t) and g1(t) of 2nd kind:

k1=-0.6068069, p1=1.531798374, k = 0.5,

p=0.425, ω = 1.732, x0 = 0.1 ẋ0 = 0.5

Fig. 4c. Graph h2(t) and g2(t) of 2nd

kind: k1=-0.55283432, p1=1.437, k = 0.5,

p=0.386, ω = 1.732, x0 = 0.1 ẋ0=0.5

Fig. 5c. Graph h2(t) and g2(t) of 2nd kind:

k1=-0.6068069, p1=1.531798374, k = 0.5,

p=0.425, ω = 1.732, x0 = 0.1 ẋ0 = 0.5

Fig. 6a. Graph x(t) of 3rd kind: k1=-

0.0325958, p1=0.133351788, k = −0.7,

p=0.45, ω = 0.425, x0 = 0.1, ẋ0 = 0.5

Fig. 7a. Graph x(t) of 3rd kind: k1=-

0.0838084, p1=0.330159378, k = −0.7,

p=0.854, ω = 0.425, x0 = 0.1, ẋ0 = 0.5
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Fig. 6b. Graph g1(t) and h1(t) of 3rd

kind: k1=-0.0325958, p1=0,133351788, k =

−0.7, p=0.45, ω = 0.425, x0 = 0.1 ẋ0=0.5

Fig. 7b. Graph g1(t) and h1(t) of 3rd kind: k1=-

0.0838084, p1=0.330159378, k = −0.7, p=0.854,

ω = 0.425, x0 = 0.1 ẋ0=0.5

Fig. 6c. Graph g2(t) and h2(t): k1=-

0.0325958, p1=0.133351788, k = −0.7,

p=0.45, ω = 0.425, x0 = 0.1 ẋ0=0.5

Fig. 7c. Graph g2(t) and h2(t) of 3rd kind: k1=-

0.0838084, p1=0,330159378, k = −0.7, p=0.854,

ω = 0.425, x0 = 0.1 ẋ0=0.5

6. DISCUSSION

Formulation of the new characteristic relations and approximated analytical solu-
tions in the finite form is derived.

The behaviors of solutions of the first, second, and third kind obtained in this paper
are the same behaviors of solutions described in [1] respectively.

Conditions for finding approximated analytical solutions in considered examples are
checked and satisfied.

A continuing study must be improved in formulation of the program for solving
equations (28) and (29).

Finding a(t) in the form (23) is only an attempt, it may be proposed in other form
such that Eq. (22) is better satisfied approximately.
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VỀ NGHIỆM CỦA PHƯƠNG TRÌNH MATHIEU

Như đã biết trong công trình của N. W. McLachlan các nghiệm của phương trình
Mathieu được chia làm ba dạng cơ bản tùy thuộc vào các tham số của phương trình. Các
nghiệm này được thiết lập dưới dạng chuỗi vô hạn. Bài này trình bầy một cách tiếp cận
mới xây dung nghiệm giải tích gần đúng dưới dạng hữu hạn của phương trình Mathieu.
Tùy thuộc các tham số của phương trình mà nghiệm tổng quát của chúng có thể có tính
chất sau: hoặc là giới nội hầu hoàn toàn, hoặc là tăng giảm vô hạn và hoặc là tuần hoàn
tăng vô hạn.


