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Abstract. The well known Fokker-Plank-Kolmogorov Equation Method has been de
veloped to study random vibration in systems with hysteresis that often described by 
the stochastic integro-differential equations or differenti al equations with delay. 

1. INTRODUCTION 

The asymptotic method is well-known as one of fundamental methods in study of 
weakly nonlinear systems. They have come to be effectively used for the stochastic sys
tems via theory of diffusional processes [1]. However, many processes in practice arc not 
diffusional so that for those the Fokker-Plank-Kolmogorov Equation (FPKE) Method is 
not applicable. In the case, something like the FPKE for non-diffusional processes has 
been needed. Stratonovich [2] is the first who constructed approximately an equation 
for probability density function for arbitrary stochastic process based on its asymptotic 
expansion. It was in fifties of the last millennium. Later, in 1966, Khasminskii [3] had 
deeper studied the problem in his paper published in Journal of Theory of Probability 
and Its Application (in Russian). Since 1965, Professor Nguyen Van Dao [4] had pub
lished a paper in Vietnamese dealt with an application of the Stratonovich's equation to 
study random vibration in a weakly nonlinear system. The author of the paper in 1979, 
after reading Van Dao's work, has came to the idea of developments of the Stratonovich's 
method to study the processes given by stochastic integro-differential equations. The first 
result of the author were published in Ukrainian Mathematical Journal in 1983 [5]. This 
problem were further developed in the author's doctor of science dissertation published in 
1991 [8] at the Institute ·of Mathematics, Ukrainian Academy of Science. 

In this paper, some results, taken from the dissertation, are presented to memory of 
Professor Nguyen Van Dao in the occasion of his 70th celebration. 

2. GENERAL EQUATION FOR PROBABILITY DENSITY FUNCTION 
OF ARBITRARY STOCHASTIC PROCESS 

Let's consider an-dimensional random process X = {X1, ... , Xn} with given point 
x0 = { x?, ... , x~} in the space of states of the process. Characteristic function of the 
process, as defined, is 

(2.1) 
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with the notation E { ... } ::::::: ( ... ) implying the probability average operator. Expanding the 
function ei(u,X) in the Taylor 's series at the point x0 

ei(u,X) = ei(u,x
0
){1 + L iuj(Xj - xJ ) + 1 L (iuj)(iuk)(Xj - xJ)(Xk - x~ ) + ... } 

j j ,k 

and substituting the obtained expansion to the Eq. (2.1), one will have 

x(u) = (exp[i(u, X)]) = ei(u,x
0
){ 1 + L i'Uj (Xj - xJ) 

j 

+ ~ L(iuj)(iuk)(XJ - xJ)(Xk - x~) + .. } (2 .2) 
j ,k 

On the other hand, one-point PDF of the process has the form 

+oo 

W(x, t) = (2n) - n l x(u) exp [-i(u, x)J du1 ... du. 

-00 

Substituting the Eq. (2.2) into Eq. (2.3) yields the equation 

+oo 

W( x, t) = (2n) -n l e-il:ui(xj - xJ){ 1 + L iuj (Hj) 

-oo J 

+ 1 L iuji'Uk (HjHk) + ... }du1 ... dun, 
j,k 

where HJ = Hj(t , x0 ) = Xj(t) - xJ, j = 1, ... ,n. Taking into account the equation 

00 

6(x - x0
) = (2n)-n l exp {-i L Uj(Xj - xJ) }du1 ... dun, 

-oo J 

Equation (2.4) can be rewritten as 

! 
6(x - x

0
) - ~ a~J { (HJ(t, x

0
)) 6(x - x

0
) }+ ) 

w ( x, t) = 1 a2 . 
+-La a { (Hj(t, x0 )Hk(t, x0

)) 6(x - x0
)} + ... 

2 . x1 Xi.; 
J,k 

Introducing the operator 

- L a i L a2 ; o .o \ L - - -a (HJ(t, x)) + - a a \HJ(t, x )I-h(t , x ) / + ... 
X · 2 X · Xk . j J j ,k J 

operating as follows 

(2.3) 

(2.4) 

(2.5) 

(2 .6) 

a 1 a2 

L {f(x) } = - Lax { (Hj(t, x)) J(x)} + 2 Lax axk { (Hj(t, x0
)Hk(t, x0

)) f(x)} + ... 
j J j ,k J 

(2.7) 
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one can rewrite the Eq. (2.5) into the form 

W ( x, t) = ( 1 + L) { 8 ( x - XO} . (2.8) 

On the other hand, from Eqs (2.6), (2.7) it can be obtained another operator 

L' = - Laa. (I-Ij(t,xo)) +~La a;. (Hj(t,xo)I-I£(t,xo)) + ... 
. XJ 2 . XJ Xk J J,k 

where Hj(t, x) = fJHj(t, x)/fJt , operating analogically as the operator L in Eq. (2.7) and 
from Eq. (2.8) one has 

fJWJ:,t) =L'{8(x-xo)}. 

The Eqs. (2.8) and (2.9) yields the equation 

fJWJ:' t) = L'(l + L) - 1 {W(x, t)}. 

Assuming that 

Hj(t, x) = E: Hjl (t, x) + E
2 Hj2(t, x) + c3 Hj3(t, x) + E:4 

.... 

the introduced above operators can be rewritten in the form 

L=-E:La~ (Hj1(t,x0)) 
j J 

(2.9) 

(2 .10) 

2 { ~ a 1 o ) 1 ~ 0
2 

1 o o ) } 3 +c - L-
0 

. \Hj2(t,x) +- L 
0

. 
0

. \Hj1(t,x )Hk1(t,x) + c ... 
. XJ 2 . XJ Xk J J,k 

I ~0/1 Q) L = - E: L ox \ Hj1 ( t, x ) 
j J 

+c
2 {-La~ (Hj2(t,x

0
)) + ~ L EJxa;Xk (Hj1(t,x0)H~1(t,x0 ))} +c

3 
... 

j J j,k J 

- 1 ~ f) I o ) 2 (l+L) =1-L+ ... =l+E:LfJx·\Hj1(t,x) -E: ... 
j J 

Finally, taking into account the equality 

':la (Hj 1 (t, x)) ':lo (Hk1 (t, x)) 
UXj UXk 

= fJxa;Xk (Hj1 (t, x)) (Hk1 (t, x)) - 0~ (8Hj 1 (t , x )/oxk) (Hk1 (t , x)) 
J J 

the equation (2.10) can be rewritten as 
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aa~ =-E L a~ . [ (H.fi(t , x)) w] 
j J 

a [( ) a(Hj1(t,x)) l 
-E

2 L -a . Hj2(t , x) w + L a (Hkl (t , x)) w 
J XJ k Xk · 

a2 .. 
+E

2 La a . [( Hj1 (t, x)Hk1(t, x)) w - ( Hj1 (t, x)) (Hk1 (t, x)) w] + E
3 

... 
J,k XJ Xk 

or in more compact form if ignoring the orders more than 2 of the parameter E 

aw a 1 a2 

-a + L -a . [Kj(t, x)W] = -2 La a . [Djk(t, x)W]. 
t . XJ . XJ Xk J J,k 

(2.11) 

where 

- ( I I ) 2"" I oHjl) (H ) . Kj - E Hjl + EHj2 + E L: \ OXk kl ' 
(2.12) 

Djk = 2E2 [(Hj1Hk1)- (Hj1) (fh1)]. 

The asymptotically approximate equation for PDF of arbitrary random process X has 
the form that recalls the Fokker-Plank-Kolmogorov Equation for diffusional process. 

3. APPLICATION TO THE SYSTEMS OF STOCHASTIC 
INTEGRO-DIFFERENTIAL EQUATIONS 

Suppose that the process X(t) is determined by the equation 

t t 

Xj(t) = E
2 Aj(X, t, j ip(t, s, X(s))ds) +EL Bjk(X, t, j ?jJ(t, s, X(s))ds)~k(t), 

- oo k - oo 

j = 1, ... , n. 

(3.1) 

where ~k(t), k = 1, ... ,mare stationary random process with zero mean value and corre
lation functions 

Letting 

one will have 
Xj(t) = E Hj 1 (t, x

0
) + E2 Hj2(t , x0

) + ... (3.4) 

Using the Eqs. (3.3) and (3.4), one can calculate the integrals 

t t t 

J J o "\:' j 8ip(t, s, xo) o 2 
ip(t,s,X(s))ds= ip(t , s , x )ds+EL..,, OXj Hj1(s ,x )ds+ E .. . 

-oo -oo J - oo 
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t t t 

J J o "f {h/J(t,s,x
0

) 0 2 'tjJ(t, s, X(s))ds = 'tjJ (t , s, x )ds +EL.., OXj Hj1 (s, x )ds + E ... 

-DO -DO J -DO . 

Further one can get 

t 0 

J o o '""8Aj 
Aj(X, t, <.p(t, s, X(s))ds) = Aj(x , t) +EL.., axk lh1 

k -DO 

'""J aA1 a<.pJ(s, x
0

) I 0 
- EL.., 7)0 

0 
H 11 (s, x )ds + ... 

kl <.pk X{ 

t 0 

J o o '""8Bjk Bjk(X, t, 'tfJ (t, s, X(s))ds) = Bji>,(x , t) + c L.., ~Hrni 
. UXrn 

-oo m 

A~(t,x) = Aj(t,x,<.p0 (t,x)),BJ(t,x) = Bj(t,x,'ljJ0 (t,x)). 

Substituting Eqs (3.4) and (3.5) into Eq. (3.1) follows the equations 

(Hj1 (t, x
0)) = L BJk(t, x0

) (~k(t)) = 0 = 
k 

t 

(Hj1 (t, x0)) = j L BJk(s, x0
) (~k(s)) ds; 

-DO k .. 

379 

(3.5) 

(3.6) 

(3.7) 

Using the obtained expressions, one can calculate the coefficients (2.12) for Eq. (2.11) 

Kj(t, x) = c2 A~(t, x) + c2 L 
k,m 
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00 

Dij(t, x) = 2c-2 L B?k(t, x) J BJm(t - s, x)Rkm(s)ds. 
k,m 0 

(3 .8) 

In particularity, functions cp = 'l/; = 0, i.e. equations (3.1) are differential , coefficients 
(3.8) may be simplified as 

0 00 

2 o 2"°"'{)Bjkf"°"' o Kj(t, x) = E AJ(t, x) + E L OXm L Bm1(t - s, x)Ru(s)ds; 
k,m 0 l 

00 

Dij(t, x) = 2c-2 L B?k(t, x) J BJm(t - s, x)Rkm(s)ds. 
k,m 0 

Moreover, if the process ~k(t), k = 1, ... ,mis white noises, i. e. 

Rk1(T) = (~k(t)~i(t + T)) = ankjO(T) 

with the notation /jk = 1 if k = j and = 0 for j =I k, the coefficients (2.9) become 

"'Bo 
2 0 2"""' u jk 0 Kj(t, x) = E AJ(t, x) + E L ak-"'-Bmk(t, x); 

(3.9) 

UXm k,m (3.10) 

Dij(t, x) = 2c-2 L B?k(t, x)BJk(t, x). 
k 

Equation (2.11) with coefficients (3.10) were obtained firstly by Stratonovich [2]. 

4. APPLICATION TO SYSTEMS WITH DELAY 

It's not difficult to verify that the system of differential equations with delay 

Xj(t) =c-2Aj(X,t,a(t-6.,X(t- 6.))) 

+EL Bjk(X, t, j3(t - 6., X(t - 6.)))6,(t), j = 1, ... , n . (4.1) 
k 

is a particularity of the system of equations (3.1) with 

So that 

and 

cp(t, X, s, X(s)) = a(s, X(s))o(t - 6. - s); 

'l/;(t, X, s, X(s)) = /3(s, X(s))o(t - 6. - s). 

cp0 (t, x) = a(t - 6., x); 'l/;0 (t, x) = j3(t - 6., x) 

A~(t, x) = Aj(x, t, a(t - 6., x)), BJ(t, x) = Bj(x, t, j3(t - 6., x)). 

(4.2) 

.(4.3) 

( 4.4) 
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In that case coefficients of the equation (2.11) can be determined as 

K1(t, x) = c2 A3(t, x) + c2 L 
k,m 

. 0 00 

oBjk f" o OXm L.,, Bm1(t - s, x)Rk1(s)ds 
0 l 

0 00 

oBjk J'"' 8f3m o . -~(3 L.,, --;:;-Bu1 (t - s, x)R1;1,(s)ds 
u rn l I UX[ 

Q 'I 

00 

Dij(t , x ) = 2c2 L B?k(t, x) j BJm(t - s, x)~km(s)ds . 
k,m 0 

If the process ~k(t), k = 1, ... ,mis white noise, the last equations become 

Dij(t, x) = 2c2 L ukB?!.;(t, x)BJk(t , x ). 
k 

Let's consider the equation 
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(4.5) 

(4.6) 

u"(t) + w2u(t) = µf(t, u, u', u(t - 6.), u'(t - 6.)) + vlf1L gk(t, u, u')~k(t). (4.7) 
k 

Using the variable transform 

u(t) = Xe(t) cos wt+ X 8 (t) sin wt; u'(t) = w[Xs(t) cos wt - Xe(t) sin wt], 

the Eq. (4.7) may be transformed into the system of the form (4.1) withµ = c2 and 

0:1 (t, x) = Xe(t) cos wt+ x 8 (t) sin wt; 0:2(t, x) = w[xs(t) cos wt - Xe(t) sin wt; f31 = f32 =OJ. 

So that 

0:1 (t - 6., x) =Xe cosw(t - 6.) + X8 sinw(t - 6.); 

0:2(t - 6., x) = w[xs cosw(t - 6.) - Xe sinw(t - 6.)]. 

1 A? = - f[t, x] cos wt; 
wl 

Bf2 = -g2[t, x] cos wt; 
w 

Ag = _2_ f[t, x] sin wt; 
lw 

ngl = -gi[t, x] sin wt; 
w 

1 Bf 1 = -91 [t , x] cos wt; 
wl 

ng2 = - -g2[t, x ] sin wt ; 
w 

(4.8) 

f[t , x] = J[t, Xe cos wt+ X8 sin wt, w[x8 cos wt - Xe sin wt], 0:1 (t - 6., x) ), 0:2(t - 6. , x)] ; 

91 ,2 [t , x] = 91,2[t, Xe cos wt+ X8 sin wt, w[xs cos wt - Xe sin wt]]. 

Equations ( 4.5) would be used for determining the coefficients ( 4.5) of the equation 
(2.11). 
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5.1. Elementary example 

Consider the equation 

Nguyen Tien Khiem 

5. CASE STUDIES 

t 

X'(t) = -µ J e- >.(t - s) X(s)ds + ViJ,a~(t), 
-()() 

(5.1) 

with white noise ~(t). Applying the developed above theory, one will have the equation 
for PDF 

aW(x, t) ..§._[KW] = ~ a2 [DvV] 
at +ax 2 ax2 ' 

µx 2 
K(t, x) = -T, D(t, x) = µa , 

(5.2) 

that yields t he stationary solution 

Wo(x) = [a&J- 1 exp { -x2 / >.a2}. (5.3) 

The solution, as mentioned above, is approximate with respect to the small parameter 
~l (even it does not depend on the parameter). To see how the solution is accurate, let's 
consider equation (5.1) from other point of view. Assuming 

t 

Y(t) = j e- >.(t -s )X(s)ds, 

-()() 

leads to Y'(t) = X(t) - >.Y(t) and at the end one gets the system 

X' = -µY + y'µa~(t); Y' = ->.Y + X. (5.4) 

·well-known FPK equation for the system (5.4) results immediately in stationary solution 

Wo(x, y) = C ·exp {- µ~2 [x2 - 2>.xy + (>.2 + µ)y 2]} , 

that allows to get the stationary solution for x as 

W0E(x, µ) = Cx exp [- x
2 

µ ] 
>.a2(1 + >,2) 

From the condition:[ Wo(x)dx = 1 one gets Cx = [ ?Ta2 (>.~ + µ)] 
112

, so that 

(5.5) 

W0E(x,µ) = [a /?TA( l + ~2 )] - 1 exp [ - x
2 

µ ] (5.6) 
V /\ >.a2(1 + ),2) 

It's easily to see that 

Wo(x) = Jim W0E(x, µ). 
µ-+O 

(5.7) 
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5.2. The Van de Pol's system with delay 

Now we investigate the system 

383 

u"(t) + w2u(t) = µa[l - u2 (t - ~)]u'(t - ~) - µhu'(t) + fo(J'~(t). (5.8) 

Applying the formulas ( 4.5)-( 4.8) allows us to get the stationary soltition of the equa
tion (2.11) in the form 

{ 
w2 [ x2 + x2 ] } Wo(xc, x 5 ) = C ·exp - ()2 (x~ + x;) h - a(l - c 

8 
s) cosw~ 

or the PDF in variables of amplitude and phase will take the form 

{ 
w2a2 [ a2 ] } W 0 (a) = C ·a· exp --:;'2 h - a(l - S) cosw~ . (5.9) 

The solution (5.9) gives an equation for amplitude of stationary vibration of maximal 
probability as follows 

. ()2 
(a cos w ~)a 4 

- 4 ( h - a cos w ~)a 2 + 2 2 = 0. 
w 

(5.10) 

The equation shows that if() = 0, i.e. there is no random excitation, the system cannot 
be excited under the condition h - a cos (3w~ 2: 0. Otherwise, the system is self-excited 
with the amplitude of vibration ao = 2)1 - h(acosw~) - 1 . This result were obtained by 
Rubanik [7] in 1969. 

In the case of random excitation, the system always is excited with vibration ampli
tude monotony increasing with parameter p = h - a cosw~, if ()2 > 8hw2 and monotony 
decreasing with the parameter p , if () 2 < 8hw2

. In the case, if ()2 = 8hw2
, the vibra

tion amplitude equals permanently to 2, exactly as in the classical Van de Pol's system, 
regardless of delay. 

6. CONCLUSION 

In this paper the following results have been presented: 

• An equation for probability density function of arbitrary stochastic process has 
been constructed based on its asymptotic expansion that recalls the Fokker-Plank
Kolmogorov equation for diffusion process. The developed equation is approximate 
only but it can be used for study numerous weakly nonlinear oscillation systems. 

• The theory has been applied to processes given by stochastic intcgro-differential 
equations or differential equation with delay. This is a further developments of the 
FPKE method to study non-diffusion processes. 

• Illustrating examples have validated the applicability and effectiveness of the de-
veloped approach. 

Acknowledgement. The author is thankful very much to Editor in Chief of Vietnam 
Journal of Mechanics for inviting his to contribute the paper and also to Vietnam Science 
Fund for financial supports for completing this work. 
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MQT GACH T IEP C~N NGHIEN cuu DAO DQNG C.AC Hit NGAU NHIEN 

BANG PHUaNG PH.AP TIItM c~N 
Trong bao cao nay trlnh bay vi~c thiet l~p plmang trlnh Fokker-Plank-Kolmogorov cho cac 

qua trlnh khong phai la qua trlnh Markov. Sau d6 ap d\lng cho cac qua trlnh duqc xa.c d\nh bttng 
plmang trlnh vi tich phan ngau nhien va vi phan ngau nhien c6 ch~m. Cac plmang trlnh nh~n 
duqc duqc minh h<;Ja tren cac vi d\l q1 the de chfrng minh tinh c1ung diin va kha nang trng d\Jng 
ci'ia phuang phap. 


