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Abstract. This paper presents a finite element formulat ion for investigating the free 
vibration of uniform Timoshenko beams resting on a V.' inkler-type elastic foundation 
and prestressing by axial force. Taking the effect of prestress, foundation support and 
shear deformation into account, a stiffness matrix for Timoshenko-type beam element is 
formulated using the energy method . The element consistent mass matrix is obtained 
from the kinetic energy using simple li near shape functions . Employing the formulated 
element, the natural frequencies of the beams having various boundary conditions are 
determined for different values of the axial force and foundation stiffness . The vibration 
characteristics of the beams pa rtially supported on the foundation arc a lso studi ed and 
highlighted. Specially, the effects of shear deformation on the vibration frequenci es of 
prestress beams fully and partially supported on the elast ic foundation are investigated 
in deta il. 

1. INTRODUCTION 

Practical problems like railroad tracks, hight way pavements, continuously pipelines ... 
can be modelled by means of beams on elastic foundation. Static analysis of beams on 
various types of foundation has been extensively carried out by many researcher [L 2]. In 
the context of dynamic analysis, in [3] Rosa described an analytical approach for inves
tigating the effect of foundation support on the vibration characteristics of T imoshenko 
beams resting on a Pasternak foundation. Using the so-called Rayleigh-Ritz method, Rao 
has investigated the large vibration characteristics of simply supported and cantilever 
Timoshenko beams resting on a two-parameter foundation [4]. By solving the govern
ing equation, Hung [5] derived the stiffness and mass matrices used in dynamic stiffness 
method in asserting the natural frequencies of shear deformable beams resting on a vVin
kler foundation and under axial force. The method may result in accurate frequencies but 
requires complex mathematical forms of the stiffness and mass matrices. 

From practical point of view, beam prestressed by axial force is widely use as a struc
tural element in civil engineering, since its superiority in sustaining mechanical forces in 
particular applications. With the presence of axial force , the prestress beam may have dif
ferent static and dynamic characteristics, comparing to its conventional counterpart . The 
effect of axial force may be explained by alternation of the bending stiffness of the struc
tural element, and for the case of beam, the vibration frequency is remarkably reduced by 
the compressive membrane force [ 6]. 
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Very recently, the author investigated the vibration frequency of slender beams resting 
on a Winkler foundation by using the finite element method [7]. In the work, a Bernoulli
type beam element has been developed and employed to compute the frequency of the 
beams using various types of mass matrices. The main objective of this paper is to extend 
the work in [7] to the case of Timoshenko beams, so that the effect of shear deformation on 
the dynamic characteristics of beams can be examined in detail. In addition to the shear 
deformation effect, the influence of partial support by the foundation on the dynamic 
characteristics of the beams which has not been studied in the cited references is also 
investigated. 

In the context of the finite element analysis, the main difference between the Tim
oshenko and Bernoulli beams is the ability of adopting different shape functions to in
terpolate the displacement fields . For the Timoshenko beam, with the introduction of 
shear deformation, the rotation becomes an independent variable, and the linear functions 
can be adopted, while for the Bernoulli beam, the cubic polynomials are the lowest or
der shape functions [8]. Thus , the Bernoulli element may be better in representing the 
deformed configuration of beam, but in addition to the simplicity of the finite element 
formulation, the Timoshenko beam has ability in modelling the shear deformation effect, 
which may be important for the case of stubby beams. 

Following the above introduction, the remainder of this paper is organized as follows : 
Section 2 formulates the stiffness and consistent mass matrices for the prestress Timo
shenko beam element resting on an elastic foundation. Section 3 describes the equations 
of motion for the case of free vibration of a finite element model. The numerical inves
tigation is presented in Section 4. The main conclusions of the paper are summarized in 
Section 5. 

2. FINITE ELEMENT FORMULATION 

2.1. Element stiffness matrix 

W· I 
z,w 

I, EI, GA 

rigid base 
(a) 

W· 
J 

kw 

Bernoulli beam 

~
---- 1-

- I wx<Ix 
' 

9dx • 
_, t 

dx 

ds =(I +02)1
' 2 dx 

(b) 

Fig. 1. (a) A two-node beam element, (b) Geometric relation for a differential 
element of length dx 

Consider a two-node (denoted i and j) beam element with length l, flexural rigidity 
EI, shear rigidity GA, prestressed by axial force P as shown in Fig. la. The beam is 
supported on a traditional Winkler elastic foundation, which being modelled by linear 
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springs with stiffness kw (unit of force/length2 ). In this Winkler model, the springs 
are assumed to be independent of each other, and only one parameter kw is represented 
for the foundation [l, 9]. The element contains four degree of freedom (d.o.f.), two at 
each node, namely a transversal displacement and a rotation. Thus, the vector of nodal 
displacements is given by 

(2.1) 
where superscript T denotes the transpose of a vector or a matrix. Assuming linear elastic 
behavior, the strain energy of the element is obtained as a contribution from strain energy 
due to the bending and shear deformation of the beam Us , the energy stemming from 
deformation of the foundation Uw, and energy of the axial force Up. The strain energy 
stored in the beam element is simply given by 

Us=~ fo
1 

Eix
2
dx + ~ fo

1 

'ljJGA1
2
dx , (2.2) 

where x = &e / &x is the beam curvature; r is the shear strain, and 1./J is the correction 
factor to allow for cross-sectional warping [10]. The strain energy stemming from the 
deformation of foundation has a simple form 

UF = ~ fo
1 

kww
2
dx. (2.3) 

To derive the energy contributed by the axial force P, we consider herewith a differential 
element with initial length of dx as shown in Fig. lb : Let a small lateral displacement w(x) 
takes place, and denote ds is the new length of the differential element dx. For the case of 
Bernoulli beam, the rotation is w,x, and the new length is computed as ds = (1 + w~x ) 1 12 . 
However, taking the shear deformation into account, the total rotation of the element is 
not W ,x, but e, and from Fig. lb we get 

1 
ds = (1 + e2)112dx ~ (1 + 202

) dx . (2.4) 

Thus, the axial membrane strain for the case of Timoshenko beam is given by 

Em = ds - dx ~ ~e2 
dx 2 (2·5) 

During a small lateral displacement w(x), the axial force P is still constant (positive in 
tension). As each element dx lengthens an amount Emdx, the force P will produce work 
in amount of Pt:mdx. Thus the change in membrane energy is 

Up= - P02 dx . 111 
2 0 

(2.6) 

To this point, we follow the standard approach of the finite element method by introducing 
an interpolation scheme for the lateral displacement w(x) and rotation e(x) as 

l - x x 
w = NiWi + NjWj = - l - Wi + TWj, 

l - x x 
e = Niei + Njej = -z-ei + yej, 

(2.7) 
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where Wi, Wj, 0i and 0j are the values of the lateral displacement and rotation at nodes i 
and j. The shear strain 'Y ( x) is expressed in terms of the nodal displacements and rotations 
through 

ow 
1(x) = ox - e. 

Substituting Eqs . (2.7) and (2.8) into Eqs. (2 .2) -(2 .6), we get 

[ ] 

2 1 2 1 w · - w · 1 
Us= -EI(()· - ()·) + -· 1·GAl 1 2 

- -(0 · + () ·) 2l J i 2 '!" l 2 i J 

1 2 2 
Uw = 5(wi +wiWj +wj)lkw , 

1 2 2 up = 6 ( ()i + ()i()j + ()j )lP. 

(2.8) 

(2.9) 

In order to avoid the shear locking problem [11], in Eq. (2.9) we have used one-point 
Gauss quadrature to evaluate the shear strain of the beam as 

2 1 Wj - Wi - X X 1 l l ll [ ( ) ( l ) ] 2 
2 0 

'ljJGA1 dx = 2 0 
'ljJGA l - -l-ei + yej dx 

Wj - Wi 1 1 1 Jl [( ) ] 2 = 4 _
1 

'ljJGA l - 2(1 - oei - 2(1+0Bj d~. (2 .10) 

= ~'ljJGAl [ ( Wj ~ Wi )- ~(()i + Bj)r 

From Eq. (2.9) , the element stiffness matrix is obtained as the summation of stiffness 
matrices due to bending and shear deformation of the beam, stiffness matrices due to the 
foundation deformation, and due to the axial force. These matrices are obtained by twice 
differentiating the corresponding expressions of strain energy with respective to the nodal 
displacements, and having the form 

[o 
1 l.z -1 l.z 

0 0 

~ll ~GA 
2 2 

EI 0 1 0 l.z 1z2 -~l 1z2 
2 4 4 

ka = -l ~ 0 0 0 +-l - - 1 - ~l 1 -~ l 
-1 0 1 

l.z 1z2 l ~z2 J 2 4 -2 l (2 .11) 

[2 
0 1 

~l [o 
0 0 

~l 1 0 0 0 1 0 2 0 
k w= -lkw 0 2 kp = 6tP ~ 0 0 6 1 

0 0 0 1 0 

The above stiffness matrices kw and kp contain many zero coefficients, which are different 
from the full matrices of Bernoulli beam element, previously derived in [7]. 

2.2 . Element consistent mass matrix 

A mass matrix is a discrete representation of a continuous distribution of mass . In the 
present work, the elastic foundation is considered massless as usually assumed in analysis 
of beams on foundation [4, 12]. Thus, the element mass matrix is contributed from t he 
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mass of the beam only. The kinematic energy of a uniform beam element with inclusion 
of shear deformation is given by [13] 

T = - pAvldx + - pUJ2dx, 111 111 . 
2 0 2 0 

(2 .12) 

where p is the mass density; A and I are the area and moment of inertia of cross-section, 
and (.:.) = d( .. . )/dt is the velocity of the quantity in the brackets. On the other hand, the 
kinematic energy can be expressed through the vector of nodal displacements as [13] 

T = ~ d T md, (2.13) 
2 

where d = dd/dt with d defined by Eq. (2.1), and m is the mass matrix of the element. 
Substitute (2.7) into Eq. (2.12), we get 

1 2 2 1 '2 . . ' 2 
T = 6ptA(wi + wiwj + wj) + 6ptI(ei + eiej + ej ). 

We can rewrite Eq. (2.14) in a matrix form as 

T = ]__ ldT r2~ 20! 
12 P A 0 

0 I 

A 
0 

2A 
0 

ol I . 
0 d. 2! 

From Eqs. (2.13) and (2.15), we obtain the element mass matrix in the form 

m = ~pl [

2

{ 
2~ 2~ ~ 1 

0 I 0 2I 

(2.14) 

(2 .15) 

(2.16) 

which is a constant positive define mass matrix . The mass matrix derived in this Subsec
tion using the same shape functions as those of displacement field is called the consistent 
mass matrix [13, 14] . It is noted that the consistent mass matrix of the Timoshenko beam 
contains some zero coefficients, while that of the Bernoulli beam does not have any zero 
coefficient. 

3. GOVERNING EQUATIONS 

The equation of motion for the discretized undamped structure can be written in the 
forms [13 , 15] 

MD+ KD = F ext, (3.1) 

where D is the vector of structural nodal displacements; M and K is the structural mass 
and stiffness matrices, respectively; F ext is the vector of nodal external forces; D = d;tp 
is the acceleration of material particles at the structural nodes . The structural mass and 
stiffness matrices are formed by merging the element mass and stiffness matrices in the 
standard way of the finite element method 

NE 

M = LJ{m} i; (3 .2) 
i=l i=) 
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where m and k are the element mass and stiffness matrices, formulated in Section 2, and 
NE is the total element number of structure. 

With no external forces , the structure undergoes harmonic mot ion (caused, perhaps 
by initial condition), and we can write D = D sin wt, with D is the vibration amplitudes 
of the nodal displacements D, and w is the circular frequency (rad/ s), so that we can 
write Eq. (3.1) in the form 

(K- -\M)D = 0, (3.3) 

where ,\ = w2 . Eq. (3.3) is called an eigenvalue problem, which gives nontrivial solution 
when ,\ satisfies 

det(K - -\M) = 0. (3.4) 

Eq. (3.3) can be solved using any standard algorithm to obtain eigenvalues ,\ and their 
associated eigenvectors. The frequency corresponding the lowest eigenvalue ,\ computed 
from Eq. (3.3) is called the fundamental frequency [15]. 

4. NUMERICAL INVESTIGATION 
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Fig. 2. Beams with with shear deformation for numerical investigation 

The eigenvalue problem stated by Eq. (3.3) is formed using the finite element formu
lations developed in Sec. 2, then solved for the frequencies of prestress beams shown in 
Fig. 2. Various boundary conditions are considered: clamped at one end and free at other 
(denoted CF, Fig. 2a), simply supported (SS, Fig. 2b), clamped at one end and simply 
supported at other (CS, Fig. 2c). The geometry and material data for the beams are the 
same as those in [7], and listed below: 

L = 5 m; A = 0.01 m 2 , I = 1 x 10- 5 m 4, 

E = 2.1 x 1011 N/m2
, 

v = 0.3, p = 7860kg/m3
, 

where £, A, I, E, v and p denote the total length, cross-sectional area, second moment 
of inertia of cross-section, elastic modulus, Poisson ratio and mass density of the beams, 
respectively. For the present study, the beam cross-section is rectangular, so that the 
correction factor 'ljJ in Eq. (2.2) is taken by 

1f; = 10(1 + v) 
(12 + llv) 
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For the convenience of discussion, we introduce the following dimensionless parameters 

£4 
ko = EI kw, (4 .1) 

which represents the foundation stiffness, and 
£2 

µ=EI P, (4 .2) 

which represents the axial force amplitude. Following the work in [7], we also introduce 
the so-called frequency parameter, defined as 

pAL2 2 
I = Elw1 , (4 .3) 

where w1 denotes the fundamental frequency of the beam. Furthermore, in order to study 
t he effect of shear deformation, we introduce herewith a parameter represented the shear 
deformation, defined as [16] 

PE 
s = GA ' (4.4) 

where PE is t he Euler buckling load of unsupported SS beam. Thus , for a higher slender
ness parameter, t he more effect of shear deformation is. In other words, according to Eq. 
( 4.4) , the shear deformation becomes more important for the beam having lower shear 
rigidity. 

4.1. Fully supported beams 

T his Subsection presents the numerical results for the prestress beams fully supported 
on the elastic foundation. A mesh of 30-equal elements is adopted in the computation. 
The reason for using the fine mesh comparing the Bernoulli beams (confirm [7]) is the 
lower order of t he shape functions adopted in interpolating the displacement field , Eq. 
(2 .7), so that a fine mesh is needed to ensure the accuracy [7]. Table 1 lists the frequency 

Table 1. Frequency parameter of fully supported beams at va rious values of ko 
and at µ = - 2.0 

ko = 0 ko = 50 ko = 100 ko = 150 ko = 200 

SS beam 77.7954 127.7757 177.7560 227.7363 277.7165 
CF beam 2.5009 52.4904 102.4799 152.4694 202.4589 
CS beam 214.9376 264.9146 314.8915 364.8685 414.8454 

parameter of fully supported SS, CF and CS beams at various values of the foundation 
stiffness parameter ko and at µ = -2. The full pictures describes the dependence of 
the frequency parameter on the axial load parameter µ and foundation stiffness ko are 
respectively given in Figs. 3-5. It is noted that the effect of the prestress and foundation 
support on the frequency of the beams obtained in the present study is very much similar to 
t hat of Bernoulli beams reported in With the above geometric data, according to Eq. ( 4.4), 
s = 0.0012, which is very small , and the shear deformation hardly affects the frequency of 
:.,he beams. 
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Fig. 3. Influence of axial force and founda
tion stiffness on frequency parameter of fully 
supported SS beam 
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Fig. 5. Influence of axial force and founda
tion stiffness on frequency parameter of fully 
supported CS beam 
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Fig. 4. Influence of axial force and founda
tion stiffness on frequency parameter of fully 
supported CF beam 
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Fig. 6. Effect of shear deformation on fre
quency parameter of prestress Timoshenko 
beams fully supported on elastic foundation 

In order to study the effect of shear deformation on the dynamic characteristics of the 
beams, the same approach presented in[? , ?] is followed herewi th. In this regard , keeping 
all the beam data as above, and for s = 0.1 , 0.2 , ... 1.0, the computation is performed 
with different cross-sectional areas A = 1.0264 x 10- 4 , 5.1322 x 10- 5 , .. . 1.0264 x 10- 5 . 

Fig. 6 shows the effect of shear deformation on frequency parameter of prestress Tim
oshenko beams fully supported on the elastic foundation, where /O and /s denote the fre
quency parameter corresp onding with slenderness parameter of 0.0012 and s, respectively. 
With an increase in the slenderness parameter s, a reduction in the frequency parameter 
is observed, regardless of the boundary condition. In other words, the frequency of t he 
prestress beams is reduced "by t'he shear deformation, and we should take t his effect into 
account for the case of stubby beams. Amongst t he three types of boundary conditions 
considered in the present work, the reduction in the frequency parameter of CS beam is 
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Fig. 7. Frequency parameter of partially sup
ported SS beams at various values of axial force 
parameter and supporting percentages (ko = 100) 
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Fig. 9. Frequency parameter of partially sup
ported CS beams at various values of axial force 
parameter and supporting percentages (ko = 100) 
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Fig. 8. Frequency parameter of partially sup
ported CF beams at various values of axial force 
parameter and supporting percentages (ko = 100) 
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Fig. 10. Frequency parameter of partially sup
ported SS beams at different supf>Orting percent
ages and various values of slenderness parameter 
(µ = - 2, ko = 100) 

the most pronounced. It is noted that , the effect of shear deformation is independent on 
the axial load parameter µ and the foundation stiffness parameter ko. 

4.2. Partially supported beams 

This Subsection investigates the vibration frequency of the Timoshenko beams par
tially supported on the elastic foundation . The beams are supposed to be supported in 
part by the foundation from the left end as typically shown in Fig. 2d for the case of 
CF beam. The supported part is denoted o:L, with 0 :S o: :S 1 is called the supporting 
parameter. 

Figs. 7-9 show the frequency parameter of the SS, CF and CS beams as functions of 
the axial load parameter µ and foundation stiffness parameter k0 , respectively. Similar to 
the case of Bernoulli beams, a nonlinear relationship between I and (µ, k0 ) is observed, 
regardless of the boundary conditions. Amongst the three types of boundary conditions, 
the SS and CS beams show a similar behavior in raising the supporting percentage, while 
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Fig. 11. Frequency parameter of partially sup
ported CF beams at different supporting percent
ages and various values of slenderness parameter 
(µ = - 2, k0 = 100) 

Fig. 12. Frequency parameter of partially sup
ported CS beams at different supporting percent
ages and various values of slenderness parameter 
(µ = - 2, ko = 100) 

the CF beam is more sensitive to the supporting parameter for the support ing percentage 
less than 60%. 

The effects of shear deformation on the SS, CF and CS beams partially supported 
on the foundation are given in Figs. 10-12, respectively. The numerical displayed in the 
figures are computed for the axial lo~d parameter µ = -2 and the foundation parameter 
ko = 100. As clearly seen from the figures, the frequency of the beams reduces by the 
shear deformation, but the reduction depends on the supporting parameter and the type 
of boundary conditions. While the frequency parameter of SS and CS beams clearly 
lowers by rasing the shear deformation parameter s , that of CF beam reduces slowly. 
The reduction in the frequency parameter of all t he beams is more clearly at a higher 
supporting percentage. In other words, the foundation increases t he effect of the shear 
deformation on the vibration frequency of the beams. 

5. CONCLUSIONS 

The paper has investigated the free vibration of prestress Timoshenko beams resting 
on a Winkler elastic foundation by the finite element method. A beam element taking 
the effect of the prestress, foundation support and shear deformation into account has 
been formulated using the strain energy approach. The consistent mass matrix has been 
formulated using linear shape functions. The eigenvalue problem has been solved to obtain 
the natural frequencies of beams with various boundary conditions. The dependence 
of the frequency parameter on the axial force, foundation stiffness of beams fully and 
partially supported on the foundation is investigated . The effect of shear deformation on 
the vibration characteristics of the beam has been examined in detail. In addition to the 
conclusions which have been made for the Bernoulli beams in [7], the following remarks 
can be drawn for the prestress Timoshenko beams of the present work: 

- The frequency of prestress beams rest ing on an elastic foundation is affected by 
the shear deformation, and it is lower for a beam having higher shear deformation 
parameter . 
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- The foundation increases the effect of shear deformation on the vibration frequency 
of prestress beams. For higher foundation supporting percentage, tbe more shear 
deformation effect is. 

- Amongst three types of the boundary conditions investigated, the CS beam is the 
most sensitive to the shear deformation effect . 
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REFERENCES 

1. M. Hetenyi, Beams on Elastic Foundation, The University of Michigan Press, Ann Arbor, 1946. 
2. A. Ghali and A. M. Neville, Structural Analysis, A Unified classical and matrix approach, E & 

FN Spon, London, third edition, 1995. 
3. M. A. De Rosa, Free Vibrations of Timoshenko Beams on Two-parameter Elastic Foundation, 

Computers €3 Structures 57:151 (1995) 156. 
4. G . V. Rao, Large-amplitude free vibrations of uniform beams on Pasternak foundation , Journal 

of Sound and Vibration 263 (2003) 954 - 960 . 
5. Nguyen Xuan Hung, Tinh Toan Chinh Xac K et Gau Tren May Tinh Chuang Trinh ADS 2001 , 

Nha xuat blin Khoa h<?c va Ky thu;%t , Ha NC'.Ji, 2001. 
6. J. S. Przemieniecki , Theory of Matrix Structural Analysis, Dover Publications Inc., New York, 

1985. 
7. D. K. Nguyen, Vibration frequency of prestress slender beams resting on Winkler elastic foun

dation, Vietnam Journal of Mechanics 28 (2006) 241-251. 
8. M. A. Crisfield, Finite Elements and Solution Procedures for Structural Analysis, Volume 1: 

Linear Analysis, Pineridge Press, Swansea, 1986. 
9. S. C. Dutta and R. Roy, A critical review on idealization and modeling for interaction among 

soil-foundation-structure system, Computers €3 Structures 80 (2002) 1579 - 1594. 
10. J. M. Gere and S. P. Timoshenko, Mechanics of Materials , Chapman & Hall , London, Third 

SI edition, 1995. 
11. M. A. Crisfield, A faster modified newton-raphson iteration, Computer Methods in Applied 

Mechanics and Engineering 20 (1979) 267 - 278. 
12. T . Yokoyama, Vibration analysis of Timoshenko beam-column on two-parameter elastic foun

dation, Computers €3 Structures 61:995 (1996) 1007. 
13. M. Geradin and R. Rixen, Mechanical vibrations, Theory and Application to Structural Dy-

namics, John ' i\Ti ley and Sons, Chichester, second edition, 1997. 
14 . R.D . Cook, Finite Element Modelling for Stress Analysis, John Wiley & Sons, New York, 1995. 
15. L. Meirovithch, Fundamentals of Vibrations, McGraw-Hill, Boston, 2001. 
16. S.P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGraw-Hill, New York, Second 

edition, 1961. 
17. D. K. Nguyen, Post-buckling behavior of beam on two-parameter elastic foundation , Interna

tional Journal of Structural Stability and Dynamics 4 (2004) 21 - 43. 
18. D. K. Nguyen, Effects of shear deformation on large deection behavior of elastic frames , Viet

. nam Journal of Mechanics 26 (2004) 167-181. 

Received August 8, 2005 



12 Nguyen Dinh Kien 

DAO DQNG TV DO CUA DAM TIMOSHENKO DV UNG LTJC NlM TREN 
NEN DAN HOI 

Bai bao trlnh bay cong thuc phan ti'r htru hq,n dung trong nghien ClrU dao d9ng t11 do cua dam 
Timoshenko co thiet di~n dong nha'.t, dv 1rng lvc, nam tren nen dan hoi Winkler. Ma tr~n d9 ct'.rng 
phan ti'r co tinh tCri anh hu&ng cua d11 trng 111c, nen dan hoi va bien dq,ng tmqt xay d\fng bang 
phmmg phap niing luqng. Ma tr~n khoi luc;mg nha'.t quan nh~n duqc tlr bieu thuc d9ng niing tren 
CCY s& cac ham d~ng tuyen tinh. Si'r di,mg cong thtrc phan ti'r hU-u hq,n phat trien da xac djnh tan 
SO dao d9ng rieng cua dam CO cac dieu ki~n bi8n khac nhau, trng vc'ri cac gia trj khac nhau cua l\fC 
d<;>c trvc va d9 cung nen. Cac d~c tmng dao d9ng cua dam t11a m9t phan tren nen dan hoi cling 
duqc khao sat. D~c bi~t, anh hu&ng cua bien dq,ng tmqt t&i tan so dao d9ng cua dam d\f ungc l\fC 
nam hoan toan va mQt phan tren nen dan hoi Glr<;>'C nghien ClrU chi tiet. 

f 

) 

'• 

1 




