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Abstract . In this paper, authors use a fi nite element model based on higher-order dis­
placement plate theory for analysis of stiffened laminated composite plates. Transverse 
shear deformation is included in the formulation making the model applicable for both 
moderately t hick and t hin composite plates. The plate element used is a nine-noded 
isoparametr ic one with nine degrees of freedom at each node. The stiffness of stiffener is 
reflected at a ll nine nodes of plate element in which it is placed. Accordingly, the stiffen­
ers can be positioned anywhere within the place element. Free vibration and defl ection 
of stiffened laminated composite plates are carried out, and results are compared with 
existing analytical and other solutions. 

1. INTR ODUCTION 

Stiffened laminated composite plates are widely used in many industrial structures 
such as aerospace structures, road bridges, ship hull, etc. due to their high strength to 
weight ratios. 

In order to analyse stiffened laminated composite plates, some authors used finite dif­
ference method [1], Rayleigh-Ritz method and finite element method. In [2], Ahmadian 
M. T. and Zangeneh M. S. used the combination of plate super elements and beam super 
elements, the plate and beam elements having 55 and 18 degrees of freedom respectively. 
Olson and Hazell [3] have presented results from a theoretical and experimental com­
parison study on the vibration characteristics of all clamped and eccentrically stiffened 
isotropic plates. They used a triangular finite element in the calculations. Koli [4] de­
veloped a 9-noded rectangular plate element and 3-noded beam element; the beams are 
placed along the plate nodal lines. Biswal and Ghosh [5] used 4-noded rectangular elements 
with seven degrees of freedom at each node for analysis of stiffened plates. Gangadhara 
Prusty [6] studied linear static analysis of composite hat-stiffened laminated shells using 
8-noded rectangular plate element and 3-noded beam element. In [11], a model based on 
third-order displacement theory had been studied to carry out some problems such as free 
vibration and deflection but the beam element hadn't been placed along the plate nodal 
lines and it makes difficult in meshing. 

This paper presents the development of a stiffened composite plate element model 
using a nine-noded plate element and a beam whose displacements have been interpolated 
by the displacements of plate element. The model is based on a higher-order displace­
ment theory which eliminates the need to use shear correction coefficients and make the 
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model applicable for both thick and thin stiffened composite plates. The stiffeners can be 
positioned anywhere within the plate element. Free vibration and deflection of stiffened 
laminated plates are carried out , and results are compared with existing analytical and 
other solutions. 

2. FINITE ELEMENT FORMULATION 

The geometry of the problem is similar to that shown in Fig. l. A stiffened plate is 
composed of a plate element and a number of stiffener elements placed in the plate element . 
Both plate and stiffeners are made up of laminated composites. 
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Fig. 1. Laminated stiffened composite plates 

2.1. Displacement field 

The assumed displacement field at time t (Fig. 1) for the numerical finite element model 
is a third-order expansion in the thickness coordinate for the in-plane displacements and 
a constant transverse displacement . 

Plate: 

Up (x, y, z, t) = Uop (x , y , t) + zexp (x, y , t) + z2uop (x, y, t) + z3e:p (x, y, t) 

VP (x, y, z, t) = vop (x, y, t) + zOyp (x, y, t) + z2u0P (x, y, t) + z3e;P (x, y, t) (1) 

WP (x, y, z, t) =wop (x, y, t) 

This displacement field can be represented in matrix form as: 

{U} = [Z] {q}, {U} = {U VW}T 

[ 

1 0 0 
[Z] = 0 1 0 

0 0 1 

z 0 z2 0 z3 

z2 0 
0 0 

0 z 0 
0 0 0 

{ q} = t{ uo Vo Wo ex Oy Uo Vo e: e;} 
where u0 , v0 , w0 displacements of a generic point in the middle plane of the laminate are 
referred to the local axes , x, y , z, directions and Ox, Oy are the rotations of the normal 
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to the middle plane about x axis and y axis. The functions u0, v0, e;. e; are higher order 
terms in the Taylor series expansion, defined also in th.e middle plane. 

The xy-plape is taken as the plate mid-plane and the z-axis is its upward normal. For 
x-directional stiffener: 

Uxs (x, z, t) = Uoxs (x, t) + zexs (x, t) + z2 uoxs (x, t) + z3B~s (x, t) 
(2) 

Wxs (x, z, t) = Woxs (x, t) 

The x-axis is taken along the stiffener center line and the z-axis is its upward normal. 
The x-directional stiffener is the basic stiffener; other directional stiffener will be obtained 
by rotating x-directional stiffener about z-axis by a angles. In special case, y-directional 
stiffener will be obtained by rotating x-directional st iffener about z -axis by 90°. 

2.2. Stress-strain relation in an orthotropic lamina 

The stress-strain relations of a laminate of n layers are defined based on the stress­
strain relat ions in each layer. The constitutive equat ions , in terms of materia l axes, for 
kth orthotropic layer, assuming a state of plane stress and a linear elast ic material, are 
written as 

0"1 Qu Qi2 0 0 0 c1 

c:T2 Q 21 Q22 0 0 0 c2 

O"k = QkEk or T12 0 0 Q33 0 0 /'12 (3) 
T13 0 0 0 Q44 0 1'13 

T23 0 0 0 0 Q55 /'23 

where 0"1, 0"2, Ti2 , Ti 3, T2 3 are the normal and shearing stresses components, c1, c:2, /'12, /'13, /'23 

are the normal and distortion strains, and Qk is the elast icity matrix, whose non-zeros 
elements are given by 

Qu = Ei/ (1 - v12V21), Qi2 = v12Ei/ (1 - v12v2i), Q22 = E2/ (1 - V12V21) 
(4) 

Q33 = G12, Q44 = G13, Q55 = G23 

where E1 and E2 are the Young's modulis , referred to 1 and 2 material axes, respectively, 
G12, G13, G23 are the transverse shear modulis in plane 1-2 , 1-3 , 2-3, respectively, and v 12 

is major Poisson's rat io, related to V21 through Eiv12 = E2v21. 

The stress-strain relations referred to the reference axes of the laminate ( x, y, z), for 
the orthotropic layer whose fibers are orientated of and angle Cl'.£ to the x axis, are given 
by 

(jk = QkEk, (jk = { O"x O"y O"xy Txz Tyz } T, 

Ek = { Ex Ey /'xy !'xz /'yz } T, 
(5) 

where the elements of matrix Qk are given in [10] . 
The kinematics relations for linear elasticity the strain € associated with displacement 

field in (1) are represented as: 

8uo ova ova 8uo - - -+-
ax ay ax ay 

ae; 
ax 

8B* 
_Y 

ay 
ae* ae* _Y+_x 
ax ay 

av* _o 
ay 

av* au* _o+_o 
ax ay 

e awo 
y + ay 2u0 

ax 
(6) 
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Integrating the stresses through the laminate thickness, one obtains the resultant forces 
and moments acting on the lamina 

(7) 

So, we obtain the equation { .N} = [DJ{€}, 
where {.N} = {Nx, Ny, Nxy,N;,N;,N;y,Mx,My,Mxy,Qx,Qy,Sx,Sy,Q;,Q;} 

A c B D 0 0 0 
c E D F 0 0 0 
B D c E 0 0 0 

[DJ18 x1s = D F E G 0 0 0 (8) 
0 0 0 0 Aps Bps Cps 
0 0 0 0 Bps Cps Dss 
0 ~ 0 0 0 Cps Dps Eps 

[ ~ ~ J = t [ z~ 
k=l 

H3 ] -
H5 Qij; [ ~ ~ J = t [ z~ 

k=l 

H4 ] -
H6 . QiJ ; 

[ ~ E] = t [ H3 H5 ] - [ Ap, Bps Gp, l n [ H1 H2 
H1 QiJ; Cps Dps = L H3 G H5 symm Eps k=l k=l 

where Hj = ( z~+ l - z~ ) / h with i, j=l , 2, 3 and l , m=4, 5; h= l, 2, 3, 4, 5, 6, 7. n is 
number of layers . 

Similarly in the local axis of st iffener we obtain: 

As Cs Bs Ds 0 0 0 
Cs Es Ds Fs 0 0 0 
Bs Ds Cs Es 0 0 0 

[Dshx7 = Ds Fs Es Gs 0 0 0 (9) 
0 0 0 0 Ass Bss Css 
0 0 0 0 Bss Css Dss 
0 0 0 0 Css Dss Ess 

n 
where [As, Bs, Cs, Ds, Es, Fs, Gs]= I:: [H1, H2, H3, H4, H5 , H6 , H1] Q11 

k=l 
n 

[Ass, Bss, Css, Dss, Ess] = I:; [H1, H2, H3, H4, H5]Q44 
k=l 
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2.3. Finite element formulation 

Using 9 noded isoparametric fin ite element with 9 degrees of freedom per node, the 
continuum displacement vector within t he element can be expressed in terms of nodal 
displacements 

9 

q = L Ni(~, rt) qi where qi = { UQi VQi WQi exi evi Uoi * VOi e;i e;i } , (10) 
i= l 

N i (C rt) are the shape funct ions which were given in [11]; ~'rt are t he natural co-ordinates. 
9 

The generalized strain vector at any point, is given by Ek = L Biqi , where 
i = l 

aN; 
0 0 0 0 0 0 0 0 

ax 
aN; 

0 0 0 0 0 0 0 0 

aN; iJ!ri 
0 0 0 0 0 0 0 

ay ax 

0 0 0 0 0 
aN; 

0 . 0 0 
ax 

aN; 
0 0 0 0 0 0 

iJ!ri 
0 0 

0 0 0 0 0 
aN; 

0 0 
ay ax 

0 0 
aN; 

0 0 0 0 0 0 
ax 

aN; 
0 0 0 

ay 
0 0 0 0 0 

B;= aN; aN; (11) 
0 0 0 0 0 0 0 

ay ax 

0 0 0 0 0 0 0 
aN; 

0 -
ax 

aN; 
0 0 0 0 0 0 0 0 -

ay 

0 0 0 0 0 0 0 
aN; aN; 
ay ax 

0 0 
aN; 

N; 0 0 0 0 0 
5!:; 

0 0 0 N; 0 0 0 0 
ay 

0 0 0 0 0 2N; 0 0 0 
0 0 0 0 0 0 2N; 0 0 
0 0 0 0 0 0 0 3N; 0 
0 0 0 0 0 0 0 0 3N; 

The shape function of stiffener can be obtained by substituting ~ = R, rt = S into the 
shape function of plate element (Fig. 2). 
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Fig. 2. Stiffened plate element 

2.4. Transformation matrix 

If we consider that the x-stiffener is attached to the lower side of the plate, conditions 
of displacement compatibility along their line of connection can be written as 

where 

1 0 0 -exs 
0 1 0 0 
0 0 1 0 
0 0 0 1 
0 0 0 0 
0 0 0 0 
0 () 0 0 
0 0 0 0 
0 0 0 0 

0 -e~8 
0 0 
0 0 
0 0 
1 0 
0 1 
0 0 
0 0 
0 0 

0 - e~~ 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 1 0 
0 0 1 

The nodal displacement vector qxs can be written as qxs = Tqp, where 

T= 

Txs 0 
0 Txs 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 0 
0 0 0 

Txs 0 0 
0 Txs 0 
0 0 Txs 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

Txs 0 0 
0 Txs 0 
0 0 Txs 
0 0 0 

0 
0 
0 
0 
0 
0 
0 
0 

T xs 

(12) 

(13) 
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2.5. Virtual work 

Using t he principle of virtual work, the equilibrium equations can be expressed as 

L 1 ac~T o-~dA + L Jae~~ 0-~sdx + L r q; ppqpdV + L r Ctis PxsCtxsdVxs 
Np A Nxs l Np Jvp Nxs Jvs 

= LL a¢~qdA + 2= o<P~P 
Np Np 

(14) 

Substituting Eqs. (3), (5), (6), (7) into (14) this equation can be expressed in terms of 
plate nodal displacements as 

Li oq; [B; DpBp] qpdA + L 1 oq; [TisBis Dxs BxsTxs] qpdx 
~ ~s 

+Li oq; [N (r, s)JT [mJ [NJ (r, s) CtpdA +Li oqis [NJT [mJ [NJ CtxsdA (15) 
~ ~. 

or 

=Li oq;N(r, sf qdA+ 2=oq;N(r,sf' P , 
Np Np 

where Kp = J BT DBdA is the plate element stiffness matrix 
A 

T [! T '1' l K xs = T 

1 

B Ts DsTsBdx T 

is the stiffener element stiffness in which B = B 1 B2 ... B9 . 

The stiffness matrix of a stiffened plate element can be written as 
ns 

The mass matrix of a st iffened plate element: 

i=l 

where ns is the number of stiffeners in the plate element 

(16) 

(17) 

( 18) 

(19) 
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Io 0 0 Ii 0 h 0 h 0 
0 Io 0 0 Ii 0 h 0 I3 
0 0 Io 0 0 0 0 0 0 
Ii 0 0 h 0 h 0 I4 o. n h1 +1 

[m] = 0 Ii 0 0 I2 0 h 0 I4 where Ii= LL zipzdz, 
I2 0 0 h 0 I1 0 h () l=l . h1 

0 h 0 0 h 0 I1 0 h 
h 0 0 f 4 o· h 0 h 0 
0 h 0 0 f 4 0 h 0 h 

+ I +1 

[Me] = j j [Nf [m] [NJ det [J] d~dry. 
- 1 -1 

External load vector, evaluated at z = ±h/2 

+1 +1 

{r} = J J [Nl [Z]T {p} det [J] d~dry . 
-1 -1 

We obtain the system of equations as following: 

[M] {<i} + [K] {q} = {F} . 

119 

i = 0, 1, .. , 6 

(20) 

(21) 

(22) 

From the equation system, let {F} = 0 we have the equation of the free vibration 
problem: 

[M] {q} + [KJ {q} = 0 
and if neglect acceleration, we have the equation for static problem 

[KJ {q} = {F} 

3. NUMERICAL RESULTS 

3.1. Free vibration of stiffened laminated composite plates 

Example 1.' Validation of the proposed model 

(23) 

(24) 

In order to validate the proposed model , we consider the same example studied by 
Satish Kumar Y .V. and JAadhujit Mukhopadhyay [7]. In this example, the natural fre­
quencies of cross-stiffened laminated plate under different boundary conditions were cal­
culated. The geometric parameters are: a = b = 254 mm, h= 12. 7 mm, dsx = dsy= 25.4 
mm, bsx = b8 y= 6.35 mm (Fig. 3) , where: d8 x, bsx are depth and width of the x-direction 
stiffener ; dsy , bsy are depth and width of the y-direction stiffener. 

Graphite/epoxy properties: E1=144.8 GPa, E2=9.67 GPa, G12 = G13=4.14 GPa, 
G23=3.45 GPa, v12=0.3, p=1389.23 kg/m3. 

-
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Fig. 3. Two cross stiffeners laminated composite plate 

The four first natural frequencies are calculated and shown in the Table 1. 

Table 1. Natural frequencies (Hz) of (0° /90°) 2 cross st iffeners plate 

BC Mode f 0°/90°] 
Modes 

no [7] [8] [9] FSDT HSDT 
1 1076.0 961.8 1 1092.64 1053.6 1039.8 :-:-:;· ·, 

ssss 2 2059 .6 1954.41 1837.04 2083.7 2099.3 ' \' .. ~ -~ -

3 2302.7 2325 .41 2491.85 2327.6 2346.5 
4 2635.8 2641.18 2654.51 2556.9 2492.5 < 

1 1666.5 1583.50 1753 .79 1609.5 1559.4 : ~ ; ' 
2 2929.2 2831.53 2716.65 2926.3 2924.0 

. -·- '"" ··,~ . 
cc cc 

3 3140.l 3165.27 3319.93 3141.2 3141.8 ~ .. 
4 3666.3 3634.62 3686.53 3639.2 3618 .5 

-1 1445.8 1342.l 1468.82 1427.5 1413 .5 -

2 2107.7 2101.6 2029.11 2083.9 2065.8 .. 
ccss 

3 3054.0 3024.58 3074.45 2896.7 2763.7 ., . 

4 3196.8 3211.27 3212.13 3209.9 3220.2 ' . -

I 

2 

3 

4 

From the Table 1, we can see that the natural frequencies of a plate with ratio of 
a/ h=20 calculated by finite element method based on the first-order and higher-order dis­
placement theory using nine-noded isoparametric element are in good agreement with the 
results published by other authors, especially, with [7], in which Kumar, Mukhopadhyay 
used 6-noded triangular element and based on the first-order theory. The natural frequen­
cies of the stiffened laminated composite plates modeled by HSDT are lower than that of 
one based on FSDT. 

Example 2. Effect of the locations of double stiffeners. 
Next, we consider the free vibration of parallel-stiffened laminated plate with two y­

stiffeners placed in difforent locations shown in Fig. 4 under clamped boundary conditions. 
The geometric parameters and material properties are the same in example 1. The 

results are shown in the Table 2. 
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Fig. 4. Two y-stiffeners laminated composite plates 

Table 2. Natural frequencies of two y-stiffeners plates (0° /90°) 

d/ap 
Frequencies of 4 modes (Hz) 

1 2 3 4 
0.2 1913.6 2765.3 3721.2 3973.3 
0.4 1729.2 2871.9 3360.6 4378.7 
0.6 1510.6 2798.9 2922.9 4163.6 
0.8 1407.6 2698.7 2730.9 3746.0 

The frequencies in the Table 2 show that when the location of stiffeners becomes farther 
from the center line, the frequency of the lowest four modes goes up and down. Compared 
with others, the first frequency is biggest in case d/ap= 0.2 but the forth frequency is 
biggest in case d/ ap = 0.4. 

Example 3. Effect of number of layers and orientation angle of fibers 

Table 3. Natural frequencies of two y-stiffeners plate with different number of layers 

Boundary Mode Number of layers and fibers 
condition no ou;9ou ou /90u /90u /Ou ou;45u ou;45u;45u;ou 

1 795.0 1205.9 833.4 1178.0 
2 1593.7 2647.0 1860.5 2646.1 ssss 3 2272.0 2846.2 2162.8 2700.5 
4 2702.5 3758.9 2889.5 3179.2 
1 1478.4 2018.0 1496.3 1985.4 
2 2359.9 3458.2 2550.0 3341.0 cccc 3 3016.0 3480.0 2800.6 3457.9 
4 3597.5 4543.9 3601.6 4470.2 
1 1037.8 1654.9 1192.2 1658.1 
2 2065.1 3048.0 2320.9 2991.3 ccss 3 2378.0 3204.3 2420.2 3217.1 
4 3063.8 4223.6 3278.1 4191.0 
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Consider the free vibration of parallel stiffened composite plates which have the same 
geometric parameters such as length, width, thickness and depth but they have different 
number of layers. The geometric parameters and rr..aterial properties are the same in 
example 2. The stiffeners are located at x = a/3 and x = 2a/'J . 

It is seen from the Table 3. that the frequencies of 4 layers plates are bigger than the 
frequencies of 2 layers plates in all case of boundary conditio-:-is. 

Example 4- Effect of a/ h ratio 
In this example, we consider the effect of a/h ratio on the natural frequencies. The 

geometric parameters and material properties of parallel stiffened plates are the same in 
example 3 with the ratio a/h=lO, 20, 50 aqd 100. Structure is under the clamped boundary 
condition . 

When the ratio a/h goes up, the frequencies of parallel stiffened plates goes down. 
Results are shown in the Table 4. 

Table 4. Frequencies of two y-stiffeners plates with different a/ h ratio 

0°/45° 
-

Boundary Mode 
condition no a/h=lO a/h=20 a/h=5,0 a/h=lOO 

1 2254.2 1496.3 1092.6 1024.5 
2 3766.9 2550.0 1377.3 1129.9 cc cc 3 4101.8 2800.6 2194.7 1407.3 
4 5184.3 3601.6 2483.3 15~3 .4 

3.2. Bending behaviour of stiffened laminated composite plates 

Example 5. Effect of the locations of stiffeners and fibers 
In this example, we calculate the deflection of stiffened composite plates. The geometric 

parameters and material properties are the same in the example 1. The plate is clamped 
and under the bending load q=-106 N/m 2 . 

-0.1 ·50· · · · ·too· · · · · · · 150· · · · · · · 200 · · · · · 

E' .s -0.3 

~ ., -0.5 
E ., 
0 -a -0. 7 

"' i:5 -0.9 

Length of plate (mm) 

1..-Case A -- Case B -.1.-- Case C __,.__Case D I 
Fip. 5. Deflection of 2 cross and 2 y-stiffeners composite plates 

Case A: 2 cross stiffener, both plate and stiffener have 4 layers (0° /90° /90° /0°) 
Case B: 2 cross stiffener, both plate and stiffener have 4 layers (0° /45° /45° ;o0 ) 
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Case C: 2 y-stiffeners, both plate and stiffener have 4 layers (0° /90° /90° ;o0) 
Case D: 2 y-stiffeners, both plate and stiffener have 4 layers (0° /45° /45° /0°) 
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, The defl~ction of the 2, parallel stiffened plates is bigger than that of 2 cross stiffened 
plate. In case of 2 parnllel stiffened plate, the plate with the fiber angle o0 / 45° / 45° /0° is 
harder than tbe plate with the fiber angle o0 /90° /90° /0°, but in case of 2 cross stiffened 
plate, the plate with the fiber angle o0 /90° /90° ;o0 is harder than the plate with the fiber 
angle o0 / 45° / 450 /0°. The .orientation angle of fiber and location of stiffeners influence on 
the1 stiffn~ss .of the stiffened laminated composite plate. 

Example 6. Effect of a/h ratio 
Consider, the effect of a/ h ratio on the deflection of doubly stiffened laminated com­

posite plates. The geometric parameters and material properties of parallel stiffened plates 
are the same as in example 1 with the ratio a/h=lO, 20 ; 50 and 100. Structure is under the 
clamped boundary condition and bending load q=-106 N/m2

. Fig. 6 shows the deflections 
at center line a.long to x-axis of the plates. 

ODO~~~::!:::=+:=:::;=:~=;?=::;;:::::;:::::;:::::?::f=:=::;:::=::+:=:::;c::===:~~~ 
-500 

-1000 

- -1500 
E 
.§. -2000 
c: 
0 -2500 

~ -3000 
c 

.J500 

-4000 

-4500 

. . )QO ........ 1:>Q .. 

.~: .. ::::.::::: :: 

-5000.L-~~~~~~~~~~~~~~~~~~~~--' 

Lergth of plate (mm) 

I-"11=10 -tt- a/tF20 _.,._ "11=50 ---a/h=100 I 
Fig. 6. Geflection of 2 parallel stiffened composite plates with different a/ h ratio 

From Table 4 and Fig. 6, we can see that a/h ratio have a big influence on the 
frequencies and deflections of stiffened laminated composite plates. The .thin Jtiffened 
laminated composite plates have lower frequencies and bigger deflect ions than the thick 
ones and conversely. The proposed model can apply for both thick and thin stiffener 
stiffened laminated composite plc.tes. 

4. CONCLUSION 

In the present study, a finite element model based on higher-order displacement theory 
for analysis of the stiffened laminated composite plate has been proposed. 

Some problems such as effect of location, effect of number of layers and fibers and effect 
of a/ h ratio on the natural frequencies and deflections of stiffened laminated composite 
plates have been investigated. The change of location , number of layers and a/ h ratio 
have influence on the natural frequencies and deflections of stiffened plates. Therefore, the 
number of layers, fiber orientation angle and location of the stiffener in stiffened plates 
should be selected properly to control the specific frequency and deflection. 
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By using direct finite element, the model can use to analysis of stresses at any point 
in the plates as well as in the stiffener. 

This work is sponsored by Ministry of Science and Technology and project QGTD 
08.07. 
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PHAN TicH TAM COMPOSITE LOP c6 GAN GIA cU'dNG BANG 
PHU'dNG PHAP PTHH DljA TREN LY THUYET 

CHUYEN v~ BAc CAO 
Bai bao sli' di.,mg mo hlnh philn tU' hU'u h9-n d\l'a tren ly thuy§t chuyiln vt b~c cao d& phan 
tich t§..m composite lOp c6 gan gia cuong. Mo hlnh c6 thil sli' di.mg dil phan tfch ca t§..m 
d§..y va t§..m mong do trong cong thlic thi§t l~p c6 k§ d§n anh hu<'Jng cua bi§n d9-ng cit 
ngang. Philn tli' t§..m-gan la S\l' k§t h<;Jp cua mQt philn tU' t§.m voi m(it ho~c nhi~u philn tU' 
gan. Chuy@n vt cua philn tli' gan dli<;Jc n(ii suy thong qua chuyiln vt cua philn tll' t§.m chlia 
n6, do d6, philn tU' t§.m ch§.p nh~n s6 gan b§.t ky va gan c6 huong tuy y trong 116. K§t qua 
tinh toan tiln s6 dao d(ing t\l' do va chuy§n vt cua t§.m composite lop c6 gan gia cuong khi 
chju tai tr9ng u6n b[ng mo hlnh n6i tren riit ttwng d6ng voi m(it s6 k6t qua da cong b6 
cua cac tac gia khac. 


