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ON MODELLING AND CONTROL DESIGN FOR
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Abstract. In this paper, the modeling and control design of a self-balancing mobile
robot are presented. The method of sub-structures is employed to derive the differential
equations of motion of the robot. Based on the linearized equations of motion, a controller
is designed to maintain a stable motion of the robot. Some numerical simulation results
are shown to clarify the designed controller.

1. INTRODUCTION

A two-wheel vehicle with a type of inverted pendulum has a commercial name, so-
called Segway, which was invented by an American named Dean Kamen. This vehicle has
been investigated and designed for 10 years ago, and was introduced to public since 2001.
Nowadays, thousands of such vehicles were sold in the USA and Europe. It is convenient
to use this vehicle to travel within 10 km distance. These vehicles can reach a velocity of
20 km/h.

Main mechanical structures of the vehicle consist of a bodywork and two wheels those
two axes coincides. Two wheels are driven by two independent electric motors. Rotors are
fixed with the wheels, while stators with the bodywork, or in inverse order. Power supports
for the vehicle is an accumulator on the bodywork. In order to maintain a stationary motion
of the vehicle – bodywork is directed above -, a controller is necessary. In addition, there is
a screen to display motion states such as velocity, some bottoms to set motion parameters.

In recent years, several authors have investigated this new vehicle type [2-5]. In this
paper, a dynamic model of the vehicle moving on a straight line and the designing of
a controller based on linearized model are presented. Based on differential equations of
motion obtained by the method of substructures, a controller to ensure the stable motion
of the vehicle is designed. Finally, some numerical simulations are given to verify the
reliability of the control law.

2. DIFFERENTIAL EQUATION OF MOTION OF VEHICLE

Mechanically, this vehicle consists of three major members: a bodywork and two inde-
pendent wheels. In case the vehicle moving on a straight line – the motion of two wheels is
identical - we can combine two wheels together. So the vehicle is understood as a system
with two bodies in a vertical plane: a bodywork and a wheel connecting with each other
by a hinge (Fig. 1). In order to establish the differential equations of motion of the vehicle,
the substructure method is exploited in this study. After resolving the vehicle into two
substructures: the bodywork and the wheel, the Newton-Euler equations [1, 6] are applied
to planar motion of bodies.
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- The wheel together with the rotor:

(m1 + mro)ẍC1 = F − X0

(m1 + mro)ÿC1 = N − (m1 + mro)g − Y0

(J1 + Jro)ϕ̈1 = τ − Fr − Ml

(1)

- The bodywork:

m2ẍC2 = X0

m2ÿC2 = Y0 − (m2 + msta)g
J2ϕ̈2 = −τ − X0(yC2 − yO) + Y0(xC2 − xO)

(2)

where m1 is the mass of the wheel, r – wheel radius, mro – rotor mass, J1 and Jro are the
mass inertias of the wheel and robot, respectively, Ml – damping moment at contact area
between the wheel and a floor. The interactive moment between the rotor and the stator
τ is created by an electric motor that is related to input current or voltage, and damping
moment at the journal; m2 – the mass of the bodywork, J2 – mass inertia of the bodywork
with respect to the axis past through the center of mass C2.

Fig. 1. Vehicle model and two substructures

From Fig. 1. a) and b) with an assumption that the wheel rolls without slipping we
have some kinematic relations as following:

xC1 = s
yC1 = r
ϕ1 = s/r

ẍC1 = s̈
ÿC1 = 0
ϕ̈1 = s̈/r

xC2 = s + u2x sin θ − u2y cos θ
yC2 = r + u2x cos θ + u2y sin θ
ϕ2 = θ

(3)

ẍC2 = s̈ + (u2x cos θ + u2y sin θ)θ̈ + (−u2x sin θ + u2y cos θ)θ̇2

ÿC2 = (−u2x sin θ + u2y cos θ)θ̈ − (u2x cos θ + u2y sin θ)θ̇2

ϕ̈2 = θ̈

(4)

In order to determine the moment acting between the wheel and the bodywork, a
model of a permanentmagnet DC motor is considered (Fig. 2).
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Fig. 2. Diagram of a DC motor

A torque of the motor is proportional to current passing the armature

M = Kmi. (5)

A voltage Vemf is generated across its terminals that is proportional to the angular
velocity of rotor is called back emf

Vemf = Keθ̇. (6)

By applying the theorem of momentum and Kirchoff law, the differential equation describ-
ing dynamics of DC motor is obtained as follows:

- mechanical equation
Jmω̇ + bω = Kmi − Tload, (7)

- electrical equation

L
di

dt
+ Ri = V − Keω. (8)

Frequently, it is assumed that the “electric time constant” R/L is much smaller than
the “mechanical time constant” Jm/b. This is a reasonable assumption for many electro-
mechnical systems and leads to a reduced order model of the actuator dynamics. From
equation (8) with L/R ≈ 0 we have

i = (V − Keθ̇)/R. (9)

Substituting (9) into (7) one obtains the equation presenting the relation between
input voltage V and motion of rotor θ̇

Jmθ̈ + (b + KmKe/R)θ̇ = V/R − Tload, (10)

and torque at the motor journal

M = Kmi = Km(V − Keθ̇)/R = (Km/R)V − (KmKe/R)θ̇. (11)

Torque interacting between the bodywork and the wheel is a summation of the motor
torque and friction torque at the journal. In this paper, it is assumed that a friction
torque is proportional to the relative angular velocity of the bodywork and the wheel. So
we have

τ = Mdc + Mdamp = Kmi − bω

= (Km/R)V − (KmKe/R + b)(ṡ/r − θ̇)
(12)

with ω = ϕ̇1 − ϕ̇2 = ṡ/r − θ̇.
In all above equations the following quantities have been used: V – applied voltage

of the motor, R - armature resistance, L - armature inductance, Jm - mass inertia of the
rotor, Vemf - back emf voltage, b - damping coefficient, M – torque due to the current, ω
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- relative angular velocity of the rotor respect to the stator, Km - torque constant of the
motor, Ke – back emf constant, b1 - roll damping constant, Ml = b1ω1.

Eliminating the constraint forces X0, Y0, and F from equation (1) and (2) one obtains
the differential equations of motion of the vehicle in matrix form as

M(q)q̈ + h(q, q̇) = LV, (13)

with q = [s, θ]T is a generalied coordinate vector of the vehicle.
To simplify the model one takes u2y = 0, in this case the mass matrix M(q), vector h

and matrix L are obtained as:

M(q) =









J1 + Jro

r2 + (m1 + mro + m2)
m2u2x cos θ

J1 + Jro

r + r(m1 + mro + m2) + m2u2x cos θ
J2 + m2u

2
2x + rm2u2x cos θ









, (14)

h(q, q̇) =

[

−m2u2x sin θθ̇2 + KmKe

Rr
(ṡ/r − θ̇) + b/r(ṡ/r − θ̇) + b1ṡ/r2

b1ṡ/r − rm2u2x sin θθ̇2
− m2gu2x sin θ

]

, (15)

L0 =





Km/Rr

0



 . (16)

Now, we will examine whether there exists a motion state with constant velocity and
the bodywork direct above, i.e:

θ̇ = 0, ṡ = vd = const, θ = const ≈ 0. (17)

Substituting (17) into (13) one obtains a system of algebraic equations:
[

KmKe+R(b+b1)
Rr2 vd

b1vd/r − m2gu2x sin θ0

]

=

[

Km

Rr

0

]

u0. (18)

Solving the algebraic equations (18) one can determine a slope of the bodywork and
an applied voltage corresponding to the constant velocity of the vehicle, vd = const

θ0 = f(vd) = arcsin
b1vd

m2gu2xr
, u0 = g(vd) =

KmKe + R(b + b1)

Kmr
vd (19)

Linearilizing the differential equations of motion (13) about a desired motion (17),
one obtains differential equations of disturbed motion. The equations of motion after
linearilizing have a form as follows

M0δq̈ + D0δq̇ + K0δq + h(q0, q̇0) = L(u0 + δu), (20)

with δq = [δs δθ]T is a vector containing disturbed motion,

h0(q0, q̇0) =

[

KmKe+R(b+b1)
Rr2 ṡ

b1ṡ/r − m2gu2x sin θ0

]

= Lu0, M0 =

[

m11 m12

m21 m22

]

,

m11 = (J1 + Jro)/r2 + (m1 + mro + m2)
m12 = m2u2x cos θ0

m21 = 1
r
(J1 + Jro) + (m1 + mro + m2)r + m2u2x cos θ0

m22 = J2 + m2(u
2
2x + ru2x cos θ0)
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D0 =

[

KmKe+R(b+b1)
Rr2 −

KmKe+bR
Rr

b1
r

0

]

,

K0 =

[

0 0
0 −m2gu2x cos θ0

]

, L =

[

Km/Rr
0

]

.

Putting x = [δq δq̇]T , equation (20) can be transformed in the state equation

ẋ = Ax + Bδu, (21)

where two matrices A and B are given as following

A =

[

0 E2×2

−M−1
0 K0 −M−1

0 D0

]

, B =

[

0

−M−1
0 L

]

. (22)

If a solution x(t) = 0 of equation (21) is stable, the motion (17) will be stable. It is
clear that the equilibrium (θ = θ0 ≈ 0) of inverted pendulum without control is always
instable. So we can conclude that the desired motion (17) is instable. The problem of
stabilization of the vehicle will be presented in the following section.

3. CONTROL DESIGN

The objectives of a control problem is to find a law of input voltage of the motor
to ensure a given desired motion s = sd(t) while the bodywork is directed above, θ =
const ≈ 0. A feedback control needs the actual state of the vehicle, so sensors to collect
actual motion x(t), ẋ(t), θ(t), θ̇(t) of the vehicle are necessary. There are many methods
to design a controller for a linear system (21), in this study a linear feedback control will
be applied to stabilize the motion of the vehicle. The diagram of this control law is given
in Fig. 3.

The control voltage u = u0 + δu depends on desired and actual motion of the vehicle.
The nominal voltage u0 = u(v0) coresponding to a constant velocity v0 is determined from
equation (19). The stabilization of desired motion is ensured by the voltage δu, which is
proportional to state vector x with a gain matrix K

δu = −Kx = −[k1 k2 k3 k4]x. (23)

Substituting (23) into (21) one yields

ẋ = Ax− BKx = (A− BK)x. (24)

The elements of gain matrix K are chosen so that matrix owns negative eigenvalues.
Firstly, we can choose eigenvalues of the matrix , and then determine the gain matrix K.
Let p be a vector containing eigenvalues of , one can obtain the gain matrix K by mean
of Matlab.
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Fig. 3. Block-diagram of velocity control

Table 1. Vehicle’s parameters

Parameters of bodywork and wheel

Notation value unit
Mass of wheel m1 0.51 kg
Mass inertia of wheel J1 5.1 x 10-4 kgm2

Radius of wheel r 0.062 m
Damping coefficient floor - wheel b1 5.73 x 10-3 Nm/(rad/s)
Mass of bodywork m2 9.01 kg
Mass inertia of bodywork J2 0.228 kgm2

Center of mass u2x 0.138 m
Gravitational acceleration g 9.81 m/s2

Parameters of DC motor
Mass inertia of rotor Jro 3.2 x 10-6 kgm2

Damping coefficient journal - bodywork b 4.25 x 10-3 Nm/(rad/s)
Armature resistance R 1 Ω
Moment constant Km 1 Nm/A
back emf constant Ke 1 Vs

4. NUMERICAL SIMULATION

In oder to simulate by mean of Matlab, the parameters of the vehicle from [2] are used
(Table 1).

When the vehicle has a speed of 5 m/s (18 km/h), from equation (19) the orientation
of the bodywork is calculated:

θ0 = 0.0379 rad ( = 2.170),

Because the angle θ0 is small, instead of studying stability of the system at θ0 we can
consider the stability at the vertical position of the bodywork, θ0 = 0. Using parameters
in table 1, two matrices A and B are given as:
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A =









0 0 1 0
0 0 0 1
0 −6.6997 −55.2757 3.4108
0 51.3728 212.5356 −13.1264









, B =









0
0
−3.3963
13.0709









(25)

Eigenvalues of the matrix A are [0, -68.8401, -4.3213, 4.7592], therefore at the position
where the bodywork is directed towards above, the vehicle without control is instable, one
eigenvalue of matrix A is positive.

Controlling the vehicle can be divided into two problems: position control and velocity
control. In position control, the vehicle need to be kept at a certain position (s, 0). To
do this we have to choose all four eigenvalues of Ac to be negative. For example, here we
choose

p = [-2 -3 -5 -6]T

and a gain matrix K is obtained by mean of Matlab as follows
K = [-2.0711 -11.3372 -18.6895 -0.8472].
The simulation results with above gain matrix K are shown in Fig. 4. The vehicle

reaches the desired position after about 4 s.

Fig. 4. Position control with different initial conditions

In velocity control, the vehicle need to be kept at a constant velocity, while its orien-
tation is small. To do this we set the first eigenvalue of Ac to be zero and other three to
be negative. For example, here we choose

p = [0 − 3 − 4 − 3.5]T

and a gain matrix K is obtained by mean of Matlab as follows

K = [0 − 6.6772 − 16.7229 0.0843].
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Fig. 5. Results of velocity control

The simulation results are shown in Fig. 5. After about 3 seconds the vehicle reaches
the desired velocity.

5. CONSLUSION

In this study, deriving the differential equations of motion of self-balanced two-wheel
vehicle and designing a controller to maintain vehicle motion are presented. The method
of substructures has been exploited successfully in establishing equations of motion of
the vehicle. Because the system has two degrees of freedom but only one actuator, a
consideration of controllability become necessary. The disturbed motion is examined by
using linearilzed equations, so it is not difficult to choose parameters of the feedback
controller by mean of universal software Matlab. Some other problems should be considered
further such as the uncertainties of vehicle parameters. The contact between the wheel and
the surface of the road should be modeled in more details.
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VỀ VIỆC MÔ HÌNH HÓA VÀ ĐIỀU KHIỂN XE HAI BÁNH
KIỂU CON LẮC NGƯỢC TỰ CÂN BẰNG

Trong bài báo này, bài toán mô hình hóa và thiết kế điều khiển cho rôbốt di động
kiểu con lắc ngược được trình bày. Phương pháp tách cấu trúc được sử dụng để thiết lập
phương trình vi phân chuyển động của rôbốt. Phương trình chuyển động sau khi tuyến
tính hóa là cơ sở để thiết kế bộ điều khiển phản hồi cho rôbốt. Các kết quả mô phỏng số
chỉ ra tính hiệu quả của bộ điều khiển.


