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Abstract. Dynamic response analysis of tunnel with elastic foundation subjected to the
load such as the hydrostatic pressure, seismic or moving load is an important but compli-
cate problem in transport engineering due to increasing of traffic volume. This paper is
devoted to study dynamic response of a tunnel surrounded by elastic foundation under
moving vehicle loads by using the finite element method (FEM). The numerical results
were then validated by an experimentation on a real structure.

Keywords: Tunnel, moving load, dynamic analysis, experimental testing.

1. INTRODUCTION

Möller et al. [1], Vermeer et al. [2], investigated tunnel structures subjected to static
loads in the framework of 3D model and validated then by experimental results. By
using finite element method, Hyon et al. [3], Sramoon et al. [4], Hussein and Hunt [5],
the tunnel structures subjected to moving load were analyzed by Shi et al. [6], Yang et
al. [7], Clouteau and Degrande [8] using three dimensions model. In the latter studies the
moving load is equivalently reduced to an immobile dynamic load on the pavement and
three dimension model for tunnel with foundation has not been considered.

This paper is devoted to study dynamic response of tunnel and foundation in three
dimension model subjected to moving vehicle loads. First, the governing equations are
derived by using the finite element procedure. Then, the system’s dynamic response is
computed by using the Newmark’s method and MATLAB program. Finally, an experi-
mental test on the reinforced concrete double tunnel in the Lang-Hoa Lac highway was
carried out to validate the numerical model and results.
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2. FINITE ELEMENT FORMULATION AND THE GOVERNING EQUATIONS

Consider a double tunnel with pavement-partition wall-arc of arch surrounded by
foundation subjected to moving loads along the longitudinal direction of tunnel (Fig. 1).
Objective is to determine the dynamic responses of the tunnel skin by finite element
method. For finite element model formulation the following assumptions are made: Ma-
terials of the system are linear-elastic; load and pavement are not speared in the activity
duration of system; tunnel skin and foundation simultaneously work; bindings are abso-
lute and systems work in space model.
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Fig.1. Present problem model 

2.1. Finite element model of tunnel-foundation system 
2.1.1. Elements for pavement and partition wall 

Pavement plate and partition wall (arch tunnel case) or pavement plate, partition wall and 
tunnel roof (case of tunnel have not arch) are described by bending rectangular four-node 
elements (Fig.2). Arbitrary point in the element has positions (x,y) in global coordinate and 
positions (r,s) in local coordinate [14]. Assume that the thickness of plate element h is a 
constant and the conditions of Reissner - Mindlin plate theory are satisfied. 
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Fig. 2. Global and local coordinates of 4-node element 

In that case displacements u, v and w at an any point (x,y,z) along x, y and z directions [13], 
[14] are defined as 
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Fig. 1. Model of tunel-foundation system

2.1. Finite element model of tunnel-foundation system
2.1.1. Elements for pavement and partition wall

Pavement plate and partition wall (arch tunnel case) or pavement plate, partition
wall and tunnel roof (case of tunnel having not arch) are described by bending rectan-
gular four-node elements (Fig. 2). Arbitrary point in the element has positions (x, y) in
global coordinate and positions (r, s) in local coordinate [9]. Assume that the thickness
of plate element h is a constant and the conditions of Reissner-Mindlin plate theory are
satisfied.

In that case displacements u, v and w at an any point (x, y, z) along x, y and z direc-
tions [9, 10] are defined as

u (x, y, z, t) = u0 (x, y, t) + zθy (x, y, t) ,
v (x, y, z, t) = v0 (x, y, t)− zθx (x, y, t) ,
w (x, y, z, t) = w0 (x, y, t) ,

(1)

where u0, v0, w0 are the displacements of midplane and θx, θy - rotations of normal about
the y and x axes, respectively. The strain vector is presented in the form{

εp
}
=
{{

εx εy γxy
} {

γxz γyz
}}T

=
{{

εb}T {εs}T
}T

, (2)
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2.1. Finite element model of tunnel-foundation system 

2.1.1. Elements for pavement and partition wall 

Pavement plate and partition wall (arch tunnel case) or pavement plate, partition wall and 

tunnel roof (case of tunnel have not arch) are described by bending rectangular four-node

elements (Fig.2). Arbitrary point in the element has positions (x,y) in global coordinate and

positions (r,s) in local coordinate [14]. Assume that the thickness of plate element h is a 

constant and the conditions of Reissner - Mindlin plate theory are satisfied. 
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where{
εb
}
=

{
∂u0

∂x
∂v0

∂y

(
∂u0

∂y
+

∂v0

∂x

)}T

+ z
{

∂θy

∂x
−∂θx

∂y

(
∂θy

∂x
− ∂θx

∂y

)}T

= {ε0}+ z{κ},

(3)

{εs} =
{

γxz γyz
}T

=

{
∂w0

∂x
+ θy

∂w0

∂y
− θx

}T

,

{κ} =
{

kx ky kxy
}T

=

{
∂θy

∂x
−∂θx

∂y

(
∂θy

∂x
− ∂θx

∂y

)}T

.

(4)

The constitutive equation can be written as

{σ}︸︷︷︸
5×1

=



{
σb
}

︸ ︷︷ ︸
3×1
{σs}︸︷︷︸
2×1

 =


[

Db
]

︸ ︷︷ ︸
3×3

[0]︸︷︷︸
3×2

[0]︸︷︷︸
2×3

[Ds]︸︷︷︸
2×2




{
εb
}

︸ ︷︷ ︸
3×1
{γs}︸︷︷︸
2×1

 , (5)

where
{

σb} is stress vector without shear deformation

{
σb
}
=

σx
σy
τxy

 =
E

1− ν2

1 ν 0
ν 1 0

0 0
1− ν

2


 εx

εy
γxy

 =
[

Db
] {

εb
}
=
[

Db
]
({ε0}+ z{κ}) ,

(6)
{σs} is stress vector of shear stress

{σs} =
{

τxz
τyz

}
= G

{
γxz
γyz

}
=

E
2 (1 + ν)

[
1 0
0 1

]{
γxz
γyz

}
= [Ds] {εs} , (7)

with E is elastic modulus of longitudinal deformation, ν is Poisson ratio.
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Using Eqs. (6), (7) the internal force vector
{

σif
}

=
{

Mx My Mxy Qx Qy
}T

can be calculated as

{
Mx My Mxy

}T
=

h
2∫

− h
2

z

σx
σy
τxy

 dz =
[

Db
] h

2∫
− h

2

z ({ε0}+ z{κ}) dz =
h3

12

[
Db
]
{κ},

{
Qx Qy

}T
=

h
2∫

− h
2

[Ds] {εs} dz = αh [Ds] {εs} .

So that one obtains {
σif
}
= [Dcs] {εcs} , (8)

where [Dcs] =

 h3

12
[
Db] [0]

[0] αh [Ds]

- strain matrix, {εcs} =
{

kx ky kxy γxz γyz
}T is

the vector of curvatures and shear strains, α is the shear strain correction factor, usually
α = 5/6.

Accordingly to the FEM procedure, the displacements of a point of element are
represented as

w =
4

∑
i=1

Niwi, θx =
4

∑
i=1

Niθxi, θy =
4

∑
i=1

Niθyi, (9)

where wi, θxi, θyi are displacements of w, θx, θy at ith node, respectively, Ni are shape
functions. One has

{εcs}e︸ ︷︷ ︸
5×1

= [B]e︸︷︷︸
5×12

{q}e︸︷︷︸
12×1

=
4

∑
i=1

[Bi]︸︷︷︸
5×3

{qi}︸︷︷︸
3×1

. (10)

where [B]e is matrix for internal force determination, {q}e︸︷︷︸
12×1

=
{
{q1}T {q2}T {q3}T {q4}T

}T

e

is vector of node displacement, with {qi} =
{

wi θxi θyi
}T

(i = 1, 2, 3, 4).
Substituting (10) into (8) leads to{

σif
}

︸ ︷︷ ︸
5×1

=
4

∑
i=1

[DcsBi]︸ ︷︷ ︸
5×3

{qi}︸︷︷︸
3×1

, (11)

where
[DcsBi] = [DcsBi]

b + [DcsBi]
s , (12)

[DcsBi]
b , [DcsBi]

s are matrices corresponding to bending moment and shear force, respec-
tively [9].
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Using (10), (11) now we can calculate the total potential energy [9, 11] as

Πe =
1
2

∫
Ae

{
σif
}T

e
[Dcs]

{
σif
}

e
dAe −

∫
Ae

wp dAe =
1
2
{q}T

e [Kp]e {q}e − {q}
T
e {P}e , (13)

with

[Kp]e︸ ︷︷ ︸
12×12

=
∫
Ae

[B]T [Dcs] [B] dAe,

{P}e︸︷︷︸
12×1

=
∫
Ae

[N]T p dAe,
(14)

are stiffness matrix and node loading vector of the element, respectively, [N]︸︷︷︸
1×12

=

[
N1 0 0 N2 0 0 N3 0 0 N4 0 0

]
, p is pressure of intensity.

Kinetic energy Te of element is determined by [9, 11]

Te =
1
2

∫
Ve

ρ {u̇}T
e {u̇}e dVe

1
2
{q̇}T

e

∫
Ve

ρ [N]T [N] dVe

 {q̇}e =
1
2
{q̇}T

e [M]e {q̇}e , (15)

where ρ-mass density, {q̇}e-velocity vector, and

[Mp]e =
∫
Ve

ρ [N]T [N] dVe. (16)

2.1.2. Elements for arc of arch
Suppose that arc of arch is a shallow cylindrical shell that can be described by

4 nodes flat shell elements with 6 degrees of freedom ui, vi, wi, θxi, θyi, θzi per node and
vector of element node displacement

{
qsh
}

e
=
{
{qp}T

e
{

q f}T
e

{
qθ
}T

e

}T
, (17)

where {qp}e︸ ︷︷ ︸
12×1

=
{

w1 θx1 θy1 w2 θx2 θy2 . . . w4 θx4 θy4
}T-vector of node dis-

placement of bending plate element,
{

q f}
e =

{
u1 v1 u2 v2 u3 v3 u4 v4

}T-vector

of node displacement of tension or compression plate element
{

qθ
}

e =
{

θz1 θz2 θz3 θz4
}T

-vector of node twist surrounded the axis z of elements.
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Following [9, 12] the matrix of flat shell element stiffness can be derived as

[
Ksh
]

e︸ ︷︷ ︸
24×24

=



[Kp]e︸ ︷︷ ︸
12×12

[0]︸︷︷︸
12×8

[0]︸︷︷︸
12×4

[0]︸︷︷︸
8×12

[
K f
]

e︸ ︷︷ ︸
8×8

[0]︸︷︷︸
8×4

[0]︸︷︷︸
4×12

[0]︸︷︷︸
4×8

[Krz]e︸ ︷︷ ︸
4×4


, (18)

where: [Kp]e-stiffness matrix of bending plate element,
[
K f ]

e-stiffness matrix of tension
or compression plate element [9] and[Krz]e-stiffness matrix of twist plate element. In fact,
the components krz(i, j) of matrix [Krz]e are equal to zero (in the calculation these com-
ponents are considered to be very small, namely krz(i, j) = 10−3 ×max(k(m,n)), where
k(m,n) are components of matrices [Kp]e and

[
K f ]

e [9, 12]).
Similarly, mass matrix of flat shell element [9, 12] is

[
Msh

]
e︸ ︷︷ ︸

24×24

=



[Mp]e︸ ︷︷ ︸
12×12

[0]︸︷︷︸
12×8

[0]︸︷︷︸
12×4

[0]︸︷︷︸
8×12

[
M f
]

e︸ ︷︷ ︸
8×8

[0]︸︷︷︸
8×4

[0]︸︷︷︸
4×12

[0]︸︷︷︸
4×8

[Mrz]e︸ ︷︷ ︸
4×4


. (19)

Load vector, stiffness matrix and mass matrix of element shell in the global coordi-
nate system are determined as follow [12]{

qsh
}g

e
=
[

Tsh
]T {

qsh
}

e
,
[
Ksh
]g

e
=
[

Tsh
]T [

Ksh
]

e

[
Tsh
]

,
[

Msh
]g

e
=
[

Tsh
]T [

Msh
]

e

[
Tsh
]

,
(20)

where
[

Tsh
]

︸ ︷︷ ︸
24×24

is transformation coordinate system matrix.

2.1.3. Elements for foundation layers
For foundation layers, using the hexagonal 8-node element with 3 degrees of free-

dom of each node one can obtain the following relationship

{ε}e = [B] {q}e (21)

for strain vector {ε}e at a point of element and node displacement {q}e [9, 12]. In the
above equation the notations are introduced

{ε}e =
{

εx εy εz γxy γyz γzx
}T , [B] = [∂] [N] =

[
[B1] [B2] [B3] ... [B8]

]
,
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[N] is mode shape function matrix of element. Therefore, the stiffness matrix of element
is [12]

[K]e =
∫
Ve

[B]T [D] [B] dVe, (22)

with [D] is element material matrix. The mass load vector is determined by [12]

{P}e =
∫
Ve

[N]T {g} dV =
∫
Ve

[N]T
{

gx gy gz
}T dV, (23)

2.2. Modeling of vehicle movement on pavement plate
Let’s consider a four wheel vehicle modeled by 4-degree-of-freedom system which

moves on the pavement plate with the trajectory x = x(t), y = y(t) and velocity~v = ~v (t)
(see Fig. 3). The mass of vehicle body m is derived as absolute solid body and pavement
plate is springs with stiffness k f 1, k f 2, kr1, kr2 and damping elements c f , cr, respectively
(Fig. 4b, c). The inertia moment of vehicle body with center-of-mass G is J. The distances
from G to the front axle and rear axle are l f and lr, respectively. The position of vehicle
body is determined by parameters: vertical displacement u of center-of-mass G, rotation
displacement in plane xz, vertical displacement z f of front wheels, vertical displacement
zr of rear wheels. The considered system is 4-degree-of-freedom system [13]. Assumes
that vibration amplitude is small, vehicle body is in initial horizontal direction.
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Fig 3. Plate subjected to 4 degree of freedom vehicle load model 

At a time, vehicle body is subjected to gravity force P = mg, the exiting forces Fr, Ff, and 

inertia force mu, J  (Fig.4a). 
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Fig. 4. Applied forces of vehicle 

Equilibrium equation system of vehicle body is 

r f

r r f f

mu + F + F + mg = 0,

J - F l + F l = 0,
                        (24) 

where u is vertical acceleration,   is angular acceleration in the plane xz of vehicle body. The 

equilibrium equations for wheels and suspension are  

 

     

   

r1 1r 2r r1

r 2r r 2r r1 1r 2r r2 2r

r 2r r2 2r 2r r

k z z F

m z c z u k z z k z u 0,

c u z k u z F ,

  


          


       

r r

r r

l l

l l

     (25) 

 

     

   

f1 1f 2f f1

f 2f f 2f f1 1f 2f f 2 2f

f 2f f 2 2f 2f f

k z z F ,

m z c z u k z z k z u 0,

c u z k u z F .

  



          

          


f f

f f

l l

l l

     (26) 

where 2r is static deformation of spring with stiffness kr2 and 2f is static deformation of spring 

with stiffness kf2. 

 Combining (24), (25) and (26) leads to the differential equations for vibration of the systems 
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Equilibrium equation system of vehicle body is 
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where u is vertical acceleration,   is angular acceleration in the plane xz of vehicle body. The 
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where 2r is static deformation of spring with stiffness kr2 and 2f is static deformation of spring 

with stiffness kf2. 

 Combining (24), (25) and (26) leads to the differential equations for vibration of the systems 

(4- degree of freedom vehicle) 

(b) FEM model

Fig. 3. Plate subjected to 4-degree-of-freedom vehicle load model

At a time, the vehicle body is subjected to gravity force P = mg, exiting forces
Fr, Ff , and inertia forces mü, J ϕ̈ (Fig. 4a).

The equilibrium equation system of vehicle body is written as follows

mü + Fr + Ff + mg = 0,
J ϕ̈− Frlr + Ff l f = 0. (24)
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Equilibrium equation system of vehicle body is 
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where 2r is static deformation of spring with stiffness kr2 and 2f is static deformation of spring 
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Equilibrium equation system of vehicle body is 
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mu + F + F + mg = 0,
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where u is vertical acceleration,   is angular acceleration in the plane xz of vehicle body. The 
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where 2r is static deformation of spring with stiffness kr2 and 2f is static deformation of spring 

with stiffness kf2. 
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Equilibrium equation system of vehicle body is 
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where u is vertical acceleration,   is angular acceleration in the plane xz of vehicle body. The 

equilibrium equations for wheels and suspension are  
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where 2r is static deformation of spring with stiffness kr2 and 2f is static deformation of spring 

with stiffness kf2. 

 Combining (24), (25) and (26) leads to the differential equations for vibration of the systems 

(4- degree of freedom vehicle) 

(c) Wheel system,
rear suspension

Fig. 4. Applied forces of vehicle

where ü is vertical acceleration, ϕ̈ is angular acceleration in the plane xz of vehicle body.
The equilibrium equations for wheels and suspension are

kr1 (z1r − z2r) = Fr1,
mr z̈2r + cr (ż2r − u̇ + ϕ̇lr)− kr1 (z1r − z2r) + kr2 (z2r − u + ϕlr) = 0,
cr (u̇− ż2r − ϕ̇lr) + kr2 (u− z2r − ϕlr − δ2r) = Fr.

(25)

k f 1
(
z1 f − z2 f

)
= Ff 1,

m f z̈2 f + c f
(
ż2 f − u̇ + ϕ̇l f

)
− k f 1

(
z1 f − z2 f

)
+ k f 2

(
z2 f − u + ϕl f

)
= 0,

c f
(
u̇− ż2 f + ϕ̇l f

)
+ k f 2

(
u− z2 f + ϕl f − δ2 f

)
= Ff .

(26)

where δ2r is static deformation of spring with stiffness kr2 and δ2 f is static deformation of
spring with stiffness k f 2.

Combining (24), (25) and (26) leads to the differential equations for vibration of the
systems (4-degree-of-freedom vehicle)

mü+cr(u̇− ż2r − ϕ̇lr)+c f
(
u̇− ż2 f + ϕ̇l f

)
+kr2(u− z2r − ϕlr)+k f 2

(
u− z2 f + ϕl f

)
=0,

J ϕ̈−lrcr(u̇−ż2r− ϕ̇lr)+l f c f
(
u̇−ż2 f + ϕ̇l f

)
−lrkr2(u−z2r−ϕlr)+l f k f 2

(
u−z2 f +ϕl f

)
=0,

mr z̈2r − cr (u̇− ż2r − ϕ̇lr) + kr1 (z2r − z1r)− kr2 (u− z2r − ϕlr) = 0,
m f z̈2 f − c f

(
u̇− ż2 f + ϕ̇l f

)
+ k f 1

(
z2 f − z1 f

)
− k f 2

(
u− z2 f + ϕl f

)
= 0,

(27)
where z1r, z1 f are vertical displacements of pavement plate at position of contact with the
wheels and z2r, z2 f are displacements of mass mr and m f , respectively.

Let (ξ1, η1) and (ξ2, η2) be coordinates of the contact points where loads Fr1 and Fr2
are applied to elements e1 and e2 of pavement plate. The global coordinate systems of the
plate elements are (x1 = x01 + ξ1, y1 = y01 + η1) and (x2 = x02 + ξ2, y2 = y02 + η2). Using
the representation (9) for flexural displacement we obtain

z1r = [Ne1 (ξ1, η1)] {qe1} = [N (ξ1, η1)] [G]−1 {qe1} ,
z1 f = [Ne2 (ξ2, η2)] {qe2} = [N (ξ2, η2)] [G]−1 {qe2} ,

(28)
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where [G]︸︷︷︸
12×12

is matrix of geometrical properties for the elements [9]. Substituting (28) into

(27), leads to the equation

[Mv] {q̈v}+ [Cv] {q̇v}+ [Kv] {qv} = {Fv} , (29)

where vectors of acceleration, velocity and displacement {q̈v} , {q̇v} , {qv}; matrices of
mass, damping and stiffness [Mv], [Cv], [Kv] and load vector {Fv} are determined, re-
spectively, as

{qv} =
{

u ϕ z2r z2 f
}T , [Mv] =


m 0 0 0
0 J 0 0
0 0 mr 0
0 0 0 m f

 , (30)

[Cv] =


cr + c f l f c f − lrcr −cr −c f

l f c f − lrcr l2
r cr + l2

f c f lrcr −l f c f

−cr lrcr cr 0
−c f −l f c f 0 c f

 , {Fv} =


0
0

k1r [N (ξ1, η1)] [G]−1 {qe1}
k1 f [N (ξ2, η2)] [G]−1 {qe2}

 ,

(31)

[Kv] =


kr2 + k f 2 l f k f 2 − lrkr2 −kr2 −k f 2

l f k f 2 − lrkr2 l2
r kr2 + l2

f k f 2 lrkr2 −l f k f 2

−kr2 lrkr2 kr1 + kr2 0
−k f 2 −l f k f 2 0 k f 1 + k f 2

 . (32)

Assuming that the plate element e1 is subjected to moving load Fr1 and element e2
subjected to moving load Ff 1, the forces can be rewritten as

Fr1 = kr1 (z1r − z2r) = mr z̈2r − cr (u̇− ż2r − ϕ̇lr)− kr2 (u− z2r − ϕlr) ,
Ff 1 = k f 1

(
z1 f − z2 f

)
= m f z̈2 f − c f

(
u̇− ż2 f + ϕ̇l f

)
− k f 2

(
u− z2 f + ϕl f

)
. (33)

By using Delta-Dirac function δ(·) [9, 11, 14] the concentrated loads (33) can be
represented as the distribution force pi(ξ,η,t) as follows

pr1 (ξ, η, t) = Fr1 · δ (ξ − ξ1) · δ (η − η1) ,
p f 1 (ξ, η, t) = Ff 1 · δ (ξ − ξ2) · δ (η − η2) . (34)

Therefore, the node load vector of element becomes [9]

{Fe1} = [N (ξ1, η1)]
T Fr1, {Fe2} = [N (ξ2, η2)]

T Ff 1. (35)

Substituting (33) into (35), leads to{
Fe1} =

[
M1r] {q̈v}+

[
C1r] {q̇v}+

[
K1r] {qv} ,{

Fe2} =
[
M1 f ] {q̈v}+

[
C1 f ] {q̇v}+

[
K1 f ] {qv} ,

(36)
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where[
M1r

]
=
[

0 0 [N (ξ1, η1)]
T mr 0

]
,
[

M1 f
]
=
[

0 0 0 [N (ξ2, η2)]
T m f

]
,[

C1r
]
=
[
− [N (ξ1, η1)]

T cr [N (ξ1, η1)]
T crlr [N (ξ1, η1)]

T cr 0
]

,[
C1 f
]
=
[
− [N (ξ2, η2)]

T c f − [N (ξ2, η2)]
T c f l f 0 [N (ξ2, η2)]

T c f

]
,[

K1r
]
=
[
− [N (ξ1, η1)]

T kr2 [N (ξ1, η1)]
T kr2lr [N (ξ1, η1)]

T kr2 0
]

,[
K1 f
]
=
[
− [N (ξ2, η2)]

T k f 2 − [N (ξ2, η2)]
T k f 2l f 0 [N (ξ2, η2)]

T k f 2

]
.

So, the equations of motion for elements e1 and e2 get to be

[Me1 ] {q̈e1}+ [Ce1 ] {q̇e1}+ [Ke1 ] {qe1} = {Fe1} , (37)

[Me2 ] {q̈e2}+ [Ce2 ] {q̇e2}+ [Ke2 ] {qe2} = {Fe2} , (38)
with [Mei ] , [Cei ] , [Kei ], (i = 1, 2) are matrices of mass, damping and stiffness, respectively.

Introducing the node displacement vector

{qe}v =
{
{qe1}T {qe2}T {qv}T

}T
, (39)

composed off those of the plate elements e1, e2 and body car and combining Eqs. (36) (37),
(38) with (29) allow the equations of motion for vehicle system and pavement elements
to be written in the matrix form

[Me]v {q̈
e}v + [Ce]v {q̇

e}v + [Ke]v {q
e}v = {Fe}v , (40)

with

[Me]v =

[Me1] [0] −
[
M1r]

[0]
[
Me2] − [M1 f ]

[0] [0] [Mv]

 = [Me
t ] +

[
Me

p

]
v

,

[Ke]v =

[Ke1] [0] −
[
K1r]

[0]
[
Ke2] − [K1 f ]

[0] [0] [Kv]

 = [Ke
t ] +

[
Ke

p

]
v

,

[Ce]v =

[Ce1] [0] −
[
C1r]

[0]
[
Ce2] − [C1 f ]

[0] [0] [Cv]

 = [Ce
t ] +

[
Ce

p

]
v

, {Fe}v =

 {0}{0}{Fv}

 .

Assembling all elements matrices and nodal force vectors the governing equations
of motions of the total system can be derived as

[M] {q̈}+ [C] {q̇}+ [K] {q} = {F} , (41)

with

[M] = ∑
e
[Me

t ] + ∑
e

[
Me

p

]
v
, [K] = ∑

e
[Ke

t ] + ∑
e

[
Ke

p

]
v
,

[C] = ∑
e
[Ce

t ] + ∑
e

[
Ce

p

]
v
, {F} = ∑

e
{Fe}v,
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This is a linear differential equation system with time dependence coefficient that
can be solved by using direct integration Newmark’s method. A Matlab program named
by 3D Structures Moving 2014 was conducted to solve equation (41).

3. NUMERICAL ANALYSIS

3.1. Validation of computer program
To validate the present approach, consider a tunnel with square box cross section

area Htun ×Wtun = 4 m×4 m, thickness of wall ttun = 0, 5 m, length Ltun = 10 m in
the homogeneous foundation, depth from center of tunnel section to freely surface of
foundation is htun = 4 m, subjected by concentric loading at the center point of pave-
ment, load law P(t) = P0 sin 2π f t, with P0 = 50000 N, f = 10 Hz. Tunnel is made
by concrete with elastic modulus Etun = 0.34 × 107 N/cm2, Poisson ratio νtun = 0.3,
mass density ρtun = 2.5 × 10−3 kg/cm3; characteristic of foundation: elastic modulus
E f = 0.2 × 106 N/cm2, Poisson ratio ν f = 0.35, mass density ρ f = 1.8 × 10−3 kg/cm3.
The considered region dimensions: Hs ×Ws × Ls = 20 m×40 m×10 m. The results are
obtained by using 3D Structures Moving 2014 and Ansys 13.0 programs. The first three
of fundamental frequency and displacement amplitude at loaded point for two methods
are shown in Tab. 1.

Table 1. Comparison between present results with Ansys software results

Fundamental frequency Maximum displacement
Characteristics f1[Hz] f2[Hz] f3[Hz] Wmax[cm]

Method
Ansys 13.0 36.21 98.36 142.84 0.268

Present 36.54 98.69 143.18 0.271
Different (%) 0.91 0.34 0.25 1.12

This comparison shows that the good agreements are obtained, the difference is
very small (≤ 0.25% for fundamental frequency and 1.12% - for displacement).

3.2. Numerical results
A concrete double tunnel with symmetric cross section, as shown in Fig. 5 is con-

sidered. The tunnel is subjected to moving load of 4-wheel vehicle which moves in lon-
gitudinal direction of the left tunnel with velocity v = 60 km/h. Length of tunnel L =
20 m; wall thickness t1 = t2 = W2 −W1 = 5.95 m – 4.45 m = 1.5 m; wall height H3 = 3.6 m;
pavement thickness H1 = 0.4 m; tunnel width 2W1 = 9.5 m, radius of arch R1 = 6.5 m, R2
= 8.5 m, respectively. Dimension of cross section of hollow box (serape 2 single tunnels)
ELH × ELW = 3 m×1.5 m. Elastic modulus of concrete Ec = 3.4×1010 N/m2; Poisson ratio
νc = 0.3; mass density ρc = 2500 kg/m3. Accuracy of iteration εd = 0.5%, considered re-
gion dimensions H ×W × L = 20 m × 70 m × 20 m. Three foundation layers 1, 2, 3 with
properties are presented in Tab. 2.

Vehicle body mass m = 7000 kg, m f = 600 kg, mr = 900 kg, inertia moment of ve-
hicle body about the center-of-mass J = 30000 kgm2, distances from front wheel and



116 Nguyen Thai Chung, Do Ngoc Tien

Table 2. Foundation properties

Layer Depth (m) E f (N/cm2) ν f ρ f (kg/m3)

1 1.4 0.20×106 0.28 1.70×103

2 4.2 0.44×106 0.25 1.90×103

3 18.6 0.90×106 0.25 2.15×103

rear wheel are l f = 3.2 m, lr = 1.8 m, respectively, elastic spring stiffness are k f 1 =
3000000 N/m, k f 2 = 450000 N/m, kr1 = 4000000 N/m, kr2 = 700000 N/m, damping co-
efficients c f = cr = 500 Ns/m. Considered points are A(−6.7, 10, 10.8) , the middle of
pavement and in the foundation surface. The system model and FEM configuration are
shown in Figs. 5-6.
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Remark: Clearly, this comparison once again shows that the good agreements are obtained, 

the difference is very small (≤ 0,25% for fundamental frequency and 1,12% - for forced 

vibration). 

3.2. Numerical results 
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N/m2;  Poisson ratio c = 0.3; mass density c = 2500kg/m
3
. Accuracy of 

iteration d = 0.5%, considered region dimensions H×W×L = 20m×70m×20m. Three foundation 

layers 1, 2, 3 with properties are presented in Table 2.  

Table 2. Foundation properties 

Layer Depth (m) Ef(N/cm
2
) f f(kg/m

3
) 

1 1,4 0,2010
6
 0,28 1,7010

3
 

2 4,2 0,4410
6
 0,25 1,9010

3
 

3 18,6 0,9010
6
 0,25 2,1510

3
 

Vehicle body mass m = 7000kg, mf = 600kg, mr = 900kg, inertia moment of vehicle body 

about the center-of-mass J = 30000kgm
2
, distances from front wheel and rear wheel are lf = 

3.2m, lr = 1.8m, respectively, elastic spring stiffness are kf1 = 3000000N/m, kf2 = 450000N/m, 

kr1 = 4000000N/m, kr2 = 700000N/m, damping coefficients cf = cr = 500Ns/m. Considered 

points are  A(-6.7,10,10.8) , the middle of pavement and in the foundation surface. The system 

model and FEM configuration are shown in Figs.5-6.  
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Displacement and acceleration response results of considered points are shown in Fig.7 

and Fig.8. 
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3.2.1. Effect of speed of load 

 Displacement responses at the point A are shown in Fig.9 with the speed of vehicle various 

from 50km/h to 100km/h, variation of maximum displacement at point B are presented in Fig.10. 
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Fig. 6. Configuration of FEM

Fig. 7 shown the relationship of displacement amplitude at point A (z-dir.) and
frequency. And we have 4 first natural frequency are f1 = 19.82, f2 = 20.89, f3 =
21.93, f4 = 22.16 (Hz). Displacement and acceleration response results of considered
points are shown in Figs. 8-9.
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Fig. 7. Vertical displacement amplitudefrequency
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Fig. 8. Vertical displacement response at A
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Fig. 9. Vertical acceleration response at A

3.2.1. Effect of speed of load
Displacement responses at the point A are shown in Fig. 10 with the speed of ve-

hicle various from 50 km/h to 100 km/h, variation of maximum displacement at point B
are presented in Fig. 11.
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Displacement and acceleration response results of considered points are shown in Fig.7 

and Fig.8. 
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Fig. 11. Variation of maximum displacement
at point B
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3.2.2. Effect of foundation surrounding tunnel
In this section, elastic modulus E3 of third foundation layer (the foundation sur-

rounds tunnel) varies from 0.2×106 N/cm2 to 2.0×106 N/cm2. Obtained dynamic re-
sponses are shown in Figs. 12-13.
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3.2.3. Effect of tunnel type 

Consider two tunnel types: box – arch section (Type 1) and box section (Type 2) with the same 

pavement, depth of wall and total section area. Dynamic responses of point A are as Figs. 14-15. 
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Fig.14.Vertical displacement responses                        Fig.15. Stress responses 

Remark: The result shows that displacement, acceleration and stress of arc of arch tunnel 

are smaller than those of flat roof tunnel, and therefore load-carrying capacity of arc of arch 

tunnel is larger than one of flat roof tunnel. 

4. EXPERIMENTAL VALIDATION 

4.1. Experimental model and equipment 

4.1.1. Tunnel 

Double tunnel, N
o
 05-TEDI-003-HĐ at Km7+358 Lang - Hoa Lac expressway, Hanoi, cross 

section is rectangular box, made by reinforced concrete. 

Fig. 12. Vertical displacement response at
point A
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Remark: The result shows that displacement, acceleration and stress of arc of arch tunnel 

are smaller than those of flat roof tunnel, and therefore load-carrying capacity of arc of arch 

tunnel is larger than one of flat roof tunnel. 

4. EXPERIMENTAL VALIDATION 

4.1. Experimental model and equipment 

4.1.1. Tunnel 

Double tunnel, N
o
 05-TEDI-003-HĐ at Km7+358 Lang - Hoa Lac expressway, Hanoi, cross 

section is rectangular box, made by reinforced concrete. 

Fig. 13. Maximum displacement at point B

3.2.3. Effect of tunnel type
Consider two tunnel types: box-arch section (Type 1) and box section (Type 2) with

the same pavement, depth of wall and total section area. Dynamic responses of point A
are shown in Figs. 14-15. The result shows that the displacement, acceleration and stress
of arc of arch tunnel are smaller than those of flat roof tunnel, and therefore load-carrying
capacity of arc of arch tunnel is larger than one of flat roof tunnel.
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Remark: The result shows that displacement, acceleration and stress of arc of arch tunnel 
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3.2.3. Effect of tunnel type 

Consider two tunnel types: box – arch section (Type 1) and box section (Type 2) with the same 

pavement, depth of wall and total section area. Dynamic responses of point A are as Figs. 14-15. 
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Remark: The result shows that displacement, acceleration and stress of arc of arch tunnel 

are smaller than those of flat roof tunnel, and therefore load-carrying capacity of arc of arch 

tunnel is larger than one of flat roof tunnel. 

4. EXPERIMENTAL VALIDATION 
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4.1.1. Tunnel 
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section is rectangular box, made by reinforced concrete. 

Fig. 15. Stress responses
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4. EXPERIMENTAL VALIDATION

4.1. Experimental model and equipment
4.1.1. Tunnel

The experiment was carried out for the double tunnel, N◦ 05-TEDI-003-H at Km7
+358 Lang-Hoa Lac expressway, Hanoi. Its cross section is rectangular box, made by
reinforced concrete, (see Fig. 16).
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a) Experimental tunnel                                     b) Cross section dimension 

Fig. 15.Configuration of experimental tunnel 

4.1.2. Loading generation 

Loading equipment is passenger cars four wheels, conversion parameters: m = 6600kg, mf = 

320kg, mr = 410kg, J = 21000kgm
2
, lf = 3,2m, lr = 1,8m, kf1 = 2400000N/m, kr1 = 3600000N/m, 

kf2 = 390000N/m, kr2 = 540000N/m, cf = cr = 460Ns/m. 

4.1.3. Acceleration sensor, resistors plate: 

Acceleration sensors ARF-10A are placed on the right of pavement plate to determine 

vertical acceleration and at the longitudinal tunnel position; resistor plate is attached 1m from 

acceleration sensor position in longitudinal tunnel to determined relative deformation. 

Accelerometer specifications are: mass: 2g, sensitivity: 0,5mV/(m/s
2
), the frequency ranges: 1 to 

12000 (10%)Hz, peak acceleration: 10m/s
2
, accuracy: ≤ 0.05%.  

In the experimental procedure, resistors plate is attached on the pavement and is deformed 

according to the deformation of pavement. 

4.1.3. Dynamic measurement system: 

 
    a) Experimental equipment preparation    b) Acceleration and deformation sensor disposition  

Fig.16. Experimental preparation 

(a) Experimental tunnel
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(b) Cross section dimension

Fig. 16. Configuration of experimental tunnel

4.1.2. Loading generation
Loading is excited by passenger cars of four wheels and conversion parameters:

m = 6600 kg, m f = 320 kg, mr = 410 kg, J = 21000 kgm2, l f = 3.2 m, lr = 1, 8 m, k f 1
= 2400000 N/m, kr1 = 3600000 N/m, k f 2 = 390000 N/m, kr2 = 540000 N/m, c f = cr =
460 Ns/m.

4.1.3. Acceleration sensor, resistors plate
Acceleration sensors ARF-10A are placed on the right of pavement plate to deter-

mine vertical acceleration and at the longitudinal tunnel position; resistor plates are at-
tached 1m from acceleration sensor position in longitudinal tunnel to determined relative
deformation. Accelerometer specifications are: mass: 2 g, sensitivity: 0.5 mV/(m/s2), the
frequency ranges: 1 to 12000 (±10%) Hz, peak acceleration: 10 m/s2, accuracy: ≤ 0.05%
(see Figs. 17-18).

4.1.4. Dynamic measurement system
Dynamic measurement system SDA-810C (Japan), made in 2010, with: 8 chan-

nels, linear frequency response: 10 kHz, electronic source: DC10.5-30V 1.4A; AC170-250V
50/60 Hz 25VA, accuracy: 0.0025%, resolution ADC: 16 bit, sampling rate: 19.2 kHz. This
equipment gathers in-situ data that are stored into a computer.

Consider three velocity levels of vehicle 30 km/h, 40 km/h, 50 km/h, surcharge 15
times for each velocity level (n = 15).
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Dynamic measurement system SDA-810C (Japan), made in 2010, with: 8 channels, linear 

frequency response: 10kHz, electronic source: DC10.5-30V 1.4A; AC170-250V 50/60Hz 

25VA, accuracy: 0,0025%, resolution ADC: 16 bit, sampling rate: 19,2kHz. This equipment 

gathers in-situ data that are stored into a computer. 

Consider three velocity level of vehicle 30km/h, 40km/h, 50km/h, surcharge 15 times for 

each velocity level (n = 15).  

4.2. Experimental results 
The comparison of results between theoretical calculation by 3D_Structures_Moving_2014 

program and experimental method (with three velocity levels) is presented in Fig. 18 and table 3. 
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Fig. 18. Vertical acceleration responses of considered point (V = 50km/h) 

Table 3. Maximum acceleration of considered point 
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2
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Table 3. Maximum acceleration of considered point 

Car velocity V[km/h] 30,0 40,0 50,0 

Acceleration 
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2
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3D_Structures_Moving_2014 (Theoretical) 0,1947 0,2328 0,2616 
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(b) Result on the screen (01 time)

Fig. 18. Experimental procedure

4.2. Experimental results
The comparison of results between theoretical calculation by 3D Structures Mov-

ing 2014 program and experimental work (with three velocity levels) is presented in
Fig. 19 and Tab. 3.

Table 3. Maximum acceleration of considered point

Car velocity V [km/h] 30.0 40.0 50.0
Acceleration 3D Structures Moving 2014 (Theoretical) 0.1947 0.2328 0.2616

az[m/s2] Experimental 0.1746 0.2063 0.2971
Different [%] 11.51 12.85 13.55

It is obtained that the dynamic responses measured at the considered points are
more uneven than those by theoretical calculation. The maximum differences of vertical
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Fig. 19. Vertical acceleration responses at considered point (V = 50 km/h)

acceleration with three velocity levels are from 11.51% to 13.55%. This result shows that
experimental results agree with calculation results. Therefore, we realize that
3D Structures Moving 2014 calculation program is reliable.

5. CONCLUSION

This paper presented an algorithm of element finite method established for dy-
namic analysis of tunnel and foundation in space model subjected to moving loads of
vehicle. Numerical investigation has been carried out for an example with different pa-
rameters and showed effects of parameters of structure and load to the dynamic response
of tunnel-foundation system. The established finite element model and the computer
program were tested on a real tunnel. The obtained experimental results are acceptably
agreed with the numerical ones.
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