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Abstract . T hi s paper presents a modeling technique t hat derives from t he work of 
Newmark to descr ibe t he behavior of steel-concrete composi te beams wit h elast ic shear 
connection . The model is used to derive expressions for beam curvat ure, rotat ion and 
defl ection under monotonic load from wh ich the st iffness matrix is der ived and fini te 
element analysis performed on a set of illustrat ive examples. Iviodel resul ts are compared 
to those obtained using other method 

1. INTRODUCTION 

Steel and concrete composite structural elements have been used in construction since 
the early 1920s. Mechanical connections lock together steel and concrete to cause the entity 
to behave as a single element . Composite beam defl ect ions stress dist ribution and modes 
of failure are governed by the strength and reliability of the shear connection between the 
joined materi als. To design effective composite sections, engineers must possess not only a 
clear understanding of the mechanical properties of st eel and concrete but also the nature 
of the bond between them [2]. A topic of modern research into composite beam behavior 
addresses partial shear interaction between joined materials. 

Newmark [1] derived a differential equat ion to describe general composite elements 
fabricated from dissimilar materials . Ranzi [6] used a direct stiffness formulation based on 
an element possessing 8DOF to describe vertical displacement , rotation and slip . Faella [4] 
derived an element st iffness matrix and fixed-end nodal forces as solutions of t he Newmark 
equation . 

This paper models the partial interaction between materials in a composite steel
concrete beam fabricated with elastic shear connections placed at discrete intervals along 
the length of a beam. The model permits the ready calculation of elemental curvature, 
rotation and deflection under monotonic loads from which the elemental stiffness element 
can be readily obtained . 

The paper compares results obtained from the model with those computed using al
ternat ive forms of FEM analyses and other methods . 
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2. MODEL FORMULATION 

2.1. General 

Fig. 1 shows a composite beam in cross section and the assumed steel-concrete strain 
distribution as that found in [1]. The problem assumes: 

l. The cross section is rigid and does· not distort 
2. The curvature is the same in both steel and concrete 
3. The shear connection exhibits linear-elastic behavior as shown in Fig. 2 
4. Concrete and steel exhibit linearly elastic stress / strain behavior 
Denote properties section element as : 
- Ac, Ar , As: area of the concrete, of the reinforcement and of the steel. 
- A1, A2 , A: area of the element 1, 2 and of the section 
- A1 =Ac+ Ar; A2 =As; A= A1 + A2 
- Sc, S r, S s: first moment of area of the concrete , the reinforcement and steel joist , 

about the abi litary reference axis. 
- l e, Ir, Is: second moment of area of the concrete , reinforcement and steel joist , about 

the arbitrary reference axis . 
- Ee, Er , E s: elastic moduls of concrete, reinforcement and structural steel 
- AE1 = AcEc + ArEr; AE2 = AsEs; AE = AE1 + AE2; SE1 = ScEc + SrEr 
- SE2 = SsEs; SE= SE1 + SE2; I E1 = l cEc+ Ir Er; I E2 = l sEs; I E= I E1 + I E2 

element I u;, s' 
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Fig . 1. Cross-section and strain diagram 
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Fig . 2. Connector response 

In Fig. 1 the reference y-axis is located a posit ive distance y0 below the top of the 
cross-section . Axial displacements are referred to the reference axis, which without loss of 
generali ty can coincide with the top of the steel joist. u~ is t he top fiber strain, u~ is the 
strain at the reference axis , v" is the curvature, and s' is the slip strain that characterizes 
the partial nature of the interaction 

Material properties can be expressed generically as: 

ac = EcEc =Ee [u~ + (y + Yo)v"] , 

ar = ErEr =Er [u~ + (y + Yo)v"] , 

CT8 = EsEs = Es [u~ + (y + Yo)v" + s' ] . 

(1) 
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Fig. 2 illustrates the relationship between interface shear flow q per unit length and 
slip at the interface . From [1], [2] write: 

q = k .s, 

K (2) 
k = nc -:-- , 

ic 

where: k - the shear connection stiffness (force per length2 ) , K - the strength of the shear 
connection (in Pust - test ) , nc - number of the shear connectors present at the cross
section , ic - shear connector longitudinal spacing. 

2.2. The model 

Figs . 3, 4 illustrate an elemental beam and the upper material free body diagram. [5], 
[6]. 
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Fig. 3. General single span beam Fig. 4. Free body diagram of the top element 

2.2.1. Horizontal equilibrium 

Consider the composite beam illustrated in Fig. 3 and Fig. 4. 

2 

N = L J O'idAi = N1 +N2; 
i = l Ai 

M = j O'ydA , 

A 

where N 1 , N2 are the axial forces in the element 1, 2 and Mis the bending moment 
From Eq . (1) and (3), we have: 

N1 = J O'dA =AE1u~+SE1v"+yoAE1v", 
Al 

N2 = J O'dA = AE2u~ + SE2v" + yoAE2v" + AE2s' , 

A2 

N = N1 + N2 = AEu~ + SEv" + yoAEv" + AE2s' , 

M = J yadA = SEu~ +!Ev"+ yoSEv" + SE2s' . 

A 

Solve (5) and (6) for u~ , v" : 

u~ = a1M + a2N + a3s' , 

v" = biM + b2N + b3s'. 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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The expressions for the rotation and deflection are obtained by integrating the curva
ture, the strain along the length of the bea,m length denoted z. Hence: 

v' = b1 j M dz + b2 / N dz+ b3 j s' dz + D1 , (9) 

v = f v 1

dz+D2 = b1 ff Mdzdz + b2 J~ Ndzdz + b3 ff s'dzdz+D1z + D2 . (10) 

Interface lip may be derived from the strain diagram as: 

I s = Un - uo - YoV . 

From Eq. (11 ), Un as : 
I I fl I 

un = uo + Yo v + s . 

From (7) , (8) and (12): 

u~ = l1M + l2N + l3s
1

, 

Un = li f M dz + l2 f N dz + l3 f s' dz + D 3 

in which : 
SE + yoAE YoSE + AE 

ai = - AEJE - SE2' a2 = AEJ E - SE2' 

SESE2 + Yo(SE2AE1 - SE1AE2) - AE2I E 
a 3 = AEJE - SE2 

AE 
b1 - A .,.-, T .,....., rt .,.-,') ' 

SE 
b2 = - AEIE - SE2' 

b _ SE1AE2 - SE2AE1 
3 

- AEJE - SE2 

l1 = ai + Yob1 , l2 = a2 + Yob2 , l3 = a3 + Yob3 + 1. 

2.2.2. Shear connection 

( 11) 

(12) 

(13) 

(14) 

From Fig. 4 and using (4) , (7) and (8) , we obtain the internal axial force N 1 as [5] : 

N1 = q1M + q2N + q3s1
, (15 ) 

SE1AE2 - SE2AE1 
Qi = AEI E - SE2 

AE1I E - SE1SE 
q2 = AEIE - SE2 ' 

SEf AE2 + SE~AE1 - I EAE1AE2 
q3 = · AEJE - SE2 

Consider the horizontal equilibrium of the free body diagram, 

( 
dN1 ) N1 + dz8z + q8z - N 1 = 0. 

· .. 
( 16) 

From (2), (15) and (16), 

d2s dM dN 
a - - ks = a1 - + a2 -

dz2 dz dz 
(17) 
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element 1 reference axis 

Fig . 5. Nodal Displacement, End Actions and Slip 

in which: 

SEf AE2 + SE~AE1 - IEAE1AE2 
a= - AEIE - SE2 

SE1AE2 - SE2AE1 
a1 = 

AEIE- SE2 
AE1IE - SE1BE 

a2= ------~ 

AEIE - SE2 

From (17) , 

s = C1 eµz + C2e- µz + so,p, (18) 

where: µ 2 = ~; so,p: depends on the nature of the applied load conditions 

2.3. The stiffness matrix k; the vector of the equivalent nodal loads 

2 .3.1. Equilibrium 

Using the beam illustrated in Fig. 3, Fig . 5 defines 8DOF to encompass vertical dis-
placement , rotation and material slip . · 

From [3], [6], obtain element equilibrium by direct evaluation . 

k12 k13 k14 k15 k15 k17 k1s 
k22 k23 k24 k25 k26 k21 k28 

k33 k34 k3s k 36 k 37 k38 

k44 k45 k46 k47 k48 { q} = {g} + {9eq } 
kss ks5 ks1 kss 

k55 k57 k5g 
k71 k73 

SYM kss 

where: {q} = [ Uno , vo, v0, so, UnL , VL, v~, SIL ] T , 

{g} = [ No, Ro , Mo, N10, NL, RL , ML, NlL ]T' 
{ q} , {g} is the vector of nodal actions and displ 'lcements, 

(19) 
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{9eq } is t he vector of equivalent nodal. 

2 .3 .2 . The stiffness matrix K 

The stiffness matrix K is obtained by restraining all DOF save the one related to the 
column considered, to which a unit displacement is applied . 

The moment and the axial force along t he beam can be expressed as 

M = - Mo+ Roz; N=-No (20) 

The slip can be expressed in the form 

c /~Z c - /LZ O:i R s = ie + 2e - - o 
k 

(21 ) 

The first column o f the s tiffness m atrix K 
The load state is given by 

{q}= [ l , 0, 0, 0, 0, 0, 0, 0 ] ~) (22) 

From (19) and (22), 

k11 ki2 ki3 ki4 kis k15 k11 
k1 s 1 1 No 

k22 k23 k24 k25 k26 k27 k2s 0 Ro 
k33 k34 k35 k36 k37 k38 0 Mo 

k44 k45 k46 k47 k4s 0 N10 -
kss ks5 ks1 

kss j 0 N10 
k55 k57 k5s 0 RL 

k71 k1s 0 ML 
SYM kss 0 NlL J (i) 

k11 No ' 
(23) 

k2i Ro 
k3i Mo 

{:} < k4i - Nio 
ksi N10 
k5i RL 
k11 ML 
ks i NlL I (i) 

T he stiffness coefficients of the fi rst column are derived by Eq. (23). The constant of 
integrations: Ci; C2; Di ; D2 and D3 are determined by noting so= 0, SL = 0, vo = 0, VL = 
0,uno = 1. T he actions No , Ro , Mo can be determined after noting v' = 0, vf, = 0, UnL = 0. 

From consideration of statics, obtain the nodal actions NL, RL, ML are: 

N10 =Ni lz=O ; NlL = - Ni lz =L (24) 

2.3.3 . Equivalent nodal loads due to uniform load w 

The moment and the axial force along t he beam can be expressed as 

wz2 

M = -Mo+ Roz - -
2
- ; N = - No (25) 
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T he slip equilibrium can be expressed as 

The enforcing the kinematic state is described as 

{ d} = [ 0, 0, 0, 0, 0, 0, 0, 0 J ~) 

Similarly to 2.3. 2, the vector of equivalent nodal loads is determined. 

3. APPLICATIONS 

3.1. Built in compos ite b eam subject to a uniform load w 

w(kN/m) 
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Fig . 6. Buil t-In beam and composite cross-section 
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(26) 

(27) 

For the beam shown in Fig. 6, let E e = 2.1 x 107 KPa, Es = 2.1 x 108 KPa and 
the shear connection stiffness k = 8.33 x 105 KPa . Using only one element to complete 
the analysis using the proposed model (GTM) yields a calculated deflection in perfect 
agreement with results presented in [5] . Fig. 8 predicts beam deflections for various values 
of shear connection stiffness (in terms of the dimensionless parameter µL ). 
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3.2. Double Span Beam 

Fig. 9 illustrates the 2 span continuous beam labeled CTB4 in Ansourian [7j, in which 
Ee= 1.565 X 107 KPa , Er= 1.565 x 107 KPa, E 8 = 1.565 x 107 KPa, Ar = 160 mm2 and 
shear connection stiffness k = 0.982 x 106 KPa. 

Using twelve stiffness elements to analysis the left span deflection. The results shown 
in Table 1 and in Fig. 10. It can be seen good result with linear behaviour of materiaL 
This highlight abili ty demonstrated the advantages of the general technique method. 
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Fig. 9. 2 span beam and composite cross-sect ion 
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Table 1. Left Span middle deflection 

LoadP (KN) 
Deflection Vmax (mm) 

Comparision (1) & (2)(3) 
GTM(l) Ansourian (2) 

0 0.000 0.000 0.000 
50 3.037 2.720 11.654 
75 4.399 4.017 9.510 
100 5.762 5.461 5.512 
125 7.125 6.801 4.764 
150 8.488 8.346 1.701 
175 9.815 9.941 -1.267 
200 11.215 12 .329 -9 .036 
225 12.577 19.741 -36 .290 

4. CONCLUSIONS 

This paper describes a general modeling technique for the analysis of steel-concrete 
composite beams with elastic shear connection (partial interaction) . The curvature, the 
rotation and the deflection formulation have obtained by using this model. Then derivation 
stiffness matrix K and application in the finite element method to analysis of the composite 
beams. (This is the 3rd t ime this same sentence appears in this paper!!) 

The results obtained have demonstrated the advantages and the confidence of the GMT 
method in comparision with the other results and experimental test. Model is simply, this 
method need to research to analysis composite beam for various loading . 
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PHAN TicH DAM THEP-BE TONG LIEN HQP c6 x:ET ANH HVdNG 
TU'dNG TAC BAN PHAN d MAT TIEP xuc BANG PHlJdNG PH.AP KY 

THUAT TONG QUAT 
Bai bao trlnh bay mo hlnh ky thu~t tdng quat dl,l'a t ren mo hlnh ky t hui:lt cua Newm ark d@ 

mo ta ung xU: cua dam thep-be tong lien hc;ip voi lien Ht chju ci=lt tuy§n tfnh . SU: di,mg mo hlnh 
nay xay dl,l'ng cac phuong t rlnh chuy@n vj, bi@n d<;tng cua phan tU: duoi tac di,mg cua tai tr9ng t inh 

va sU: di,rng cac phuc111g trlnh nay xac djnh ma t ri;ln do cu11g K . Ap dl).ng k§t qua vao phtrong phap 
phiin tU: hfru h <;tn d@ khao sat cac bai toan co ban . K§t qua thu duc;ic so sanh voi k@t qua khac . 


