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Abstract. Corrugated plates of wave form made of isotropic elastic material were con-
sidered as flat orthotropic plates with corresponding orthotropic constants determined
empirically by the Seydel’s technique. In some recent researches the extension of this
technique was given for corrugated laminated composite plates.

In the present paper a new approach for investigating corrugated composite plate of
wave form is proposed, regarding this plates as a combination of parts of shallow cylindri-
cal shells with alternative curvatures. It reduces to no use of Seydel’s empirical formulas
and sufficiently apply to composite plates. Based on this approach governing equations of
corrugated laminated composite plate of wave form are developed and application to the
non-linear stability problem of this plate is considered. Obtained results are compared
with those of Seydel’s technique.

1. INTRODUCTION

Corrugated plates of wave form made of isotropic elastic material were considered as
flat orthotropic plates with corresponding orthotropic constants determined empirically
by Seydel’s technique. This approach was acceptable to solve many bending and stability
problems of corrugated isotropic elastic plates in practice [4, 5, 7]. However, the analysis
of corrugated laminated composite plates has received comparitively little attention.

In [1] the authors developed the Seydel’s technique to the bending problems of cor-
rugated laminated composite plates and cylindrical shells. In the stability problem of
corrugated laminated composite plates [2] besides bending stiffnesses to be extended it is
necessary to formulate extensional stiffnesses and to define more exactly the strain expres-
sion by including the curvature of middle surface of corrugated plate. But the extension of
Seydel’s technique to corrugated composite plates meets with difficulties in determination
of corresponding constants and experimental verification of these constants. Consequently,
obtained calculation may not describe the real state of corrugated laminated plates.

In other hand, nowaday corrugated laminated composite plates and cylindrical shells
are widely used and their static and dynamic problems with geometrical non-linearity are of
significant practical interest, particularly stability and post-buckling behavior of composite
plates and shells is more important. Therefore it needs more accuracy in investigating
corrugated composite plates and shells.

In order to eliminate this restriction, a new approach for investigating corrugated
composite plates of wave form is proposed naturally in the present paper, regarding this
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plate as a combination of shallow cylindrical shell parts with alternative curvatures. It
reduces to no use of Seydel’s empirical formulas and can sufficiently apply not only to an
isotropic elastic corrugated plate, but to a composite corrugated plate as well.

Based on this approach governing equations of a corrugated laminated composite plate
of wave form are developed and an application to the non-linear stability problem of this
plate is considered. Obtained results are compared with those of Seydel’s technique.

2. GOVERNING EQUATIONS

Consider a rectangular symmetrically laminated composite corrugated plate in the
form of a sine wave (see Fig. 1), each layer of which is an unidirectional composite material.
Suppose the portion of cross-section line of a corrugated plate in the plane (x, z) has the
form of a sine wave

z = H sin
πx

l
with H << l,

so that the alternative curvature of cross-section line is

k =
z′′

(1 + z′2)
3/2

≈ z′′ = −H.
π2

l2
. sin

πx

l
. (1)

Based on the new approach the non-linear strain-displacement relationships in the
middle surface and the changes of curvature and twist of a such corrugated plate now can
be written in the form
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Fig. 1. Model of a corrugated plate
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w - deflection of the plate respectively; εx, εy, γxy are strains in the middle surface and
χx, χy, χxy are changes of curvatures and twist of the plate.

The constitutive stress-strain relations for the plate material are omitted here for
brevity. Integrating the stress-strain equations through the thickness of the plate and
taking into account that in a multilayered symmetrically laminated material the coupling
stiffnesses are equal to zero, while the extensional stiffnesses A16, A26 and the bending
stiffnesses D16, D26 are negligible compared to the others, we obtained the expressions for
stress resultants and internal moment resultants of a corrugated composite plate of wave
form
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where Aij, Dij (i, j = 1, 2, 6) are extensional and bending stiffnesses of any laminated
plate, i.e. for a flat composite plate such as a corrugated one. The geometry of a plate
includes in the expressions of strains and curvature changes. Indeed, it is an advantage of
the new approach.

3. FORMULATION OF EQUILIBRIUM EQUATIONS

The equilibrium equations of a corrugated plate of wave form subjected to uniformly
distributed biaxial compressive loads of intensities p and q respectively according to [6, 8]
when considering the non-linear geometry are of the form
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The substitution of equations (2) and (3) into equations (4) results a system of equi-
librium equations in terms of displacements
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The system of equations (5) combined with boundary conditions are solving equations
of the problem. For a simply supported plate the boundary conditions are

at edges x = 0 and x = a : w = v = 0, Mx = 0,

at edges y = 0 and y = b : w = u = 0, My = 0,
(6)

Remark. With k = 0 the system of equation (5) reduces to a system of partial differential
equations of equilibrium of a flat composite plate considered in [3, 6].

An approximation is acceptable in representation of the buckling mode shape by using
a single term of a double Fourier series. The boundary conditions (6) can be satisfied if a
buckling mode shape is of the form
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(7)

where m, n are natural numbers representing the number of half waves in the x and y
directions respectively.
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Substituting expressions (7) into the equation of eqilibrium (5) and applying the
Bubnov-Galerkin procedure give the set of three algebraic equations with respect to am-
plitudes Umn, Vmn, Wmn

a11 Umn + a12 Vmn + a13 Wmn + a14 W 2
mn = 0,

a21Umn + a22Vmn + a23 Wmn + a24 W 2
mn = 0,
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2
mn+a37W

3
mn = 0.

(8)

The first two equations of this set are linear algebraic equations for Umn, Vmn, in turn
which can be expressed in terms of Wmn. Then substitution of results into the remaining
equation of equilibrium (8) yields a non-linear algebraic equation with respect to Wmn as
following
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where aij and bi are coefficients depending on the material, geometry of plate and buckling
mode shape
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Note that the parameter ξ occuring in (10) is a ratio of compressive loads q/p, since
the plate is working in the elastic stage, so in the case of simultaneous action of loads
p and qwe can put here q = ξ.p.

Considering the plate after the lost of stability, i.e. Wmn 6= 0, from (9) it follows that

b1W
2
mn + b2Wmn + b3 = 0. (11)

The upper critical load which coincides with the linear buckling load can be found
from equation (11) by putting Wmn = 0
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The critical load q is determined by qupper = ξpupper. From equation (11) the compres-
sive load can be represented through Wmn

p = f (Wmn, ξ) .

The lower buckling load of the corrugated composite plate can be determined by using
the condition
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Numbers m, n must be chosen such that the absolute value of the critical buckling
load p is minimum.

According to each value ξ, i.e. to each loading process, we can get from (12) and (13)
upper and lower critical loads p respectively, then critical loads q is defined by q = ξp.
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The domain limited by the upper and lower buckling loads is called the unstable domain
of a corrugated composite plate.

Particularly, for a flat composite plate with k (x) = 0, in this case H = 0, the coeffi-
cients in (10) a13 = a23 = a31 = a36 = 0 so that b2 = 0, from the equations (12) and (13)
we can see that the upper and lower critical loads coincide each other and are equal to the
following value:

pcr =
a∗33

λ
=

(mπ

a

)4
D11 + 2

(

mnπ2

ab

)2

(D12 + 2D66) +
(nπ

b

)4
D22

(mπ

a

)2
+ ξ

(nπ

b

)2

For a flat composite plate there isn’t an unstable domain, while for a corrugated
composite plate that exists.

4. NUMERICAL EXAMPLES

For comparison of two approaches to investigate corrugated composite plates – Seydel’s
technique and proposed one – let’s consider a simply supported rectangular corrugated
symmetrically laminated plate in the form of a sine wave such as in [2] with a = 0.99 m, b =
1.5 m, H = 0.03 m, 1 = 0.09 m; the skin of the plate has 6 plies [45/−45/90/90/−45/45],
each ply being 0.5 mm thick. The material of the plate had Thornel 300 graphite fibers
and Narmco 5208 thermosetting epoxy resin with following properties E1 = 127.4 GPa,
E2 = 13.0 GPa, G12 = 6.4 GPa, ν12 = 0.38.

Some numerical results are shown in the Figs. 2, 3, 4 for the critical buckling load p
of a corrugated composite plate subjected to biaxial compressive loads with ξ = 1. The
effect of the plate thickness on critical load is illustrated in the Fig. 2.

Fig. 2. Effect of plate thickness on buckling load

1. Seydel’s technique, 2. Proposed approach

Fixing the values H, l and h, relation between the critical buckling load and the
dimension ratio b/a is represented in the Fig. 3.
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Fig. 3. Effect of plate dimension ratio on buckling load

1. Seydel’s technique, 2. Proposed approach

Fixing the values a, b and lone can see the effect of the height H of portion line on
critical buckling load in the Fig. 4.

Fig. 4. Effect of the height on buckling load

1. Seydel’s technique, 2. Proposed approach

From obtained results one can see that calculating results based on Seydel’s technique
for composite corrugated plates are greater than those based on proposed approach. It is
possible the stiffnesses calculated by Seydel’s technique may be greater than real ones of
the corrugated plates. Consequently, for approving the accuracy of Seydel’s technique and
proposed approach to investigate corrugated composite plates it is necessary to establish
experimental verification.
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5. CONCLUSION

The proposed approach for investigating corrugated plates of wave form is quite natural
without additional assumptions, because a corrugated plate of wave form exactly consists
of cylindrical shell parts with alternative curvatures, so we can apply the shell theory in
the consideration.

Based on the new approach the governing equations for corrugated plates of wave form
are developed. These equations can be applied to consider static and dynamic problems
of not only corrugated isotropic elastic plates but corrugated composite plates as well.

Applying obtained equations and using Bubnov-Galerkin method an approximated
analytical solution to the non-linear stability problem of corrugated laminated composite
plates subjected biaxial loads is investigated.

Obtained results are compared with those calculated by Seydel’s technique and some
conclusions are derived.

ACKNOWLEDGEMENT

This paper is completed with financial support by the National Council for Natural
Sciences and project QGTD.08.07.

REFERENCES

1. Dao Huy Bich, Vu Khac Bay, Dao Van Dung, Tran Ich Thinh, Pham Chi Vinh, Calculation
of the corrugated laminated composite cylindrical shells, Vietnam Journal of Mechanics 19

(1997) (3) 9-18, NCNST of Vietnam.
2. Dao Huy Bich, Khuc Van Phu, Non-linear Analysis on Stability of Corrugated Cross-Ply

Laminated Composite Plates, Vietnam Journal of Mechanics 28 (2006) (4) 197-206.
3. Khuc Van Phu, Research on non-linear multilayered laminated CPS plates, Ph.D. Thesis,

Hanoi, 2005.
4. S, G. Lechnitsky, Anisotropic plates, 2nd edition, Moscow, 1957.
5. D. Mc.Farland, B. L. Smith, W. D. Bernhart, Analysis of Plates, Spartan Books, New York,

1972.
6. J. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and analysis, CRC

Press, 2004.
7. E. Seydel, Schubknickversuche mit Welblechtafeln, DVL - Bericht, 1931.

8. S. Timoshenko, S. Krieger, Theory of Plates and Shells. Mc Graw-Hill Book Company, N.Y.,

1959.

Received March 10, 2008

MỘT CÁCH TIẾP CẬN MỚI KHẢO SÁT TẤM
COMPOSITE LỚP CÓ DẠNG LƯỢN SÓNG

Với quan điểm tấm lượn sóng là tập hợp của các mảnh vỏ trụ thoải được sắp xếp theo
quy luật hình sin, bài báo đề cập đến việc thiết lập các hệ thức cơ sở của tấm composite
lớp có dạng lượn sóng và áp dụng khảo sát bài toán ổn định phi tuyến cuả tấm composite
lượn sóng chịu nén theo hai phương vuông góc với nhau. Kết quả số được so sánh với kết
quả tính toán khi sử dụng kỹ thuật Seydel.


