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Abstract. In this paper, authors use a finite element model based on higher-order dis-
placement plate theory for analysis of stiffened laminated composite plates. Transverse
shear deformation is included in the formulation making the model applicable for both
moderately thick and thin composite plates. The plate element used is a nine-noded
isoparametric one with nine degrees of freedom at each node. The stiffness of stiffener is
reflected at all nine nodes of plate element in which it is placed. Accordingly, the stiffen-
ers can be positioned anywhere within the place element. Free vibration and deflection
of stiffened laminated composite plates are carried out, and results are compared with
existing analytical and other solutions.

1. INTRODUCTION

Stiffened laminated composite plates are widely used in many industrial structures
such as aerospace structures, road bridges, ship hull, etc. due to their high strength to
weight ratios.

In order to analyse stiffened laminated composite plates, some authors used finite dif-
ference method [1], Rayleigh-Ritz method and finite element method. In [2], Ahmadian
M. T. and Zangeneh M. S. used the combination of plate super elements and beam super
elements, the plate and beam elements having 55 and 18 degrees of freedom respectively.
Olson and Hazell [3] have presented results from a theoretical and experimental com-
parison study on the vibration characteristics of all clamped and eccentrically stiffened
isotropic plates. They used a triangular finite element in the calculations. Koli [4] de-
veloped a 9-noded rectangular plate element and 3-noded beam element; the beams are
placed along the plate nodal lines. Biswal and Ghosh [5] used 4-noded rectangular elements
with seven degrees of freedom at each node for analysis of stiffened plates. Gangadhara
Prusty [6] studied linear static analysis of composite hat-stiffened laminated shells using
8-noded rectangular plate element and 3-noded beam element. In [11], a model based on
third-order displacement theory had been studied to carry out some problems such as free
vibration and deflection but the beam element hadn’t been placed along the plate nodal
lines and it makes difficult in meshing.

This paper presents the development of a stiffened composite plate element model
using a nine-noded plate element and a beam whose displacements have been interpolated
by the displacements of plate element. The model is based on a higher-order displace-
ment theory which eliminates the need to use shear correction coefficients and make the
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model applicable for both thick and thin stiffened composite plates. The stiffeners can be
positioned anywhere within the plate element. Free vibration and deflection of stiffened
laminated plates are carried out, and results are compared with existing analytical and
other solutions.

2. FINITE ELEMENT FORMULATION
The geometry of the problem is similar to that shown in Fig.1. A stiffened plate is

composed of a plate element and a number of stiffener elements placed in the plate element.
Both plate and stiffeners are made up of laminated composites.
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Fig. 1. Laminated stiffened composite plates

2.1. Displacement field

The assumed displacement field at time ¢ (Fig. 1) for the numerical finite element model
is a third-order expansion in the thickness coordinate for the in-plane displacements and
a constant transverse displacement.

Plate:
Up (2,9, 2,t) = ugp (2,9, 1) + 26z (, 9, 1) + 220, (z, 9, t) + 2365, (2,9, 1)
v]) (‘T, 'l/, Zv t) = 'U()p (ﬁ[}, yv t) + zayp (CL’, ya t) + Zzuz(]p (‘Tv y? t) + 230;;;) (xa yu t) (1>

Wy lz,y, 2, t) =wop (3,3, 1)
This displacement field can be represented in matrix form as:
{U}=[2){a}, {U}={vVvwW}'

1 00 20 220 220
Z]={0 106 =20 #£ 0 &
001000 0 0 O

{q} = t{uo vo wo O Oy ug vy 0, 6’;}

where ug, vy, wg displacements of a generic point in the middle plane of the laminate are
referred to the local axes, x, y, z, directions and 0,, 6, are the rotations of the normal
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to the middle plane about x axis and y axis. The functions ug, vg, 67, 0} are higher order
terms in the Taylor series expansion, defined also in the middle plane.

The zy-plane is taken as the plate mid-plane and the z-axis is its upward normal. For
z-directional stiffener:

Ugps (T, 2, 1) = uggs (T, 1) + 2045 (x, ) + 2%uf,, (z, 1) + 230, (x, 1)
Wes (z, 2, 1) = wogs (2, t)

(2)

The z-axis is taken along the stiffener center line and the z-axis is its upward normal.
The z-directional stiffener is the basic stiffener; other directional stiffener will be obtained
by rotating z-directional stiffener about z-axis by a angles. In special case, y-directional
stiffener will be obtained by rotating 2-directional stiffener about z-axis by 90°.

2.2. Stress-strain relation in an orthotropic lamina

The stress-strain relations of a laminate of n layers are defined based on the stress-
strain relations in each layer. The constitutive equations, in terms of material axes, for
k' orthotropic layer, assuming a state of plane stress and a linear elastic material, are
written as

o1 Qi1 Q12 0 0 0 €1
P Q21 Q22 0 0 0 €2
O = Qrer or T2 =10 0 Q33 0 0 Y12 (3)
713 0 0 0 Qaa O Y13
To3 0 0 0 0 Qss Y23

where 01, 09, T12, T13, T23 are the normal and shearing stresses components, €1, €2, Y12, Y13, V23
are the normal and distortion strains, and @Qj is the elasticity matrix, whose non-zeros
elements are given by

Qu = E1/ (1 —viava1), Qi2=v12E1/ (1 —vigva1), Qa2 = Ea/ (1 —viav01)
Q33 =G12, Qu4=G13, Q55 = Ga3

where E7 and F; are the Young’s modulis, referred to 1 and 2 material axes, respectively,
G132, G13, Gogz are the transverse shear modulis in plane 1-2, 1-3, 2-3, respectively, and v
is major Poisson’s ratio, related to ve; through Fiv19 = Fovgy.

The stress-strain relations referred to the reference axes of the laminate (z, y, z), for
the orthotropic layer whose fibers are orientated of and angle o to the z axis, are given
by

(4)

- = s T
Tk = Qiék, Uk:{oz Oy Ogy Tz Tyz} ) (5)

= T
Ek = { Ex &y Vzy Tzz Vyz } )
where the elements of matrix Q are given in [10].
The kinematics relations for linear elasticity the strain £ associated with displacement
field in (1) are represented as:
_ Oug Ovg Oy " Oup Ouf Ovy Ovg “ ouy 00, 00, 0J0, . a0,
L= _— — —_— —_— —_— —_— _—
$ dr Oy Ox Jdy Oz 0Oy Ox dy Ox 0Oy O0Jy O
or Oy Ox oy Ox

ooy
dy

T
6y + 2uy 2v5  30; 39;} :
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Integrating the stresses through the laminate thickness, one obtains the resultant forces
and moments acting on the lamina

N,, N? n 2Rl oo
[N, N*| = | Ny, Ny = Z Ty [1, zz] dz;

Ngy, Ny, k=1 7 T

M,, M} n Gl g, _
(M, M*] = | M, M} =3, / oy | [2,2%] dz (7

My, Mg, k=1 5 Oy

Qo 50 Q3]

* Ty Oz T T,
[Q,S,Q]Z{Qy’ 8, Q;]:;Z/ [TzZ][l’Z’ZQ]dZ
k

So, we obtain the equation {N} = [D]{z},
where {N} = {Nza Nya wa> N;) N';a N;y, M, Mya sz: Gy an Sy Sya ;) Q; }

A C B D 0 0 0
C E D F 0 0 0
B D C FE 0 0 0
Plhsxis=| P F E G 0 0 0 (8)
0 0 0 0 Ay Bps Cys
0 0 0 0 By Cps D
| 040 0 0 Cps Dps Eps |
A’C_"H1H3Q BD_"H2H4Q
C E | H; Hjy s D F | Hy Hg e
k=1 k=1
c E S Ape Bm Cp n Hy Hy Hg | _
|:E G:I == l: H H :|Q7]a CPS DPS :Z H3 H4 le
k=1 ¢ ’ symm Eys k=1 Hj

where Hy = (2., — #Y) /h with 4,7=1, 2, 3 and |,m=4, b; k=1, 2, 3, 4,5, 6, 7. n is
number of layers.
Similarly in the local axis of stiffener we obtain:

A; Cs By Dy 0 0 0
Ce EB;, D; F; D 0 0
B. D, G, E, 0 0 0
Dixr=|Ds s By G, 0 0 0 (9)
0 0 0 0 Ag By Csy
0 0 0 0 B, C, D,
0 0 0 0 Gue s B

|

n —
where [A57 B87 Csv Dsa ESv Fs> GS] Z [Hla H?a H37 H47 H5’ H67 H7]Q11
k=1

1=

[Assa Bss» CSSa Dss: Ess] = [Hla H27 H37 H4, H5]Q44

k

Il
i
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2.3. Finite element formulation

Using 9 noded isoparametric finite element with 9 degrees of freedom per node, the
continuum displacement vector within the element can be expressed in terms of nodal
displacements

9
q:ZN" (&m)a where ¢ ={ uoi voi woi Oz Oy ug; vy On Opi }, (10)
i=1

N; (&,n) are the shape functions which were given in [11]; £, are the natural co-ordinates.
9

The generalized strain vector at any point, is given by & = >_ B;q;, where

t=1
- ON, i

aam' 0 0 0 0 0 0 0 0
o Wi 0 0 0 0 0 0
ON, a%

< 5 0 0 0 0 0 0 0
Ay ox B
0 0 0 0 0 —= 0 0 0

T N,

0 0 0 0 0 0 0 0
0 0 0 g g 28 4% 0
- dy Jx
0 0 a—i 0 0 0 0 0 0

¢4 84
0 0 0 aa]Z L0 0 0 0 0
B = . : 11
0 0 00 9% 0 0 0 0 0 (1)
dy Oz
AN,
0 0 0 0 0 0 B o D
0 0 0 0o 0 0 0 0 %V-"
y
0 0 0 0 0 0 g % 8N
o Jy ox
0 0 2 N, 0 0 0 0 0
1
0 0 E & K G 0 0 0
Jdy
0 0 0 0 0 2N, 0 0 0
0 0 0 0 0 0 2N; 0 0
0 0 0 0o 0 0 0 3N, 0
0 0 0 0 0 0 0 0 3N;

The shape function of stiffener can be obtained by substituting & = R,n = S into the
shape function of plate element (Fig. 2).
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Fig. 2. Stiffened plate element

2.4. Transformation matrix

If we consider that the x-stiffener is attached to the lower side of the plate, conditions
of displacement compatibility along their line of connection can be written as

2 2 3 3
t 13 * t tzs *% t 2

where
[1 0 0 —eys 0 —€i, 0 —e 0]
6010 o O O O o0 O
oo1 o O O 0 o0 0
0 00 1 o 0 0 0 O
Tes=10 0 @ 0 1 0o 0 0 O (12)
000 0 O 1 0O 0 0
000 0 0 O 1 0 0
000 O 0 0 O il 0
0oo0oo0o o0 0 o0 0 o0 1
The nodal displacement vector g;s can be written as q,s = T'q,, where
(7., 0 0 0 0 0 0 0 0 |
0 T 0 0 0 0 0 0 0
0 0 Ty O 0 0 0 0 0
0 0 0 Ty 0O 0 0 0 0
17 = 0 0 0 0 Tp,s O 0 0 0 (13)
0 0 0 0 0 Tys O 0 0
0 0 0 0 0 0 Type O 0
0 0 0 0 0 0 0 T,s O
L 0 0 0 0 0 0 0 0 T
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2.5. Virtual work

Using the principle of virtual work, the equilibrium equations can be expressed as

Z/ 9o 0dA+Z/8€OT ! dx+2/ g ppquV+Z/ Pl Vs

N:rs

=5 / 04 qdA+ > 0¢lP
R, *A Np

(14)

Substituting Egs. (3), (5), (6), (7) into (14) this equation can be expressed in terms of

plate nodal displacements as

Z/ 8q¢L [BI D,B,] quA+Z/8qp (TL B, Dy BysTes) qpda
NT‘-’

+Z/Aaq,?[zv<r,sn fm] [V 1rsquA+Z/aqm m] [V] GasdA

—Z/aqTN ) qu+ZaqTN rs)TP
p
or

Z 3(] Kpby + Z 8qp zsdp T Z 8Qp pdp + Z 8(1“ zsqzs
Nis Np Nzs

*Z/@q (r,s) qu+23qu T‘S) P,
Np

where K, = [ B DBdA is the plate element stiffness matrix
A ‘

Kyo=TT / BT D, T,Bdz| T
l

is the stiffener element stiffness in which B = By Bs...By.
The stiffness matrix of a stiffened plate element can be written as

Kap=Kp+) K,

=1

The mass matrix of a stiffened plate element:

ns
My =My + > M,,
i=1
where ns is the number of stiffeners in the plate element
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Ib, 0 0 , 0 I, 0 I3 O
0 Iy 0 0 I; 0 I, 0 I3
0 0 Iph, 0 0 0 0 0 0
IL, 0 0 Ib 0 I3 0 I O nhl+1'
ml=| 0 I, 0 0 I, 0 I3 0 Iy | where;j=)» > 2'pdz, i=0,1,.,6
I, 0 0 13 0 I4 0 I5 N =1 .k
0 Ib 0 0 I3 0 Iy 0 Is
I 0 0 I, 0 Is 0 Iy O
0 I3 0 0 It 0 Iy 0 Is |
+1+1
= [ [ (VI ) () et 1) e (20)
=1-=1
External load vector, evaluated at z = +h/2
+1+1 :
U= [ [ 7 (207 (o) det 1) dean, )
=1-=1

We obtain the system of equations as following:

[M]{g} + [K]{q} = {F}. (22)
From the equation system, let {F} = 0 we have the equation of the free vibration
problem:

[M] {4} + [K]{q} =0 (23)
and if neglect acceleration, we have the equation for static problem
(K]{q} = {F} (24)

3. NUMERICAL RESULTS

3.1. Free vibration of stiffened laminated composite plates

Ezample 1. Validation of the proposed model

In order to validate the proposed model, we consider the same example studied by
Satish Kumar Y.V. and Madhujit Mukhopadhyay [7]. In this example, the natural fre-
quencies of cross-stiffened laminated plate under different boundary conditions were cal-
culated. The geometric parameters are: a = b = 254 mm, h= 12.7 mm, dy; = dgy= 254
mm, bgy, = bgy= 6.35 mm (Fig. 3), where: dg;, bs; are depth and width of the z-direction
stiffener; dgy, bsy are depth and width of the y-direction stiffener.

Graphite/epoxy properties: E1=144.8 GPd, E3=9.67 GPa, G12 = G13=4.14 GPa,
G93=3.45 GPa, 112=0.3, p=1389.23 kg/m?.
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Fig. 3. Two cross stiffeners laminated composite plate

The four first natural frequencies are calculated and shown in the Table 1.

Table 1. Natural frequencies (Hz) of (0°/90°) 2 cross stiffeners plate

Mode [0%90°]
BC 1 o [7] [3] [9] FSDT | HSDT s
1| 10760 | 961.81 | 1092.64 | 1053.6 | 10398 | . _
ssss |2 | 20596 | 195441 | 1837.04 | 20837 [ 20993 | it i |1
3 | 23027 | 232541 | 2491.85 | 2327.6 | 23465
4 | 2635.8 | 264118 | 2654.51 | 2556.9 | 24925 =
1| 16665 | 158350 | 1753.79 | 1605.5 | 1559.4 Laad 4 2
coce |2 29292 | 283153 | 2716.65 | 29263 | 29240
3 | 3140.1 | 316527 | 3319.93 | 31412 | 31418 :
4 | 36663 | 3634.62 | 368653 | 36392 | 3618.5 7 3
1 | 14458 | 13421 | 146882 | 14275 | 14135 | =
coss L2 21077 | 21016 | 2029.11 | 2083.9 | 20658 ,
3| 3054.0 | 3024.58 | 307445 | 2896.7 | 2763.7 | ~w' . |4
4 | 3196.8 | 321127 | 3212.13 | 3209.9 | 32202 '

From the Table 1, we can see that the natural frequencies of a plate with ratio of
a/h=20 calculated by finite element method based on the first-order and higher-order dis-
placement theory using nine-noded isoparametric element are in good agreement with the
results published by other authors, especially, with [7], in which Kumar, Mukhopadhyay
used 6-noded triangular element and based on the first-order theory. The natural frequen-
cies of the stiffened laminated composite plates modeled by HSDT are lower than that of
one based on FSDT. '

Ezxzample 2. Effect of the locations of double stiffeners.

Next, we consider the free vibration of parallel-stiffened laminated plate with two y-
stiffeners placed in different locations shown in Fig. 4 under clamped boundary conditions.

The geometric parameters and material properties are the same in example 1. The
results are shown in the Table 2.
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Fig. 4. Two y-stiffeners laminated composite plates

Table 2. Natural frequencies of two y-stiffeners plates (0°/90°)

d/s Frequencies of 4 modes (Hz)

P i 2 3 4
0.2 | 1913.6 | 2765.3 | 3721.2 3973.3
0.4 | 1729.2 | 2871.9 | 3360.6 4378.7
0.6 | 1510.6 | 2798.9 | 2922.9 4163.6
0.8 | 1407.6 | 2698.7 | 2730.9 3746.0

The frequencies in the Table 2 show that when the location of stiffeners becomes farther
from the center line, the frequency of the lowest four modes goes up and down. Compared
with others, the first frequency is biggest in case d/a,= 0.2 but the forth frequency is
biggest in case d/a, = 0.4.

Example 3. Effect of number of layers and orientation angle of fibers

Table 8. Natural frequencies of two y-stiffeners plate with different number of layers

Boundary | Mode Number of layers and fibers
condition | no | 07/90" | 0”/90°/90"/0" | 0Y/45° | 0Y/45Y/45Y/0°
1 795.0 1205.9 833.4 1178.0
2 | 15937 2647.0 18605 2646.1
S5SS 3 | 2272.0 9846.2 91628 27005
4 | 27025 3758.9 9889.5 3179.2
1 | 14784 2018.0 1496.3 1985.4
2 | 2359.9 3458.2 2550.0 3341.0
CCCC 3 | 3016.0 3480.0 2800.6 3457.9
4 | 35975 1543.9 3601.6 14702
1 | 10378 1654.9 1192.2 1658.1
2 | 2065.1 3048.0 9320.9 92991.3
CCSS 3 | 2378.0 3204.3 2420.2 32171
4 | 30638 4223.6 32781 4191.0
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Consider the free vibration of parallel stiffened composite plates which have the same
geometric parameters such as length, width, thickness and depth but they have different
number of layers. The geometric parameters and material properties are the samne in
example 2. The stiffeners are located at = a/3 and z = 2a/3.

It is seen from the Table 3. that the frequencies of 4 layers plates are bigger than the
frequencies of 2 layers plates in all case of boundary conditions.

Example 4. Effect of a/h ratio

In this example, we consider the effect of a/h ratio on the natural frequencies. The
geometric parameters and material properties of parallel stiffened plates are the same in
example 3 with the ratio a/h=10, 20, 50 and 100. Structure is under the clamped boundary
condition.

When the ratio a/h goes up, the frequencies of parallel stiffened plates goes down.
Results are shown in the Table 4.

Table 4. Frequencies of two y-stiffeners plates with different a/h ratio

Beundary | Mode 00/459
condition | no a/h=10 a/h=20 a/h=>50 a/h=100
il 2254.2 1496.3 1092.6 1024.5
2 3766.9 2550.0 1377.3 1129.9
Vel T 3 11018 2300.6 21947 1407.3
4 5184.3 3601.6 2483.3 1553.4

3.2. Bending behaviour of stiffened laminated composite plates

Ezxample 5. Effect of the locations of stiffeners and fibers

In this example, we calculate the deflection of stiffened composite plates. The geometric
parameters and material properties are the same in the example 1. The plate is clamped
and under the bending load ¢=-10°N/m?.

01N\ 5 v 100 150 - 200 5h
B ] 0 A 595455 O e R S A A B
2
5 05 isene N emmyssnir b neHE B I ns s wE g eim
£
Q
(%]
® 074 NS A e s As R 0 f up nd AWl e ve b an
o
0
a 09 e e DN T My TN L s s e e o
-1.1
Length of plate (mm)

|—4—CaseA ~u#- Case B —a— Case C —»— Case Dl

Fig. 5. Deflection of 2 cross and 2 y-stiffeners composite plates

Case A: 2 cross stiffener, both plate and stiffener have 4 layers (0°/90°/90°/0°)
Case B: 2 cross stiffener, both plate and stiffener have 4 layers (0°/45°/45°/0°)
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Case C: 2 y-stiffeners, both plate and stiffener have 4 layers (0°/90°/90°/0°)
Case D: 2 y-stiffeners, both plate and stiffener have 4 layers (0°/45°/45°/00)

.The deflection of the 2 parallel stiffened plates is bigger than that of 2 cross stiffened
plate. In case of 2 parallel stiffened plate, the plate with the fiber angle 0°/45%/459/0° is
harder than the plate with the fiber angle 0°/90°/90°/0°, but in case of 2 cross stiffened
plate, the plate with the fiber angle 0°/90°/90°/0° is harder than the plate with the fiber
angle 0°/45°9/45°/0°. The orientation angle of fiber and location of stiffeners influence on
the, stiffness of the stiffened laminated composite plate.

Ezample 6. Effect of a/h ratio

Consider, the effect of a/h ratio on the deflection of doubly stiffened laminated com-
posite plates. The geometric parameters and material properties of parallel stiffened plates
are the same as in example 1 with the ratio a/h=10, 20; 50 and 100. Structure is under the
clamped boundary condition and bending load ¢g=-10¢ N/m?. Fig. 6 shows the deflections
at center line along to z-axis of the plates.

Delection (mm)

Length of plate (mm)

|_._ ah=10 —s~ a/h=20 —— alh=50 —=—a/h=100 |

Fig. 6. Deflection of 2 parallel stiffened composite plates with different a/h ratio

From Table 4 and Fig. 6, we can see that a/h ratio have a big influence on the
frequencies and deflections of stiffened laminated composite plates. The thin stiffened
laminated composite plates have lower frequencies and bigger deflections than the thick
ones and conversely. The proposed model can apply for both thick and thin stiffener
stiffened laminated composite plates.

4. CONCLUSION

In the present study, a finite element model based on higher-order displacement theory
for analysis of the stiffened laminated composite plate has been proposed.

Some problems such as effect of location, effect of number of layers and fibers and effect
of a/h ratio on the natural frequencies and deflections of stiffened laminated composite
plates have been investigated. The change of location, number of layers and a/h ratio
have influence on the natural frequencies and deflections of stiffened plates. Therefore, the
number of layers, fiber orientation angle and location of the stiffener in stiffened plates
should be selected properly to control the specific frequency and deflection.
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By using direct finite element, the model can use to analysis of stresses at any point

in the plates as well as in the stiffener.
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PHAN TiCH TAM COMPOSITE LOP CO GAN GIA CUUNG BANG
PHUONG PHAP PTHH DUA TREN LY THUYET

CHUYEN VI BAC CAO
i b4o st dung mo hinh phan t& hitu han dya trén 1y thuyét chuyén vi bac cao dé phan

tich tAm composite 16p c6 gan gia cudng. Mo hinh c6 thé sit dung dé phan tich ci tam
day va tAm moéng do trong cong thic thiét lap c6 ké dén &nh hudng ciia bién dang cit
ngang. Phan ti tAm-gan 13 syt két hgp clia mot phan ti tm v6i mot hodc nhiéu phan tir
gan. Chuyén vi ciia phan tit gan dugc noi suy thong qua chuyén vi cia phan ti tdm chita
n6, do dé, phan t tAm chip nhan s6 gan bat ky va gan c6 hudng tuy y trong noé. Két qua
tinh toan tan sé dao dong tu do va chuyén vi clia tAm composite 16p c6 gan gia cudng khi
chiu tai trong uén biing mo hinh néi trén rit tuong dong véi mot sb6 két qué da cong bd
cta cac tac gia khac.



