THE INFLUENCE OF NONLINEAR TERMS IN MECHANICAL SYSTEMS HAVING TWO DEGREES OF FREEDOM

NGUYEN DUC TINH
Mining Technical College, Quang ninh

Abstract. For many years the higher order stochastic averaging method has been widely used for investigating nonlinear systems subject to white and colored noises to predict approximately the response of the systems. In the paper the method is further developed for two-degree-of-freedom systems subjected to white noise excitation. Application to Duffing oscillator is considered.

1. INTRODUCTION

It is well-known, the stochastic averaging method (SAM) is widely used in different problems of stochastic mechanics, such as vibration, stability and reliability problems (see e.g. Mitropolskii et al, 1992; Red-Horse and Spanos, 1992; Zhu and Lin, 1994; Zhu et al, 1997). However, the effect of some nonlinear terms cannot be investigated by using the classical first order SAM. In order to overcome this insufficiency the different procedures to obtain approximate solutions have been developed for the nonlinear systems with one degree of freedom under white and coloured noise excitations (see e.g. Anh, 1993; Anh and Tinh, 1995; Tinh, 1999). In the present paper this procedure is further developed for two-degree-of-freedom nonlinear systems subjected to white noise excitation. An application to Duffing system is considered and the effect of nonlinear terms can be detected in the approximate solutions of Fokker-Planck (FP) equation while it cannot be investigated by using the classical first order SAM.

2. HIGHER SAM IN TWO-DEGREE-OF-FREEDOM SYSTEMS

Consider the motion equations of a mechanical system with two degrees of freedom

\[
\begin{align*}
\ddot{x}_1 + \omega_1^2 x_1 &= \epsilon f_{11}(x_1, x_2, \dot{x}_1, \dot{x}_2) + \epsilon^2 f_{12}(x_1, x_2, \dot{x}_1, \dot{x}_2) + \sqrt{\epsilon} \sigma_1 \dot{\xi}(t), \\
\ddot{x}_2 + \omega_2^2 x_2 &= \epsilon f_{21}(x_1, x_2, \dot{x}_1, \dot{x}_2) + \epsilon^2 f_{22}(x_1, x_2, \dot{x}_1, \dot{x}_2) + \sqrt{\epsilon} \sigma_2 \dot{\xi}(t),
\end{align*}
\]

(2.1)

where \(\omega_1, \omega_2, \sigma_1, \sigma_2 \) are positive constants and \(\epsilon \) is a small positive parameter.

According to the averaging method we transform the state coordinates \(x = (x_1, x_2) \) into the variables \(a = (a_1, a_2) \) and \(\varphi=(\varphi_1, \varphi_1) \) by the change

\[
\begin{align*}
x_j &= a_j \cos \varphi_j, \\
\dot{x}_j &= -\omega_j \sin \varphi_j, \quad (j = 1, 2).
\end{align*}
\]

(2.2)
By using Ito differentiation formula [7] the system of equations (2.1) is transformed into the following system of equations

\begin{align*}
\dot{\alpha}_j &= \varepsilon A_{j1}(a, \varphi) + \varepsilon^2 A_{j2}(a, \varphi) - \sqrt{\varepsilon} \sigma_{j1} \frac{\sin \varphi_j}{\omega_j} \xi(t), \\
\dot{\varphi}_j &= \omega_j + \varepsilon B_{j1}(a, \varphi) + \varepsilon^2 B_{j2}(a, \varphi) - \sqrt{\varepsilon} \sigma_{j2} \frac{\cos \varphi_j}{\omega_j a_j} \xi(t), \quad (j = 1, 2)
\end{align*}

(2.3)

where it is denoted

\begin{align*}
A_{j1}(a, \varphi) &= - \frac{f_{j1}(a, \varphi)}{\omega_j} \sin \varphi_j + \frac{\sigma_{j1}^2 \cos^2 \varphi_j}{2 \omega_j^2 a_j}, \\
B_{j1}(a, \varphi) &= - \frac{f_{j1}(a, \varphi)}{\omega_j} \cos \varphi_j + \frac{\sigma_{j1}^2 \cos \varphi_j \sin \varphi_j}{\omega_j^2 a_j}, \quad (j = 1, 2), \\
A_{j2}(a, \varphi) &= - \frac{f_{j2}(a, \varphi)}{\omega_j} \sin \varphi_j, \quad B_{j2}(a, \varphi) = - \frac{f_{j2}(a, \varphi)}{\omega_j a_j} \cos \varphi_j.
\end{align*}

(2.4)

The Fokker-Planck (FP) equation for the stationary probability density function \(W(a, \varphi)\) takes the form (Anh, 1995)

\[\sum_{j=1}^{2} \omega_j \frac{\partial W}{\partial \varphi_j} = -\varepsilon [A_1, B_1]L[W] - \varepsilon^2 [A_2, B_2]L[W], \]

(2.5)

where the operators \([A_j, B_j]L[.]\), \(j=1, 2\) are defined as follows

\[[A_1, B_1]L[W] = \sum_{j=1}^{2} \left[\frac{\partial}{\partial a_j} (A_{j1}W) + \frac{\partial}{\partial \varphi_j} (B_{j1}W) \right] \\
- \sum_{j=1}^{2} \sum_{s=1}^{2} \left\{ - \frac{\partial^2}{\partial a_j \partial a_s} \left(\sigma_{j1} \sigma_{s1} \sin \varphi_j \sin \varphi_s W \right) \right. \\
+ \left. \frac{\partial^2}{\partial a_j \partial \varphi_s} \left(\sigma_{j1} \sigma_{s2} \cos \varphi_j \cos \varphi_s W \right) \right\} \]

(2.6)

\[[A_2, B_2]L[W] = \sum_{j=1}^{2} \left[\frac{\partial}{\partial a_j} (A_{j2}W) + \frac{\partial}{\partial \varphi_j} (B_{j2}W) \right]. \]

(2.7)

We seek the solution of (2.5) in the form

\[W(a, \varphi) = W_0(a, \varphi) + \varepsilon W_1(a, \varphi) + \varepsilon^2 W_2(a, \varphi) + \ldots \]

(2.8)

Substituting (2.8) into (2.5) and comparing the coefficients of like power of \(\varepsilon\) we obtain

\[\varepsilon^0 : \sum_{j=1}^{2} \omega_j \frac{\partial W_0}{\partial \varphi_j} = 0, \]

(2.9)

\[\varepsilon^1 : \sum_{j=1}^{2} \omega_j \frac{\partial W_1}{\partial \varphi_j} = -[A_1, B_1]L[W_0], \]

(2.10)
The Influence of Nonlinear Terms in Mechanical Systems Having Two Degrees of Freedom

\[\varepsilon^2 : \sum_{j=1}^{2} \omega_j \frac{\partial W_2}{\partial \varphi_j} = -\{[A_2, B_2]L[W_0] + [A_1, B_1]L[W_1]\}, \quad (2.11) \]

From (2.9) we get

\[W_0 = W_0(a). \quad (2.12) \]

The arbitrary integration function \(W_0(a) \) must be chosen from the condition for the function \(W_1(a, \varphi) \) to be periodic to \(\varphi \).

Thus, we get from (2.10),

\[< [A_1, B_1]L[W_0(a)] > = 0, \quad (2.13) \]

where \(< > \) is the averaging operator with respect to \(\varphi \)

\[< > = \frac{1}{(2\pi)^2} \int_0^{2\pi} \int_0^{2\pi} \cdot d\varphi_1 d\varphi_2. \quad (2.14) \]

Substituting (2.6) into (2.13) yields

\[\sum_{j=1}^{2} \left\{ \frac{\partial}{\partial a_j}(< A_{j1} > W_0(a)) - \frac{\sigma_j^2}{4\omega_j^2} \frac{\partial^2 W_0(a)}{\partial a_j^2} \right\} = 0. \quad (2.15) \]

The second term \(W_1(a, \varphi) \) in (2.8) is determined from (2.10) using Fourier expansion

\[[A_1, B_1]L[W_0(a)] = W_0(a) \sum_{l_1} \sum_{l_2} C_{l_1 l_2}(a) \exp[i(l_1 \varphi_1 + l_2 \varphi_2)], \quad (2.16) \]

where

\[C_{l_1 l_2}(a) = \frac{1}{(2\pi)^2 W_0(a)} \int_0^{2\pi} \int_0^{2\pi} [A_1, B_1]L[W_0(a)] \exp[-i(l_1 \varphi_1 + l_2 \varphi_2)] d\varphi_1 d\varphi_2. \quad (2.17) \]

Substituting (2.16) into (2.10) we get

\[W_1(a, \varphi) = W_0(a) \left\{ W_{10}(a) + \sum_{l_1} \sum_{l_2} \frac{C_{l_1 l_2}}{l_1 \omega_1 + l_2 \omega_2} \exp[i(l_1 \varphi_1 + l_2 \varphi_2)] \right\}, \quad (2.18) \]

where \(l_1, l_2 \) are integers and

\[l_1 \omega_1 + l_2 \omega_2 \neq 0. \quad (2.19) \]

The arbitrary integration function \(W_{10}(a) \) must be chosen from the condition for the function \(W_2(a, \varphi) \) to be periodic to \(\varphi \). Similarly, we can find the third term \(W_2(a, \varphi) \) in (2.11).
3. APPLICATION

3.1. SAM of coefficients in FP equation

Now we apply the proposed procedure to Duffing system whose motion equations take the form

\[m_1 \ddot{x}_1 + c_1 x_1 = -\epsilon [2h_1 \dot{x}_1 + \beta_1 x_1^3] + \epsilon^2 [c_{12}(x_1 - x_2) + 2h_{12}(\dot{x}_1 - \dot{x}_2)] + \sqrt{\delta_1} \xi(t), \]
\[m_2 \ddot{x}_2 + c_2 x_2 = -\epsilon [2h_2 \dot{x}_2 + \beta_2 x_2^3] + \epsilon^2 [c_{12}(x_1 - x_2) + 2h_{12}(\dot{x}_1 - \dot{x}_2)] + \sqrt{\delta_2} \xi(t). \]

(3.1)

We represent the physical model of this system in Fig. 1. Where \(m_1, m_2 \) are masses, \(c_1, c_2, c_{12} \) are spring constants, \(h_1, h_2, h_{12} \) are damping coefficients, \(\beta_1, \beta_2, \delta_1, \delta_2 \) are positive constants and

\[R_1 = -\epsilon \beta_1 x_1^3 + \sqrt{\delta_1} \xi(t), \quad R_2 = -\epsilon \beta_2 x_2^3 + \sqrt{\delta_2} \xi(t). \]

(3.2)

The system of equations (3.1) can be written in the form

\[\ddot{x}_1 + \omega_1^2 x_1 = -\epsilon [2k_1 \dot{x}_1 + \gamma_1 x_1^3] - \epsilon^2 [q_1 (x_1 - x_2) + 2k_{11}(\dot{x}_1 - \dot{x}_2)] + \sqrt{\sigma_1} \xi(t), \]
\[\ddot{x}_2 + \omega_2^2 x_2 = -\epsilon [2k_2 \dot{x}_2 + \gamma_2 x_2^3] + \epsilon^2 [q_2 (x_1 - x_2) + 2k_{12}(\dot{x}_1 - \dot{x}_2)] + \sqrt{\sigma_2} \xi(t), \]

(3.3)

where

\[\omega_1^2 = \frac{c_1}{m_1}, \quad \omega_2^2 = \frac{c_2}{m_2}, \quad k_1 = \frac{h_1}{m_1}, \quad k_2 = \frac{h_2}{m_2}, \quad \gamma_1 = \frac{1}{m_1}, \quad \gamma_2 = \frac{1}{m_2}, \]
\[q_1 = \frac{c_{12}}{m_1}, \quad q_2 = \frac{c_{12}}{m_2}, \quad k_{11} = \frac{h_{12}}{m_1}, \quad k_{12} = \frac{h_{12}}{m_2}, \quad \sigma_1 = \frac{1}{m_1}, \quad \sigma_2 = \frac{1}{m_2}. \]

(3.4)

In this case we have

\[f_{11} = -2k_1 \dot{x}_1 - \gamma_1 x_1^3; \quad f_{12} = -q_1 (x_1 - x_2) - 2k_{11}(\dot{x}_1 - \dot{x}_2); \]
\[f_{21} = -2k_2 \dot{x}_2 - \gamma_2 x_2^3; \quad f_{22} = q_2 (x_1 - x_2) + 2k_{12}(\dot{x}_1 - \dot{x}_2). \]

(3.5)

From (2.4), using (2.2) and (3.5), after calculations we obtain

\[A_{11} = -2k_1 a_1 \sin^2 \varphi_1 + \frac{\gamma_1}{\omega_1^3} \sin \varphi_1 \cos^2 \varphi_1 + \frac{\sigma_1^2}{2\omega_1^2 a_1}, \]
\[A_{21} = -2k_2 a_2 \sin^2 \varphi_2 + \frac{\gamma_2}{\omega_2^3} \sin \varphi_2 \cos^2 \varphi_2 + \frac{\sigma_2^2}{2\omega_2^2 a_2}. \]
From (3.6) and (3.7), using (2.14) we get

\[B_{11} = -k_1 \sin 2\varphi_1 + \frac{\gamma_1 a_1^2}{\omega_1} \cos^4 \varphi_1 - \frac{\sigma_1^2}{2\omega_1^2 a_1^2} \sin 2\varphi_1, \]
\[B_{21} = -k_2 \sin 2\varphi_2 + \frac{\gamma_2 a_2^2}{\omega_2} \cos^4 \varphi_2 - \frac{\sigma_2^2}{2\omega_2^2 a_2^2} \sin 2\varphi_2, \]
\[A_{12} = \frac{q_1}{\omega_1} (a_1 \cos \varphi_1 - a_2 \cos \varphi_2) \sin \varphi_1 + \frac{2k_{11}}{\omega_1 a_1} (-\omega_1 a_1 \sin^2 \varphi_1 + \omega_2 a_2 \sin \varphi_1 \sin \varphi_2), \]
\[A_{22} = \frac{q_2}{\omega_2} (-a_1 \cos \varphi_1 + a_2 \cos \varphi_2) \sin \varphi_2 + \frac{2k_{12}}{\omega_2 a_2} (-\omega_2 a_2 \sin^2 \varphi_2 + \omega_1 a_1 \sin \varphi_1 \sin \varphi_2), \]
\[B_{12} = \left[\frac{q_1}{\omega_1 a_1} (a_1 \cos \varphi_1 - a_2 \cos \varphi_2) + \frac{2k_{11}}{\omega_1 a_1} (-\omega_1 a_1 \sin \varphi_1 + \omega_2 a_2 \sin \varphi_2) \right] \cos \varphi_1, \]
\[B_{22} = \frac{q_2}{\omega_2 a_2} \left[(-a_1 \cos \varphi_1 + a_2 \cos \varphi_2) + \frac{2k_{12}}{\omega_2 a_2} (-\omega_2 a_2 \sin \varphi_2 + \omega_1 a_1 \sin \varphi_1) \right] \sin \varphi_2, \]
\[\text{(3.7)} \]

From (3.6) and (3.7), using (2.14) we get

\[< A_{11} > = -k_1 a_1 + \frac{\sigma_1^2}{4\omega_1^2 a_1}; \quad < A_{21} > = -k_2 a_2 + \frac{\sigma_2^2}{4\omega_2^2 a_2}; \]
\[< A_{12} > = -k_{11} a_1; \quad < A_{22} > = -k_{12} a_2. \]
\[\text{(3.8)} \]

In this case, from (2.5) the averaged FP equation takes the form

\[[< A_1, B_1 >]L[W(a)] + \varepsilon[< A_2, B_2 >]L[W(a)] = 0, \]
\[\text{(3.9)} \]

where it is denoted

\[[< A_1, B_1 >]L[W(a)] = \sum_{j=1}^{2} \left[\frac{\partial}{\partial a_j} (< A_{j1} > W(a)) + \frac{\partial}{\partial \varphi_j} (< B_{j1} > W(a)) \right]
- \sum_{j=1}^{2} \sum_{s=1}^{2} \left\{ \frac{\partial^2}{\partial a_j \partial \varphi_s} \left[\frac{\sigma_j \sigma_s \sin \varphi_j \sin \varphi_s}{2\omega_j \omega_s} \right] W(a) \right\} + \frac{\partial^2}{\partial \varphi_j \partial \varphi_s} \left[\frac{\sigma_j \sigma_s \cos \varphi_j \cos \varphi_s}{2a_j a_s \omega_j \omega_s} \right] W(a) \right\}, \]
\[\text{(3.10)} \]

From (3.9), noting (3.8) and (3.10) we have the FP equation for the probability density function \(W(a) \) in the form

\[\sum_{j=1}^{2} \left[\frac{\partial}{\partial a_j} \left(-k_j a_j + \frac{\sigma_j^2}{4\omega_j^2 a_j} - \varepsilon k_{1j} a_j \right) W(a) \right] - \frac{\sigma_j^2}{4\omega_j^2} \frac{\partial^2 W(a)}{\partial a_j^2} = 0. \]
\[\text{(3.11)} \]
This equation gives the solution

\[W(a) = C a_1 a_2 \exp \left\{ -\frac{2k_1 \omega_1^2}{\sigma_1^2} a_1^2 - \frac{2k_2 \omega_2^2}{\sigma_2^2} a_2^2 - \epsilon \left(\frac{2k_1 \omega_1^2}{\sigma_1^2} a_1^2 + \frac{2k_2 \omega_2^2}{\sigma_2^2} a_2^2 \right) \right\}, \tag{3.12} \]

\((C = \text{const}).\)

The condition

\[\int_{0}^{2\pi} \int_{0}^{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} W(a) da_1 da_2 d\varphi_1 d\varphi_2 = 1, \]

gives

\[C = \frac{(p_1 + \varepsilon \alpha_1)(p_2 + \varepsilon \alpha_2)}{\pi^2}, \tag{3.13} \]

where

\[p_1 = \frac{2k_1 \omega_1^2}{\sigma_1^2}, \quad p_2 = \frac{2k_2 \omega_2^2}{\sigma_2^2}, \quad \alpha_1 = \frac{2k_1 \omega_1^2}{\sigma_1^2}, \quad \alpha_2 = \frac{2k_2 \omega_2^2}{\sigma_2^2}. \tag{3.14} \]

It can be seen from (3.12) that the effect of the nonlinear terms \(\varepsilon \beta_1 x_1^3\) and \(\varepsilon \beta_2 x_2^3\) is lost during the conventional averaging procedure and we can not show their effect in the approximation (3.12) of the density probability function \(W(a, \varphi)\). So, in order to overcome this insufficiency we need to determine the higher approximate solutions to the FP equation by using the higher SAM.

3.2. Higher approximate solutions to FP equation

We determine the second approximate solution of FP equation (2.5) for the Duffing system (3.1).

Substituting (3.8) into (2.15) yields

\[W_0(a) = C a_1 a_2 \exp \left\{ -\frac{2k_1 \omega_1^2}{\sigma_1^2} a_1^2 - \frac{2k_2 \omega_2^2}{\sigma_2^2} a_2^2 \right\}, \quad (C = \text{const}). \tag{3.15} \]

Substituting (3.15) into (2.10) we get

\[\sum_{j=1}^{2} \omega_j \frac{\partial W_1}{\partial \varphi_j} = -[A_1, B_1]L[W_0(a)]. \tag{3.16} \]

Using (2.6), (3.6) and expanding the right-hand side of (3.16) into the double Fourier series of \(\varphi_1, \varphi_2\), after calculations we have the equation for \(W_{11}(a, \varphi)\)

\[\frac{\partial W_{11}}{\partial \varphi_1} + \omega_2 \frac{\partial W_{11}}{\partial \varphi_2} = 2k_1 \cos \varphi_1 + 2k_2 \cos \varphi_2 + \frac{k_1 \omega_1 \gamma_1}{2 \sigma_1^4} a_1^4 (2 \sin \varphi_1 + \sin 4 \varphi_1) \]
\[+ \frac{k_2 \omega_2 \gamma_2}{2 \sigma_2^4} a_2^4 (2 \sin \varphi_2 + \sin 4 \varphi_2) + \frac{s(a)}{2} \cos(\varphi_1 - \varphi_2) + \frac{s(a)}{2} \cos(\varphi_1 + \varphi_2). \tag{3.17} \]
Using the principle of superposition we get the solution of equation (3.17)

\[
W_{11}(a, \varphi) = \frac{k_1}{\omega_1} \sin 2\varphi_1 + \frac{k_2}{\omega_2} \sin 2\varphi_2 - \frac{k_1\gamma_1}{8\sigma_1^2} a_1^4 (4 \cos 2\varphi_1 + \cos 4\varphi_1) \\
- \frac{k_2\gamma_2}{8\sigma_2^2} a_2^4 (4 \cos 2\varphi_2 + \cos 4\varphi_2) + \frac{\omega_1}{\omega_2^2 - \omega_1^2} s(a) \cos \varphi_1 \sin \varphi_2
\]

(3.18)

where

\[
s(a) = \frac{\sigma_1\sigma_2}{\omega_1\omega_2 a_1 a_2} - \frac{2k_1\omega_1\sigma_2 a_2}{\omega_2\sigma_1 a_1} - \frac{2k_2\omega_2\sigma_1 a_1}{\omega_1\sigma_2 a_2} + \frac{16k_1k_2\omega_1\omega_2 a_1 a_2}{\sigma_1\sigma_2 a_1 a_2}.
\]

(3.19)

Substituting (3.15) and (3.18) into (2.11) we have the equation for the arbitrary function \(W_{10}(a)\) in the form

\[
\sum_{j=1}^{2} \frac{\partial}{\partial a_j} \left(< A_{j1} > W_0 W_{10} - \sum_{j=1}^{2} \frac{\partial^2}{\partial a_j^2} \left(\frac{\sigma_j^2}{4\omega_j^4} W_0 W_{10} \right) \right) = \sum_{j=1}^{2} \frac{\partial^2}{\partial a_j^2} \left(\frac{\sigma_j^2}{2\omega_j^2} < W_0 W_{11} \sin^2 \varphi_j > \right)
\]

\[- \sum_{j=1}^{2} \frac{\partial}{\partial a_j} \left(< A_{j2} W_0 W_{11} > \right) - \sum_{j=1}^{2} \frac{\partial}{\partial a_j} \left(< A_{j2} W_0 > \right).
\]

(3.20)

Substituting \(A_{j1}\) in (3.6), \(A_{j2}\) in (3.7), \((j = 1, 2)\) and \(W_{11}(a, \varphi)\) in (3.18) into (3.20), after calculations we have the equation (3.20) in the form

\[
\sum_{j=1}^{2} \frac{\partial}{\partial a_j} \left[\frac{\sigma_j^2}{4\omega_j^4} \frac{\partial W_{10}}{\partial a_j} \right] =
\]

\[- \sum_{j=1}^{2} \left\{ \frac{\partial^2}{\partial a_j^2} \left(\frac{k_j\gamma_j}{16\omega_j^4} a_j^4 W_0(a) + \frac{\partial}{\partial a_j} \left[\frac{k_j\gamma_j}{4\sigma_j^4} W_0(a) \right] + \frac{\partial}{\partial a_j} [k_j a_j W_0(a)] \right) \right\}.
\]

(3.21)

The solution \(W_{10}(a)\) of equation (3.21) can be found in the form

\[
W_{10}(a) = W_{01}(a) + W_{02}(a).
\]

(3.22)

Substituting (3.22) into (3.21), after calculations we get

\[
W_{10}(a) = -\alpha_1 a_1^2 - \alpha_2 a_2^2 - \alpha_1 a_1^4 - \alpha_2 a_2^4,
\]

(3.23)

where \(\alpha_1, \alpha_2\) are defined in (3.14) and

\[
\alpha_{11} = \frac{3k_1\gamma_1}{8\sigma_1^2}, \quad \alpha_{22} = \frac{3k_2\gamma_2}{8\sigma_2^2}.
\]

(3.24)

Hence, using the second approximate solution to the FP equation (2.5) for the Duffing system (3.1) takes the form

\[
W(a, \varphi) = W_0(a) \left\{ 1 + \varepsilon [W_{10}(a) + W_{11}(a, \varphi)] \right\},
\]

(3.25)

where \(W_0(a), W_{11}(a, \varphi)\) and \(W_{10}(a)\) are defined in (3.15), (3.18) and (3.23), respectively. It is seen from (3.18) and (3.23) that the effect of the nonlinear terms \(\varepsilon \beta_1 x_1^4\) and \(\varepsilon \beta_2 x_2^4\) is shown in the formula (3.25).

From the normalization condition
\[
\int_0^{2\pi} \int_0^{2\pi} \int_0^{\infty} W(a, \varphi) da_1 da_2 d\varphi_1 d\varphi_2 = 1,
\]
we get
\[
C = \frac{p_1^2 p_2^2}{\pi^2 [p_1 p_2^2 - \varepsilon (\alpha_1 p_1^2 + \alpha_2 p_1 p_2 + \alpha_{11} p_2^2 + \alpha_{22} p_1^2)]}. \tag{3.26}
\]

Now we find the approximate mean squares \(E[x_1^2]\) and \(E[x_2^2]\) for the cases of the classical and higher SAM.

In the case of the classical SAM we have
\[
E_c[x_1^2] = \int_0^{2\pi} \int_0^{2\pi} \int_0^{\infty} x_1^2 W(a) da_1 da_2 d\varphi_1 d\varphi_2. \tag{3.27}
\]
Substituting \(x_j, (j=1, 2)\) in (2.2), \(W(a)\) in (3.12) and \(C\) in (3.13) into (3.27), after calculations we have
\[
E_c[x_1^2] = \frac{1}{2(p_1 + \varepsilon \alpha_1)} = \frac{1}{2p_1} - \varepsilon \frac{\alpha_1}{p_1^2} + \varepsilon^2 \ldots \tag{3.28}
\]
Similarly, we have
\[
E_c[x_2^2] = \frac{1}{2(p_2 + \varepsilon \alpha_2)} = \frac{1}{2p_2} - \varepsilon \frac{\alpha_2}{p_2^2} + \varepsilon^2 \ldots \tag{3.29}
\]
where \(p_1, p_2, \alpha_1\) and \(\alpha_2\) are defined in (3.14).

In the case of the higher SAM we have
\[
E_h[x_1^2] = \int_0^{2\pi} \int_0^{2\pi} \int_0^{\infty} x_1^2 W(a, \varphi) da_1 da_2 d\varphi_1 d\varphi_2, \quad (j = 1, 2). \tag{3.30}
\]
Substituting \(x_j, (j=1, 2)\) in (2.2), \(W(a, \varphi)\) in (3.25) and \(C\) in (3.26) into (3.30), noting (3.24), after calculations we have
\[
E_h[x_1^2] = \frac{p_1^2 p_2^2}{2p_1 [p_1^3 p_2^3 - \varepsilon (\alpha_1 p_1^2 + \alpha_2 p_1 p_2 + 10 \alpha_{11} p_2^2 + 2 \alpha_{22} p_1^2)]}. \tag{3.31}
\]
Expanding the right-hand side of (3.31) into the power series of \(\varepsilon\) we get
\[
E[x_1^2] = \frac{1}{2p_1} - \varepsilon \frac{\alpha_1}{2p_1^2} + \frac{9 \alpha_{11}}{2p_1^3} + \frac{\alpha_{22}}{2p_1^2 p_2} + \varepsilon^2 \ldots \tag{3.32}
\]
Similarly, we have
\[
E[x_2^2] = \frac{1}{2p_2} - \varepsilon \frac{\alpha_2}{2p_2^2} + \frac{9 \alpha_{22}}{2p_2^3} + \frac{\alpha_{11}}{2p_1 p_2^2} + \varepsilon^2 \ldots \tag{3.33}
\]
Hence, the second approximate solution to the FP equation, the effect of the nonlinear terms \(\varepsilon \beta_1 x_1^3\) and \(\varepsilon \beta_2 x_2^3\) is obtained in the formulae (3.32) and (3.33). It is seen from (3.32) and (3.33) that the nonlinear terms \(\varepsilon \beta_1 x_1^3\) and \(\varepsilon \beta_2 x_2^3\) reduce the mean squares \(E[x_1^2]\) and \(E[x_2^2]\).

In the case \(\beta_1 = \beta_2 = 0\) (linear system) we have
\[
E[x_1^2] = \frac{1}{2p_1} - \varepsilon \frac{\alpha_1}{2p_1^2} + \varepsilon^2 \ldots, \quad E[x_2^2] = \frac{1}{2p_2} - \varepsilon \frac{\alpha_2}{2p_2^2} + \varepsilon^2 \ldots \tag{3.34}
\]
which equal to the mean squares in (3.28), (3.29) obtained by the classical SAM.

We consider the case where \(m_1 = m_2 = c_1 = c_2 = \delta_1 = \delta_2 = 1, \beta_1 = \beta_2 = \beta, \)
\(h_1 = h_2 = h_{12} = c_{12} = 0.5. \) The mean square responses corresponding to some values of
the coefficients \(\beta \) are given in Table 1. It is seen that the mean square responses decrease
when increasing the coefficient \(\beta \).

<table>
<thead>
<tr>
<th>(N)</th>
<th>(\beta)</th>
<th>(E[x_1^2] = E[x_2^2])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>(0.5 - 0.5e + e^2)</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>(0.5 - 0.6875e + e^2)</td>
</tr>
<tr>
<td>3</td>
<td>0.5</td>
<td>(0.5 - 0.96875e + e^2)</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>(0.5 - 1.4375e + e^2)</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>(0.5 - 2.375e + e^2)</td>
</tr>
</tbody>
</table>

4. CONCLUSION

For many years the higher order stochastic averaging method has been widely used
for investigating single-degree-of-freedom nonlinear systems subject to white and coloured
random noises. In this paper, the method is applied to the nonlinear vibration systems
having two degrees of freedom under white noise excitations. The application to the
Duffing system is considered and shows the effect of the non-linear terms to the mean
square responses of the system.

Acknowledgement. Support from the Council for natural sciences of Vietnam is
gratefully acknowledged.

REFERENCES

1. N. D. Anh, Higher order approximate solutions in stochastic averaging method, In
2. N. D. Anh, Higher order averaging method of coefficients in Fokker-Planck equation,
In special volume: Advances in Nonlinear Structural Dynamics of SADHANA, Indian
3. N. D. Anh and N. D. Tinh, Higher order averaging solutions for Van-Der-Pol oscillator,
5. S. T. Ariaratnam, D. S. F. Tam, Random vibration and stability of a linear paramet-
6. R. A. Ibrahim, Parametric Random Vibration, (Hertfordshire New York: Research Stud-
7. A. Mitropolskii Iu, N. V. Dao, N. D. Anh, Nonlinear Oscillations in Systems of Arbi-
8. J. R. Red-Horse, Spanos P. T. D., A generalization to stochastic averaging in random

Received March 20, 2006
Revised May 18, 2006

ÁNH HƯỞNG CỦA SỐ HẠNG PHI TUYỂN TRONG CÁC HỆ CƠ HỌC HAI BẠC TỰ DO

Phương pháp trung bình ngẫu nhiên bậc nhất được áp dụng rộng rãi đối với các hệ dao động phi tuyến chịu kích động ngẫu nhiên dạng ồn trầm và ồn màu. Tuy nhiên, hiệu ứng của nhiều số hạng phụ tuyến bị biến mất do kết quả của phép lấy trung bình. Để khắc phục những điểm trên phương pháp trung bình ngẫu nhiên bậc cao được phát triển. Trong bài báo, phương pháp được trình bày đối với hệ phi tuyến yếu hai bậc tự do chịu kích động ngẫu nhiên dạng ồn trầm. Sau đó phương pháp được áp dụng để xác định nghiệm xấp xỉ bậc hai của phương trình Fokker-Planck đối với hệ dạng Duffing.