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Abstract. The paper in question gives consideration to two examples of 1<131\1 method 
for constructing approximate solut ions of Klein-Gordon-IJretherton equations often oc
curred in practice. 

1. INTRODUCTION 

Professor , Academician Nguyen Van Dao was tragically killed in Hanoi on December 
11, 2006. Nguyen Van Dao was born in August 10, 1937 in the Commune Chi-Tien, 
District Thanh-Ba, Province Phu-Tho, Vietnam and dedicated a ll his life to development 
of science, education and cult ure of Vietnamese people. Throughout his life Professor 
Nguyen Van Dao attained great achievements in the field of science and education of 
Vietnam. I-le was the President of the Scientific and Education Counci l of the Viet11am 
National University of Hanoi; Vice President and General Secretary of the National Center 
for Scientific Research of Vietnam; Chairman of the Natural Science Counci l, fvlinistry of 
Science and Technology. 

Of great importance is his contribution to creation of scientific cornmu11ity to do re
search, education and application of mechanics in Vietnam. Ile was the Foundi ng Director 
of the Institute of Mechanics; Head of the Department, Hanoi U11iversity of Technology: 
President-Founder of the Vietnam Association of Mechanics, the Founding Editor in Chief 
of the Editorial Board of Vietnam Journal of Mechanics, the Representative of the Viet
nam Association of Mechanics in the International Union for Theoretical and Applied 
Mechanics. 

The scientific activity of Professor Nguyen Van Dao was marked by obta ining irnpo'r
tant results in problems on interaction between nonlinear oscillating systems, non-linear 
dynamics and chaos as well as asymptotic methods for studying non-linear high degree 
systems. He published more than 100 scientific works and monographs. 

He was also famed for his public activity. He was t he member of Presidium of the 
Central Committee of Vietnam Fatherland Front; Vice-President of Vietnam Peace Com
mittee; President of Association for Liaison with Overseas Vietnamese. 

The international activity of Professor Nguyen Van Dao was widely known and highly 
appreciated in Vietnam and worldwide. I-le was the Laureate of the Ho Clii f\linh Prize 
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in the field of Science and Technology, Ukraine National Prize in Science and Technology, 
t he Holder of the 1-st degree Labor Medal, 2-nd degree Resistance Medal. He was elected 
as the Member of the III-d World Academy of Science; Member of the Czech Academy of 
Science; Member of Ukraine National Academy of Sciences. 

Professor Nguyen Van Dao was exceptionally sweet and hospitable person. I got 
acquainted with him in 1961 when he first arrived in Kiev to attend the International con
ference and since then often met with him in Moscow and some cities of Europe including 
Warsaw, Prague, Berlin and others. 

We had close cooperation in the field of mechanics (non-linear mechanics, dynamic 
systems). Since 1980 I have visited Vietnam 8 times and each arrival was like a festival. 
Nguyen Van Dao and his wife Chan-Kim-Tyi always met me at the airport , we drove to 
a hotel where I would stay or they put me up. 

The tragic death of Nguyen Van Dao will be immeasurable loss for Vietnamese science. 
As a scientist and a person he will always be within living memory and my memory in 
particular. It was Nguyen Van Dao that introduced me to many Vietnamese cities, their 
lovely sights and hard-working people which I loved so much. 

The result of our close cooperation that lasted for more than 30 years was four gen
eralized monographs devoted to nonlinear oscillating systems, numerous participation in 
various conferences and congresses where we would deliver talks. 

2. FIRST OF ALL WE DEAL WITH THE PROBLEM ON 
CONSTRUCTING THE ASYMPTOTIC SOLUTION OF PERTURBED 

KLEIN-GORDON EQUATION 

We consider the equation 

fPu 2 cPu 2 ( 8u 8u) 
8t2 - C 8x2 + >. u =cf vt, u, 8t' 8x ; (2 .1) 

for E: = 0, this is the Klein- Gordon equation and, for >. = 0, it turns into the classical 
wave equation. 

Equation (2 .1) was studied by many scientists in the course of investigation of nonlinear 
wave processes in different branches of natural sciences. 

Below, we dwell on principal aspects of the application of asymptotic methods of 
nonlinear mechanics t o the construction of approximate solutions of Eq. ( 2 .1). This may 
be useful for studying special problems of natural sciences that require the investigation 
of wave processes subject to the action of nonlinear perturbation forces and described by 
equations of type (2.1). This can also be useful for the analysis of the obtained results. 
The development and detailed application of the asymptotic method to the solution of a 
special problem that leads to Eq. (2.1), provided that there is no periodic perturbation 
with period v, was first realized in [4]. 

Thus, for E: = 0, Eq. (2.1) is the classical Klein- Gordon wave equation 

-C2 82u + >.2u = 0 (2 .2) 
8x2 

admitting a solution of the form 

u = a cos(kx - wot+ <p), (2.3) 
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where a and <p are constants and k and wo satisfy the variance relation 

= C2k2 + A2. 
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(2.4) 

Assume that c > 0 is a small parameter and a function f(vt, u, Ut, ux) is periodic (or 
almost periodic) in () = vt and has sufficiently many derivatives with respect to the other 

. . . OU o2u OU cJ2u 
variables for all their fimte values. Denote Ut = ot , Utt = ot2 , Ux = ox, and Uxx = ox2 · 

Then, according to the well-known statements of the asymptotic method of nonlinear 
mechanics, we seek an asymptotic solution of Eq. (2.1) for c ---+ 0 in the form of the 
following series: 

u(t, x) =a cos'lj; + cu1 (a, 'If;,())+ c2u2(a, 'If;,())+ ... 

('If; = kx - wot + <p), 

where a and 'If; are determined by the equations 

oa 2 ot = cA1(a) + c A2(a) + ... , 

oa 2 
ox = cB1 (a)+ E B2(a) + ... , 

o'l/J 2 
ot =-wo+cC1(a)+c C2(a)+ ... , 

o'l/J 2 
ox =k+cD1(a)+c D2(a)+ .... 

To simplify calculations, we consider the nonresonance case ( v ---+ w). 

(2.5) 

(2.6) 

By differentiating the right-hand sides of series (2.5) and taking (2.6) into account, 
we obtain expressions for Ut, Ux, Utt, and Uxx· By substituting these expressions in the 
left-hand side of Eq. (2.1) and expanding it in powers of c, we obtain 

Utt - C2uxx + .A2u = E{2[woA1 + C2kB11 sin 'ljJ} + E3
. (2.7) 

Further, by substituting the values 

u =a cos'lj; + w1 (a, 'If;,())+ c2u2(a, 'If;,())+ . .. , 

Ut = awo sin 'If;+ c{ A1 cos 'If; - a sin 'l/JC1 - u~"l/>wo - u~ 0 v} + E2 + . . . (2.8) 

Ux = -aksin 'If;+ c{-asin 'l/JD1 + u~"l/>k} + c2 ... 

in the right-hand side of Eq. (2.1) and expanding it in powers of c, we get 

cf ( (), U, Ut, Ux) = cf ((),a COS 'If;, aw sin 'If;, -ak sin 'lj;) 

+ c2 {!~ ( e, a cos 'If;, awo sin 'If;, -ak sin 'If; )u(a, 'lj;, ()) 

+ f~t ( e, a cos 'If;, awo sin 'If;, -ak sin 'If;) x 

x (A1 cos'lj; - aC1 sin'lj;- u~awo + u~ov) 

- f~x ((),a cos'lj;, awsin'lj;, -aksin 'lf;)(aD1 sin 'If; - u~"l/>K)} + E
3 ... (2.9) 

By equating the coefficients of the same powers of con the right-hand sides of (2.7) 
and (2 .9) and taking the variance relation (2.4) into account, we obtain the following 
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equations for determining u1 (a, 'lj;, 0), u2(a, 'lj;, 0), ... : 

where 

2 ( fPu1 ) · 8 2u1 2 8
2u1 

>. 8'1j.;2 + u1 - 2wov 8'lj;80 + l/ 802 

= -2[A1wo + C2kB1] sin 'lj; - 2[C1wo + C2kDi]a cos'lj; + fo(O, a, 'lf;), 

2 ( 8
2
u2 ) 8

2
u2 2 8

2
u2 

>. 8'1j.;2 + u2 - 2wov 8'lj;80 + l/ 802 

= -2[A2wo + C2kB2] sin 'lj; - 2[C2wo + C2kD2]a cos'lj; +Ji (0, a, 'lf;), 

fo(O,a,'lj;) = f(O,acos'lj;,awosin'lj;, -aksin'lj;), 

fi(O, a, 'lf;) = f~(O, a, 'lf;). 

(2.10) 

(2.11) 

It is obvious that the functions fo(O,a,'lf;), fi(O,a,'lj;), ... are 27r-periodic both in 'lj; 
and vt. In addition, they depend on a. The explicit form of these functions is known if 
the values A1(a), B1(a), C1(a), D1(a), and u1(a, 'lj;, 0), j = 1, 2, ... , are determined. 

Let us determine these functions. For this purpose, we expand the function f 0 (a, 'lj;, 0) 
in the double Fourier series 

fo(a, 'lj;, 0) = L J~?/,,(a)ei(nO+m1/J) (2.12) 
n,m 

where 

27r 27r 

J~?/,,(a) = 
4
: 2 J J fo(a, 'lj;, O)e-i(no+m1/;)d()d'lj;. (2.13) 

0 0 

As usual, we seek the function u1 ((),a, 'lj;) in the form of the series 

(2.14) 
n,m 

whose coefficients should be defined. 
Let us substitute series (2.12) and series (2.14) in Eq. (2.10) and equate the coefficierits 

of the same harmonics on the left-hand and right-hand sides of the obtained expression. 
Taking into account the condition of absence of zero de nominators, after simple calcula
tion, we obtain the following expression for u1 ((),a, 'lj;): 

'°' J~?h(a)ei(n0+m1/;) 
L >.2(1 - m2) + 2vwonm - v2n2 (2.15) 

n,m 
(nfO,mfl) 
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We also obtain the following expressions for the functions on the right-hand sides of 
Eqs. (2.6): 

2.,.- 2.,.-

2 [ A1 wo + C 2 kB1] = 
2

: 2 J J fo(B, a, 7/J) sin'ljJdBd'ljJ, 

0 0 

2.,.- 2.,.-

2 [ C1 wo + C 2 kD1] = + J J fo(B, a, 7/J) cos'lj;d(}dip. 
2n a . 

0 0 

(2.16) 

Hence, taking into account that y = kx - wot+ r.p, we obtain, to within values of the first 
order of smallness, 

2.,.- 2.,.-

aa I aa c J J f ((} ) . d(} . 
at + Wo ax = 47r2WO JO 'a, 7/J Slll 7/J d'ljJ, 

0 0 
(2.17) 

2.,.- 2.,.-

a'lj; I a'ljJ c ; J 1· f ( (} ) (} ~ + w0 -;:;- = 2 JO , a, ·l/J cos'lj;d d'ljJ, 
ut ux 4n woa · 

0 0 

where wb = dwo/dk is the so-called group velocity. 
By passing to trigonometric functions on the right-hand side of (2.15), we obtain 

( (} 'ljJ) __ 1_ "°""' { cos( nB + m'ljJ) 
ui 'a, - 2n2 ~ ).2(1 - m 2) + 2vwonm - v2n 2 x 

(n;io~+:i';i±l) 
2.,.- 2.,.-

x J J fo(B,a,'ljJ)cos(nB+m'ljJ)d(Jd'ljJ 

0 0 
2.,.- 2.,.-

sin( nB + m'lj;) J J } + ).2(l 2) 2 2 2 fo(G,a,'ljJ)sin(nB+m'ljJ)dBd'ljJ , - m + vwonm - v n · 
0 0 

where 'ljJ = kx - wot+ r.p. 

(2.18) 
' 

We set Ux = Uxx = 0, >.2 = w2
, and wo = -w i.n Eq. (2.1). Then expressions (2.15)

(2.18) coincide with the relations presented in [2] for a nonlinear oscillator subject to the 
action of the perturbation c:f(vt, u, Ut) in the non resonance case. 

If the right-hand side of Eq. (2.1) does not depend on vt, then, instead of (2.17) and 
(2.18), we get the expressions · 

2.,.-

aa , aa c J . 
~+won= -

2
- fo(a, 7/J) sm'lj;d'lj;, 

ut ux nwo 
0 

(2.19) 
2.,.-

ar.p , ar.p c: ;· ( ~t + wo-;:;- = -
2
-- Jo a, 7/J ) cos 'ljJd'ljJ, 

v ux nwoa 
. 0 



226 Yu. A. Mitropolsky 

27r 

ur (a, 'If;)= ~ L >.2 (l ~ m 2 ) { cosm'lj; j fo(a, 'l/J)m cos'ljJd'ljJ 
m(m""±l) O 

2rr 

+sin m'ljJ j fo(a, 'ljJ)msin'ljJd'ljJ }, 

0 

which coincide with the relations given in [10]. 

(2.20) 

Let us consider in detail the construction of an asymptotic solution of the Klein
Gordon equation by the Bogolyubov averaging method. 

Consider the equation 

(2.21) 

and assume that its right-hand side satisfies the same conditions as before. For E = 0, Eq. 
(2.21) has a solution 

u = acos'ljJ, (2.22) 

where ,'l/J = kx - w0t + c.p, a and c.p are arbitrary constants, w0 and k satisfy the variance 
relation 

and the following relations hold: 

Ut = awo sin 'ljJ, Ux = -ak sin 'ljJ. 

Let us introduce new variables a( t, x) and c.p( t, x) by the relations 

u = a(t, x) cos'ljJ(t, x), 

Ut = a(t, x)wo sin 'ljJ(t, x), 

(2.23) 

(2.24) 

(2.25) 

where 'lf;(t,x) = kx-w0t+c.p(t,x). Then, demanding the expressions (2.25) to be compat
ible and performing elementary calculations, we get 

at cos 'ljJ - at.pt sin 'If; = 0, 

ax cos 'ljJ - ac.px sin 'ljJ = 0. 
(2.26) 

Multiplying the second relation in (2.26) by wb = C 2 k/wo and adding it to the first 
one, we obtain 

(2.27) 

Further, we have 

Utt = atwo sin 'ljJ - aw5 cos 'ljJ + awo'Pt cos 'ljJ, 
(2.28) 

Uxx = -axko siµ 'lj; - ak6 cos 'ljJ - ako'Px cos 'l/J. 

Inserting these values in Eq. (2.21), we arrive at the relation 

(at+ wbax)wo cos 'If;+ ('Pt+ wb'Px)woasin 'If;= c:f(a cos 'ljJ, +awo sin 'If;, -aksin 'l/J). (2.29) 
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It follows from the system of equations (2.27), (2.29) that 

Oa 1 Oa E j ( 01 , • . I, k · ,1, ) · .I, - + w0~ = - a cos'+'' awo sin'+', -a ·sin'+' su1 '+', 
fJt uX Wo 

~cp + wb ~cp = ~ J (a cos 7/J, awo sin 7/J, -ak sin 7/J) cos 7/J, 
ut ux awo 

(2.30) 

where 7/J = kx - wot+ cp . 
Taking into account that wb = C 2 k/w0 , we write 

oa oa 07/J 2 oa 
wo at = wo o·tfJ Ft = -wo fJ ·tJ;, 

C2k oa = C2k oa 8 ·1/; = C2k2 oa . 
ox 87/J ox 87/J 

Hence, 

Similarly, 

Consequently, 

Thus, the system of equations (2.30) can be written in the form 

z~ = - {2 f (a cos ·I/;, awo sin 7/J, -ak sin 7/J) sin 7/J, 

~~ = - a~2 f (a cos 7/J, awo sil1'1/;, -ak sin 7/J) cos 7jJ. 

(2 .31) 

The obtained equations (2.31) are equations in the standard form in the 13ogolyubov sense. 
The right-hand sides of Eqs. (2.31) can be represented as the Fourier series 

where 

- { 2 J(a cosijJ, awo sin 7/J, -ak si11'0) sin 7/J = Ef1 (a, 7/J) =EL fin(a)eim/J _ 
. n 

-~ J(a cosijJ, awosin 7/J, -aksi11'1/;) cos7/J = c:h(a, I/;)= EL hn(a)ein..P . 
a-\ . n 

271" 

fin(a) = 2~ /Ji (a, 7/J)e-in"l/JdijJ, 

0 

271" 

hn(a) = 2~ / h(a, ·ljJ)e-in1/!d7/J. 

0 

(2.32) 
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Denote 

1-: ( ~'·) - I: 1 j' ( ) Jm/; 2 a, '!-' - -:-- 2n a f. . 
in 

n#O 

Changing the variables in (2.31) according to the relations 

a= a1 + EV1 (a1, ·1/;i), cp ='Pl+ EWJ (a1, ?/J1), (2.33) 

where ?/J1 = kt - wot + 'Pl, a1 and 'Pl are new variables, and the functions v1 (a 1, ·t/J1) and 
w1 (a1, tp1) satisfy the relations 

(2.34) 

instead of Eqs. (2 .31), we obtain the following system of equations in the new variables 
a1 and 'Pl: 

~~ = Ef10(a1) +c2 [f{a(a1,·t/J1)v1(a1,?/J1) + f{'l/;(a1,4J1)w1(a1,?/J1)] + E
3

, 

~~~ = Ef20(a1) + E
2 [f~a(a1, ?/J1)v1(a1, ·t/J1) + f~'l/;(a1, cp1)w1(a1, 'P1)] + E3. 

(2.~35) 

By neglecting the terms of the second order of smallness with respect to Eon the right-hand 
sides of system (2.35), we obtain the averaged system of the first approximation 

aa1 
a?jJ = Ef10(a1), (2.3G) 

or, in view of the reasoning presented above, the system 

271" 
(2.37) 

E . j f ( a 1 cos ·t/J1, a1wo siwt/J1, -a1 k sin 'l/J1) cos VJ1 d4J1. 
27fwoa1 

0'/)l / 0'/)] 
--+wo-- = aa ax 

. 0 

Equations of the first approximation (2.37) can easily be obtained by direct averaging 
of the right-hand sides of system (2.31) over ?jJ in view of the variance relation (2.4). 
Moreover, as expected, Eqs. (2.37) completely coincide with system (2.19). 

Note that, by using the described asymptotic method of nonlinear mcclmnics, one can 
successfully construct asymptotic approximate solutions of more complicated nonlinear 
equations similar to the Klein- Gordon equation for small E. Thus, we can construct 
solutions of a nonlinear equation with slowly varyirig parameters of the f6rm 

(2.38) 

where Eis a small positive parameter, T =Et is slow time, and dO/dt = v(T) both in the 
resonance and nonresonance case. The obtained relations for both the first and second 
approximations allow one to study non stationary conditions for a system described by an 
equation of the form (2.38). 
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Furthermore, it is also very interesting to investigate the act ion of white noise ~Y with 
intensi ty 1 on a system described by a nonlinear equation of the form (2 .1 ). In this case, 
we consider the equation 

fPu 2 82
u 2 ( 01l OU) r:: ( OU OU) y at2 - c ax + >- ll = c:f u, at ' ax + v c:g u, 8t' ax ~ ' (2.39) 

for which the problem is reduced to finding a system of stochast ic differential equations 
for the ampli tude and phase and to the construction and analysis of the Fokker- Planck
Kolmogorov equation for the probability density of the amplitude and phase of t he system 
under consideration. 

These problems will be st udied in one of the subsequent papers. 

3. NOW WE ARE PASSING TO CONSTRUCTION OF ASYMPTOTIC 
SOLUTION OF PERTURBED BRETHERTON EQUATION 

Consider the equation 

1ltt + Uxxxx + 1lxx + U = E f (Vt, U, Ut, 'Ux) , 

which, for J(vt , u , Ut, ·ux) = u 3 , turns into the model I3retherton equat ion [1] 

Utt + Uxxxx + Uxx + 1l = c:u3
. 

Here, 

82u 
Utt = f)t2 ' 

(3. 1) 

(3 .2) 

For c: = O; Eq. (3.1) [as well as Eq. (3.2) ] degenerates into a nonperturbed equation 

Utt + 'Uxxxx + 'Uxx + 'U = 0; 
which admits t he running-wave solution 

u = acos ·ijJ, 'l/J = kx - wt + <p, 

where a and <p a.re constants, and k and w satisfy the dispersion relation 

w2 = k4 - k2 + 1. 

(3.3) 

(3.4) 

(3.5) 

Below, we present the principal scheme of the construction of the first and second 
approximations of an asymptotic solution according to the basic methods of nonli near 
mechanics (the KBM method) . This may turn out to be useful for the solution of spe
cific problems of natural sciences that require the investigation of wave processes, ta.king 
into account the effect of nonlinear time-dependent perturbing forces, random external 
perturbations, and other factors. 

Thus, passing to the construction of an approximate asymptotic solution of Eq. (3.1) , 
we assume that c: > 0 is a small para.meter and the function f ( vt , u , llt , U x ) is periodic (or 
almost periodic) in (} = vt and differentiable sufficiently many times with respect to the 
other arguments for all their finite values. 

Then, according to the known statements of asymptotic methods of nonlinear mechan
ics (the KBM method), an asymptot ic solution of Eq. (3.1) (for c:----+ 0) is sought in the 
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form of the following series with slowly varying parameters 1 [3, 4]: 

u = a(t, x) cos'lj.;(t, x) + cui(a, 1/J) + c2u2 (a, ·lj;) + c3 
... , 

1f.; = kx - wt+ 1.P(t, x), 
(3.6) 

where the slowly varying parameters a( t, x) and i.p( t, x) (the amplitude of the first harmonic 
and the phase) satisfy the system of equations 

aa 2 3 at =cA1(a)+c A2(a)+c ... , 

aa 2 . 3 
~=cB1(a)+cB2(a)+c ... , 
ux 

81.P · 2 . 3 
8t=cC1(a)+cC2(a)+c ... , 

81.P 2 3 
~ = cD1 (a)+ c D2(a) + c .... 
ox 

Here and in what follows, we denote 

aa aa 
~=at, ~=ax, 
ut ux 

It is clear that 

1/Jt = -w + cC1 (a)+ c2C2(a) + c3 ... , 

1/Jx = k + cD1 (a)+ c2 D2(a) + c3 
... . 

(3.7) 

(3.8) 

Differentiating the right-hand sides of Eqs. (3.7), we obtain the following expressions 
(to within quantities of order c2 ), which are necessary for further discussion: 

2 dA1(a) 3 att = c Ai(a) + c ... 
da 

2 dBi( a) · 3 
axx = c Bi (a)+ c ... 

da 

2 dCi(a) 3 l.Ptt=E A1(a)+c ... , 
da 

2 dD1(a) . 3 • 
1Pxx = c da B1 (a)+ c .... 

Denote 

u0 (a, 'If)= a(t, x) cos·lj;(t, x). 

By differentiating the terms of series (3.6) with respect to t and x, we get 

u~ =at cos 1f.; - al.Pt sin·lj;-+ aw sin 'lj.;, 

u~t = 2 [ atW sin 1f.; + ai.ptW cos 1f.;] 

+ att cos 1f.; - al.Ptt sin 1f.; - 2a1 I.Pt sin 7./J - al.Pf cos 1f.; - aw2 cos ·lj;, 

1 Below, for simplicity, we assume that the right-hand side of Eq. (3.1) docs not depend on vl 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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u~ = ax cos 7/J - ai.px sin 7/J - ak sin 7/J, 

. u~x = -2 [ axk sin 7/J + ai.pxk cos ·t/;] 
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(3.13) 

+ axx cos 7/J - ai.pxx sin 7/J - 2ax'Px sin.7/J - ai.p; cos 7/J - ak2 cos 7/J, (3. 14) 

·u~xxx = 4 [ axk3 sin 7/J + ai.pxk3 cos 7/J J + 6 [ 2axi.pxk + ai.pxxk2] sin ·t/; 

- 6 [ axxk2 - ai.p;k2] cos ·t/; + E
3 

· · · + ak4 cost/;. (3.15) 

Further, we determine the derivatives of u 1 (a, 7jJ) with respect to t and x: 

Uit(a, 7/J) = 1l1a(a, 7/J)at + u1.,µ(a , 7/J)i.pt - u1 .,µ (a, V;)w , 

·uw (a, 7/J) = -2 [wat'Ul-i/Ja (a, ·t/; ) + Wi.pt1l1'/.></J (a, 7/J)] + w2u1 .,µ.,µ ( a, 7jJ) + E2 . . . , 

U1x(a, ·t/;) = ax1l1a(a, 7/J ) + 1.PxU1.,µ(a, ·t/; ) + ku1.,µ(a , ·t/; ) , 

U1xx(a, 7/J) = 2[kax'U1a.,µ(a, 7/J) + ki.pxu1.,µ.,µ(a , 7/J)] + k2·u1.,µ.,µ(a , ·t/;) + E
3 
... , 

(3.16) 

(3.17) 

(3 .18) 

(3.19) 

'U1xxxx(a, ·t/;) = 4[k3ax1lla1/J,,&1/J(a, 7/J) + k3 i.pxu1,p,p..;.1.,µ(a , t/;)] + k4u1,p·<fJ·!}J1/J (a , 7/J) + E
3 
.... 

(3.20) 

For the term u2(a , 7/J), to within quantities of the second order inclusive with respect 
to E, we get 

U2t(a, 7/J) = -u2..;.,(a, 7/J)w + E
3 
... , 

1l2x(a, 7/J) = u2.,µ(a, 7/J)k + E
3 
... , 

2 u2u (a, 7/J ) = u2,µ.,µ (a, 4; )w , 

'U2xx(a, ·~;) = u2.,µ<JJ (a , ·tj;) k2
, 

(3.21) 

(3.22) 

(3.23) 

By substituting expressions (3.6), (3.10), (3.12), (3.14), (3.15) , (3.17) , and (3.19)--(:3.23) 
for u , 'Utt, 1lxx, and 1lxxxx on the left-hand side of Eq. (3.1) and taking relations (3.9) into 
account, to within quantities of order E2, we obtain 

'Utt + 1lxxxx + 1lxx + 1l = -w2 
Cl COS 't/J + k4 a COS ·ljJ - k2 

Cl COS ·ljJ + a COS ·ljJ 

+ E{ [k4u1.,µ.,µ.,µ.,µ(a , 7/J) + w2u1.,µ.,µ(a , ·t/; ) + k2u1 ·</J·l/J (a, t/; ) + u1(a, ·t/;)] 

+ 2[A1(a)w + (2k3 
- k)B1(a)] sin-t/; + 2[C1(a)w + (2k3 

- k)D1(a)]acos ·t/;} 

+ E
2{ [k4 1L2.,µ,µ.,µ.,µ(a, 7/J) + w2u2.,µ..;.,(a, ·t/; ) + k2·u2.,µ..;.,(a, ·t/;) + ·u2(a, ·tj;) ] 

+ 2 [A2(a)w + (2k3 
- k)B2(a)] sin 7/J + 2 [C2(a)w + (2k3 

- k)D2(a)]a cost/; 

+ [ - a dC~~a) A1 (a) - 2A1 (a)C1 (a)+ 6( 2k2 B1 (a)D1(a) 

2 dD1 (a) ) dDi (a) J 
+ ak da B1 (a) - a da Bi (a) - 2B1 (a)D1 (a) sin 7jJ 

+ [dAl~a) A1(a) - aC?(a)- 6(dBl~a) B1(a)k2 - aDi(a)k2) 

dB1 (a) 2 ] [ 3 + da B1(a)-aD1(a) cos7f;+4 B1(a)k u 1a.,µ,p.,µ(a,7/J) 
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+ D1(a)k3'Ul'l/J'l/J1/n/; (a, 'lj.i)] - 2 [wA1 (a)u~a'l/J(a, ·tj;) + wCi (a)tLJ 'l/J'l/J (a, !,0)] 

+ 2[Bi (a)k1L1a'ljJ (a, 'lj.i) +Di (a)k'UJ'l/J'l/J(a, 'lj.i) ]} + c:-
3

.... (3.24) 

By substituting expressions (3.6) , (3 .10), (3.14), (3.16) , and (3.18) for tL(a, ·VJ), 'u1(a, tj;) , 
and 1Lx(a, 'lj.i) on the right-hand side of Eq. (3.1) and expanding the result in t he Taylor 
series, we get 

c:l('U, 'Ut , 'Ux) = c:l(a cos'lj!, aw sin 'lj.i, -aksill'ij;) 

+ .c:-2 { l~ (a cos 'lj!, aw sin 'lj.i, -ak sin 'ljJ )1L1 (a, 'ljJ) 

+ l;,t (a cos 'lj!, aw sil1'ij; , -ak sin 'ljJ) (A1 (a) cos 't/J - aC1 (a) sil1'VJ - wui ..;., (a,.tj; )) 

+ l~Ja cos 't/J, aw sin 't/J , -ak sin 't/J ) (B1 (a) cos 't/J - aDi (a) sill'ij; -1- klt1 v_, (a, 't/J) )} -1- c:- 3 
... . 

(3.25) 

By equating the coeffi cients of the same powers of E in expressious (3.24) a nd (3 .25) , 
we obtain the following chain of equations for the determination of the functions u;(a, tj;), 
Ai(a), Bi (a), Ci(a), and D i(a), ·i = 1, 2, 3 , ... : 

c:-0 
: - w2a cos 'ljJ + ak4 cos 't/J - ak2 cos 't/J +a cos ·tj; = 0, (3.2G) 

c:-
1 :k4 'ul'l/J'l/J'l/J'l/J(a, 't/J )-1- w2'UJ'l/J'l/J(a, 't/J )-1- k2'UJ 0'1/J (a, ·ij;) + u1(a , 't/J) 

+ 2 [A 1 (a )w -1- 2 ( k3 
- k) B 1 (a) J si 11'ij; 

-1- 2[C1(a)w-I- (2k3 -k)Di(a)]a cos'lj.i 

= c: l(a cos 't/J, aw sin 't/J, -aksin 'i/J), (3 .27) 

c:-
2 :k4 'U2 '1/J'l/J'l/J'l/J (a, 'lj.i ) + w21L21f,i'!/J(a, 'lj.i) + k2'U2'1/J'l/J (a , 't/J) -1- 'U2(a, ·ij; ) 

+ 2[A2(a)w -1- (2k3 
- k)B2(a)] sin 't/J + 2 [C2(a)w -1- (2k3 

- k)D2(a)]a cos ·ij; 

+ [ - adC:~a) A1(a)- 2A1(a)C1(a) + 6(2k2B1(a)D1(a) 

2dD1(a) ) dD1(a) J + ak da B1(a) - a da Bi(a) - 2Bi(a)D 1(a) sin 'ij; 

[
dA 1(a) 2 (dB1(a ) 2 + da A1 (a) - aC1 (a) - 6 da B1 (a)k - aDT(a)k2 

dB1 (a) 2 ] 
-1- da B 1 (a) - aD 1 (a) cos 't/J 

+ 4 [B1 (a)k31L1a'ljJ'l/J'l/J(a, 't/J) +Di (a)k3·ul 'l/J'l/J'l/J'1/J (a , 'i/J) ] 

- 2 [wA1 (a )u1a'ljJ( a, 't/J) + wC1 (a )1Ll '!/Jt/1( a, y!J ) J 

+ 2 [B1 (a)klt1a'l/J(a, 'i/J) -1- D1 (a)ku1'1/J1/,J(a, 'i/J )] 

= l;,(a cos'tj;, aw sin 't/J, -aksi11'tj; )u1 (a , 't/J) 

+ l~t (a cos 't/J, aw sin 't/J , -aksin 't/J) (A1 (a) cos ·tj; - aC1 (a) si!1'ij; - w111 ..;_.(a, 't/J )) 

+ l~x(acos'tj;, awsin'ij;, -aksil1'ij; )(B1(a) cos 'ij; - aD1 (a) sil1'ij; + ku1iJ1(a, ·~')) , (3.28) 
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Equations (3 .26)- (3.28) can be rewritten in the form 

- w2a cos 1./J + ak4 cos 1./J - ak2cos 1./J + a cos 1./J = 0, (3 .29) 

k4 ·u1 ,µ,µ,µ·ip (a, 1./J) + (w2 +k2)·u1 ,µ,µ (a,1./J) + 1L1(a,1./J) = fo(a , 1./J ) 

- 2 [A1 (a)w + (2k3 
- k)B1 (a)] sin 1./J - 2 [C1 (a)w + (2k3 

- k)D1(a )] a cos ·tji, (3 .30) 

k4 u2,µ,µ,µ,µ (a , 7./J ) + (w2 + k2)u2,µ,µ (a, 7./J ) + 1L2(a, 7./J ) 

{ 
3 dCi(a) 

= fi (a , 1./J ) - 2 [A2(a)w + (2k - k)B2(a)] - a da Ai (a) - 2A1 (a)C1 (a) 

+ 6 ( 2k2 B1 (a)D1 (a) + ak2 d~i;a) Bi (a)) - a dD~;a) Bi (a) - 2B1 (a )D1 (a) } siwtjl 

- { 2[C2(a)w + (2k3 
- k)D2(w)]a + dA~~a) Ai(a) - aC~(a) 

- 6(dB;~a) Bi (a)k2 - aDi(a)k2) + dB;~a) Bi (a) - aDi(a)} cos '</J, (3·.31) 

where, for simplicity, we have introduced the following notat ion: 

fo(a, 1./J ) = f(acos ·t)! ,awsin 1./J , - aksin 1./J ), (3 .32) 

fi (a , ·tji) = f~(a cos 1./J , aw sil1'tjl, - ak sin 1./J )u1(a,1./J) 

+ f~1 (a cos ·tji, aw sin 1./J, - ak siwt)!) (A1 (a) cos 1./J - aCi(a) sin tjJ - wu1 ,µ (a , 1./J )) 

+ f~Ja cos 1./J, aw sin 1./J, -ak sin 1./J) (Bi (a) cos 1./J - aD1 (a) sil1'l/J + ku1 ,µ (a , 1./J )) 

- 4 [ B1 (a )k3
u1a1/J1/J1/J ( a, 'tP ) + D1 (a )k3

ul 1/J1/J1/J1/J (a , 1./J )] 

+ 2[wAi(a)u1a,µ (a , 1./J ) + wC1(a)u1 ,µ,µ (a , 1./J )] 

- 2[B1(a)ku1a,µ (a ,1./J ) + D1(a)ktl1 1f;1f; (a,1./J)]. (3.33) 

Dy virtue of the dispersion relation (3.5), Eq. (3.29) is identically equal t o zero . 
. . oa oa oc.p oc.p 

To determme u1(a,1./J), A1(a), B1(a), C1(a), and D 1(a) (1.e., --;:;---, ~ ' !:l' and -() 
· ut ux ul X 

in the first approxi mation) from Eq. (3.30), we consider the Fourier expansion of the 
function fo(a , 1./J), which is obviously periodic in 1./J (recall that 1./J = kx - wt + c.p) . We have 

where 

CXl 

fo(a , 1./J ) = go(a) + L [gn(a) cosn'<jJ + hn(a) sin n 1./J J, 
n = l 

2n 

.9n(a) = ~ j fo(a, 1./J) cosn1./Jd1./J, 
0 

2n 

hn(a) = ~ j fo(a, 1./J) sin n1./Jd1./J, n = 0, 1, 2, . . . . 

0 

(3.34) 

(3.35) 
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We seek the function u 1(a,7./; ) in t he form of a periodic function of 'lj;, namely, 
00 

u1(a, 7./;) = vo(a) L [vn(a) cosmjJ + Wn(a) sinn7./J]. (3.36) 
n = l 

By substituting the right-hand sides of expressions (3 .34) and (3 .36) into Eq. (3 .30) , we 
obtain the expression 

00 

vo(a) + L [k4 n 4 
- (w2 + k2)n2 + 1] [vn(a) cosn'lj; + wn(a) sinn7./J] 

n = l 
00 

= 9o(a) + L [9n(a) cosrn/; + hn(a) sin n'lj; J 
n=2 

+ {g1(a) - 2a[C1(a)w + (2k3 
- k)D1(a)l} cos'lj; 

+ { h1 (a) - 2[A1 (a)w + (2k3 
- k)B1 (a)]} sin ·tj;, (3 .37) 

whence, by equating the coefficients of the same harmonics, we get (w2 = k 11 
- k'2 + 1) 

3 h1 (a) 
Ai (a)w + (2k - k)Bi (a) = -- , 

a 
(3.38) 

( ) ( ) ( ) 
9n (a) 

vo a = go a ' Vn a = k4n4 - (w2 + k2)n2 + 1 ' 

hn(a) 
Wn(a) = k4n;J - (w2 + k2)n2 + 1 ' n = 2, 3, .. . 

(3.39) 

Equalities (3 .38) guarantee that the function ·u1 (a , ·tj;) has no secular terms. 
Then the required function u1 (a , 'lj;) can be represented as follows : 

00 1 
u1(a ,7f; ) = go(a)+"'""""' 4 4 ( 2 2) 2 (gn(a)cosn-t/;+h11 (a)sinn'lj; ) , 

L..,kn-w+kn+l 
n = 2 

(3 .40) 

where 9n(a) hn(a) , n = 0, 1, 2, 3, ... , are defined by (3.35). 
Taking the system of equations (3. 7) into account , we can represent Eqs . (3.38) to 

within quantities of the first order of smallness in the form 

2n 
8a 2k3 

- k 8a E ; · 
--;::;-- + -

8 
= - fo(a , ·tj;) sin·~;d'lj; , 

ut w x 27rw 
0 

(3.41) 
2n 

8<.p 2k3 
- k 8<.p E J -

8 
+ -

8 
= -

2
- fo(a, 'lj;) cos ·rjJd'lj;. 

t W X 7raW 
0 

For the construction of the second approximation, it is necessary to find u2(a , 7./; ), 
A2(a, 7./;) , B2(a, 7./;), C2(a, 7./; ), and D2(a, 7./;) by using Eq. (3.28) or (3.31) . I3y expanding 
the function fi (a, 'lj; ) in a Fourier series, we get 

00 

fi (a, ·tj; ) = g6
1
)(a) + L [g~1 >(a) cosn'lj; + h~1 l(a) sin n'lj; J, (3.42) 

n = l 
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where 

271" 

g~1 >(a) = ~ j Ji (a, ·tjJ ) cosn'l)Jd'l)J, 

0 
( 3.43) 

271" 

h~1 >(a) = ~ J Ji (a, V; ) sinnV;dV;, n = 0, 1, 2, .... 

0 

We seek u2(a , V; ) in the form of a series 

00 

u2(a, 't/J) = v~1 ) (a)+ L [v1(i
1>(a) cosn·t/J + h~1 l(a) sin n-t/J], 

n=l 

(3.44) 

substituting it in Eq. (3 .31); the unknown coefficients v~1 )(a), w~1 )(a) , n = 0, 1, 2, . . ., of 
harmonics can be determined as in the previous case. By substituting expressions (3.44) 
for u2(a, V;) and (3.42) for f1 (a, V;) on the left-hand and right-hand sides of Eq. (3.31) and 
equating the coefficients of the same harmonics, we obtain 

( 1) ( ) 
Vo(l)(a) = Yo(l)(a), (1)( ) - 9n a 

vn a - k4n4 - (w2 + k2)n2 + 1 , 

(1) - h~l)(a) 
wn (a) - k"n4 - (w2 + k2)n2 + 1 , n = 2, 3, 4, ... , 

(3.45) 

and 

2[C2(a)w + (2k3 - k)D2(a)]a + [dAl~a) A 1(a) - aC~(a) 

- 6(d!i B1(a)k2 - aDi(a)k2) + dBl~a) B1(a)- aDi(a)J = g~1 )(a) , 
3 dC1 (a) 

2[A2(a)w + (2k - k)B2(a)] - a da Ai (a) - 2A1 (a)C1 (a) 

(3.46) 

+ 6 (2k2 B1 (a)D1 (a)+ ak2 dDi (a) B1 (a)) - d~i (a) aB1 (a) - 2B1 (a)D1 (a) = h~ 1 ) (a). 
da .a 

We can now write the following expression for ·u2(a, V;): 

( ) _ (I) ( ) ~ 1 [ (I) ( ) . h( I) ( ) · ] ( ) u2 a, 't/J - Yo a + ~ k4n4 _ (w2 + k2)n2 + 1 Yn a cosntjJ :- n a smn't/J , 3.47 

where g~1 )(a) and h~1 )(a) , n = 0, 2, 3, ... are defined by (3.43). Expressions (3.46) guaran
tee the absence of secular terms in (3.47) . 

According to (3.46), we obtain expressions for A2(a) , B2(a) , C2(a) , and D2(a) that 
are necessary for the construction of Eqs. (3 .7) in the second approximation: 
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271' 

gi 1
)(a) = ~ j fi(a , ·!/J)cos ·tjJd'ljJ, 

0 

211' 

hl1
)(a) = ~ j fi (a, 'l/J) sil1'tjJd·tjJ , 

0 

(3.48) 

(3.49) 

adding the corresponding equalities in (3.38) and (3.48) together, and usi11g Eqs. (3.7) 
(and the corresponding coefficients of r:: and r:: 2 ), we obtain Eqs. (3.41) i11 Lhc second 
approximation in the form 

271' 
(3.50) 

ar.p , ar.p 1 j 2 . -;::;-- + w-;:;--- = -
2 

- [r::fo(a, 'l/J) + E Ji (a, ·tjJ)] cos'l}Jd'ljJ 
ut ux nwa 

0 

- ~ { dAi (a) Ai (a) - C?(a)a 
2wa da 

- 6(dBi (a) B1 (a)k2 - aD?(a)k2 ) + dBi (a) B1 (a) - aDf ((l) } , 
da da 

2k3 k 
where w' = is the group velocity [for the linear equation (3.3) ] and .fo(a, 0) and 

w 
fi (a, 'ljJ) are defined by (3.32) and (3.33). 

Thus, in the first approximation, the equation 

Utt+ Uxxxx + Uxx + U =cf (u , 'Ut.1 1lx) (3.51) 
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has an asymptotic solution 

u(t , x) = a(t, x) cos ?j.J (t, x ), (3.52) 

where 1/J(t, x) = kx - wt+ ip(t, x ), and the slowly varying amplitude a(t, x ) and phase 
ip( t , x) are to be determined from the system of the first approximation 

27r 

Da 8a E ;· . - +u./ ;::;-- = - fo(a ,1/J )sm ?j.J d't/J, 
fJt uX 27fW 

0 
(3.53) 

27r 

Oi.p 1 0!.p E J . -
8 

+ w ~ = -- fo(a, 'l/J ) cos ?j.Jd?j.J, 
t ux 27rwa 

0 

2k3 - k . 
where w2 = k4 - k2 + 1 is the dispersion relation, w' = is the group velocity [both 

w 
for the linear equation (3.3)], and fo(a , 't/J) is defined by (3.32). 

As is customary in nonlinear mechanics, an improved first approxirnation is defined 
by the expression 

u(t , x) = a(t , x) cos ?j.; (t , x) + c u1 (a , ·tjJ ) , (3.54) 

where EU1 (a, 1/J ) is calculated according to formula (3.40) , and the slowly varying a1nplituclc 
a(t, .r ) and phase ip(t , x) arc determined from the equations of the first approxima tion 
(3.53). 

As usual, to obtain the second approximation, it is necessary to substitute ll1c slowly 
varying amplitude a( t, x) and phase ip( t, x) determined from the equations of the second 
approximation (3.50) into expression (3.54). 

Consider the first approximation in more detail. 
In order that u 1 (a , 1/J) do not contain secular terms, it is necessary that the fun ctions 

A 1 (a) , B1 (a) , C1 (a) , and D 1 (a) in Eqs. (3.7) satisfy Eqs. (3.38): 

Ai (a)w + (2k3 - k)B1 (a) = hi~a) , (3.381) 

3 01 (a) 
C1 (a)w + (2k - k)D1(a) = -·~ - , (3 .382) 

24 
where hi(a) and g1 (a) are defined by (3.35). 

vVe have 

Therefore, according to Eqs. (3.7) , we can write (in the first approximation) 

A ( )dD1(a) = B ( )dC1(a) A ( )dB1(a) = B ( )dAi (a) . 
1a d 1a d , 1a d 1a d a a a . . a 

(3.55) 

Equations (3.38) and (3.55) give four relations for four unknown fun ct ions J\ 1 (u ), 
B1 (a), C1 (a), and D1 (a). Having solved these equation's and found, in the first approx
imation, the right-hand sides of Eqs. (3.7) that det ermine the slowly varying a mpli t ude 
a(t , x ) and phase zp (t , x ), according to relation (3.40) , we can det ermine u 1 (a, l/J) . whi ch. as 

D1.p 
indicated above, does not contain secular terms. Note that Ci (a) = ~ can be int erpreted 

u t 
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a 
as a "shift of the frequency w" (in the first approximation) , whereas D 1 (a) = 0~ can be 

interpreted as a "shift of the wave num ber k." 
Nevertheless, in the general case, it is impossible to completely solve the system of 

equations (3 .38) and (3.55) without certain restrictions on the physical problem. 
For example, assume that u(t, x) oscillates according to the sine law for all t. In this 

case, we can set c:C1 (a) = 'Pt(t, x) = 0 and c:A1 (a) = at(t, x) = 0. Then we have 

(3.56) 

as a "shift of the wave number k" [c:D1 (a) = <pk(t, x )], and 

(3.57) 

Otherwise, if we assume that, for all x, we have a purely sinusoidal wave, then we can 
set t:B1(a) = ax(t,x) = 0 and t:D1(a) = 'Pt(t,x) = 0 and solve Eq. (3 .38) with respect to 
c:A 1 (a) = at(t, x) and c:C1 (a) = 'Pt(t, x) to obtain a correction for the amplitude and the 
shift of the frequency. 

Let us consider an example that illustrates the effect of external perturbation on the 
dispersion relation established for a linear nonperturbed equation. 

As such an example, we consider the model Bretherton equation (3 .2). 
For c: = 0, a solution of Eq. (3.2) has the form (3.4), and the dispersion relation (3.5) 

holds. 
Assume that A 1 (a) and C1 (a) are equal to zero. Then, in the first approximation, 

according to Eqs. (3.38), we have 

or 

3 1 
(2k - k)D1(a) = ?g1(a) 

~a 

2,,-

~: = 27r(2k
1
3 _ k) j c:fo(acos'lj;) sin'lj;d'lj;, 

0 

2,,-

0<p 1 J ox = 27ra(2k3 _ k) c:fo(a cos'lj;) cos'lj;d'lj;. 
0 

(3.58) 

(3.59) 

The right-hand side of Eq. (3.2) is c:u3 and, consequently, we should replace t: fo by 
rn3 cos3 'ljJ in Eqs. (3.59). Then Eqs. (3.59) take the form 

oa = O o<p 3rn
2 

ox ' ox 8(2k3 - k) 
(3.60) 

Let us determine how the "shift of the wave number" k affects the dispersion relation 
(3.5). For this purpose, in the dispersion relation (3.5) obtained for the nonperturbed 
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equation, we should replace the wave number k by k + '-Px· As a result, we obtain 

2 ( 3ca
2 )4 ( 3ca

2 )2 
w = k + 8(2k3 - k) - k + 8(2k3 - k) + 1 

3rn2 

= k 4 
- k2 + -- + 1 + c3 

4 
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Thus, in the first approximation (to within quantities of order E), the dispersion rela
tion for the model Bretherton equation has the following form: 

3ca2 
w2 = k4 

- k2 + 1 + -- · (3.61) 
4 

To obtain an improved first approximation, it is necessary to determine cu1 (a, 'l/J ). After 
simple calculations with the use of relations (3.40) and (3.35), we get 

Ea3 · 
rn1 (a, 'l/J) = 

32
(
9

k4 _ 
1

) cos 3·l/J (3.62) 

and, corisequently, in the improved first approximation (under the assumptions made 
above), a solution of the Bretherton equation has the form 

ca3 

u(t,x) = acos'lj; + 
32

(
9

k4 _ l) cos3'l/;, (3.63) 

where 

( 
3ca

3 
) 

·~J = k + 8(2k3 - k) x - wt+ '-P· 

Let us now calculate the corresponding corrections for the frequency and wave number in 
the second approximation. Since, by assumption, A 1 (a)= 0, B1 (a) = 0, and C1 (a) = 0, in 
the second approximation, the system of equations (3.50), which defines the slowly varying 
amplitude a(t, x) and phase tp(t, x), takes the form 

2n 

~a +w'~a = -
1
-/[cfo(a,'l/;)+c2 fi(a, ·t/J)]sirn/Jd'l/;, 

ut uX 27rW 
0 

(3 .64) 
2n 

fJtp 1 fJtp 1 J 2 ' c 2 ~ + w ~ = -
2 

- [Efo(a, 'l/J) + E Ji (a, 'l/;)] cos'lj;d'l/J - -[6k1 - l]Di(a) , 
ut ux Kwa 2w 

0 

where 

3a2 

D1 (a)= 8(2k3 - k) 

In view of the fact that 
a3 

u1(a,'lf;) = 32(9k4 - l) cos3'lj;, 

according to (3.33), the function Ji (a, 'l/J) can be written as follows: 

Ji (a, 'l/J) = 3a2 cos2 'I/Jui (a, 'l/J) - 4D1 (a)k3uh/.n/nf.r.p(a, ·tjJ) - 2D1 (a)ku1 ..p1J; (a, ·tjJ). 
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Taking into account that 

9a3 

U1..p..p(a, 7/J) = -
32

(
9

k4 _ l) COS 3'ljJ, 
8la3 

U1 ..p..p..p..p (a , 7/J ) = 32 (
9

k4 _ l) COS 37/J, 

we get 

3a5 
2 3a5 · 18(18k3 - k) 

fi(a,'ljJ) = 32(9k4 - 1) cos 'ljJcos3'ljJ- 8(2k3 - k)32(9ktl - 1) cos3·t,b. 

Thus, it is easy to see that system (3.4) can be represented as follows: 

aa ,aa - 0 
at+ wax - ) 

21T 

arp I arp 1 J 2 c2 

-a + w -a = -- [cfo(a, 7/J) + E !1(a,7/J)] cos·tjJd'ljJ - -(6k2 - l)Di(a). 
t x 2~wa 2w 

0 

(3.65) 

Finally, we obtain a correction for the wave number k in the second approximation in the 
following form: 

arp 3rn2 
2 3a4 [ 1 3(6k2 

- l)J 
ax = 8(2k3 - k) + E 128(2k3 - k). 2(9k4 - 1) + (2k3 - /;;) 2 . 

(3.66) 

Let us describe a method that is successfully applied to various problems connected 
with the propagation of waves in' liquids. The core of this method is the averaging of 
the Lagrangian and derivation of the corresponding Euler- Lagrange equatious (already 
averaged). Sturrock [5], Whitham [4 , 6-8], I3isshopp [9], and several other scientists de
veloped this method under the assumption that, in the investigation of wave processes, 
the frequency, wave number, and amplitude can be regarded as slowly varying functions 
of space coordinates and time. In fact, these assumptions coincide with those rnade in 
the present paper but, in some cases, as is shown below, our method al lows one to ob
tain the corresponding results in the first approximation in a simpler way. However. it is 
worth noting that this method is not always applicable, because we cannot easily construct 
the corresponding Lagrangian for all equations. Furthermore, the right-h~1,nd sides of Eq. 
(3.1) considered in this paper give more possibilities for a detailed investigation of specific 
features of perturbed wave processes. 

Below, we describe the application of this method to the model I3retherton equation 
(3.2), following the elegant presentation due to Nayfch [10]. 

It easy to verify that this equation is the Euler- Lagrange equation that corresponds 
to the Lagrangian 

(3.67) 

Indeed, according to the variation principle for Lagrangian (3.67), we obtain an Euler
Lagrange equation of the form 

(3.68) 

By substituting expression (3 .67) for the Lagrangian[, in Eq. (3.68) , we obtain Eq. (3.2). 
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We seek a solution of Eq. (3.8), taking into account the form of its right-hand side, in 
the .form of the expansion 

00 

u(t, x) =a cos'lj; +EL An cosn'lj; + c2 
... , (3.G9) 

n=l 

where, as before, 'ljJ = kx - wt+ <p, i.e., 1/Jx = k , 1/Jt = -w, and, consequently, 

(3.70) 

and the quantities a, w, k, and Ai arc slowly varying functions oft and x. 
Since, in the direct expansion, secular terms appear first among the terms of order E, 

we assume that the quantities ax, at, Wx, Wt, kx, and kt have the order E. 
Thus, we can write 

00 

'Ut = aw sin 'ljJ + at cos 'ljJ + EW L nA11 sin n'ljJ + c2 
... , 

n=2 
00 

1lx = -ak sin 'ljJ +ax cos 'ljJ - Ek L nAn sin n'ljJ + c2 
... , (3.71) 

n = 2 
00 

'U:i:x = -ak2 cos1/J - 2axk sin 'ljJ - Ek2 L n 2 An cos m/J + E2 
.... 

n=2 

By substituting expressions (3.71) and (3.69) in Lagrangian (3.67), we obtain a La
grangian that implicitly depends on t and x via the functions 'l/J, a, w, k, and A 1. The terms 
of this Lagrangian are 2n-periodic in 'ljJ and, as 'ljJ runs through the interval [O, 2n], the 
changes in the other parameters are very small, whereas the Lagrangian varies much faster. 
Therefore, as is accepted in all modifications of the averaging method, the Lagrangian 
should be averaged with respect to ·tjJ over the interval [O, 2n] under the assumption that 
the quantities a, w , k , and Ai re main constant. 

By averaging the right-hand sides of expressions (3.68) and (3 .70), we obtain 

3 
u;4 = -a4 + E 8 ... ' 

1 
u;2t = -a2w2 + E 2 ... ' 

1 
U2 = -a2k2 + E x 2 ... , 

(3.72) 

-2 1 2 2 
'Uxx = 2 a k + E .... 

By substituting expressions (3.72) into the right-hand side of (3.67) , we obtain the 
averaged Lagrangian 

Z = ~(w2 - k4 + k2 - l)a2 + 3c a4 + E2 4 32 ... ' (3.73) 

which explicitly depends on a and implicitly on 'ljJ via w and k (according to expression 
(3.70) and the relations 'l/Jk = k and 'l/Jt = -w). 
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By using the averaged Lagrangian (3.73), we write the.Euler- Lagrange cquatious (the 
averaged equations) that correspond to the variables a and '(/;. The Euler-Lagrange equa-
tion for a has the form ' 

a I 
oa = o, 

whence we immediately get the dispersion relation 

w2 = k4 - k2 + 1 + 3E a2 + E2 .... 
4 

(3.74) 

(3.75) 

Thus, in the first approximation, the dispersion relation (3. 75) obtained with the use of 
the averaged Lagrangian completely coincides with the dispersion relation (3 .G4) obtained 
by the KBM method. 

By using expression (3.70) and the fact that 'l/Jk = k and 'l/Jt = -w, we can write the 
Euler- Lagrange equation for the variable 'l/J in the form 

or 

_!!_ [8IJ + ~ [8IJ = 0 at ow ax ak · 
By differentiating the right-hand side of (3. 73) with respect to w and k , we get 

aI 1 2 
ow= 2wa · · ., 

We can now represent expression (3.77) in the form 

8 8 
-(wa2) + - [(2k3 - k)a2

] = 0 at ax 

(3.7G) 

(3.77) 

(3. 78) 

(3.79) 

or, taking into account the expression for the group velocity .w' = dw / dk introd uccd above, 

0 [ 2] 0 [ I 2] at wa + OX WW a = 0, (3.80) 

or 

[Oa
2 

0 ( I 2)] 2[ I l W at + OX W a +a Wt + W Wx = 0. (3.81) 

Since w = w(k), according to (3.75), we have Wt= w'kt and, hence, in view of (3 .70), 
Wt+ w'wx = 0 and Eq. (3.81) takes the form 

8a2 + ~(w'a2) = 0. (3.82) 
at ax 

Furthermore, we can represent expression (3.70) in the form 

ak ak 
-+w'- = 0. at ox (3.83) 

Thus, in tlie first approxfrri.ation (td within quantities of order c), for the solution of 
the Bretherton equation (3.2) u = a cos 'l/J ( 'l/J = kx -wt), the dependence of the amplitude 
a, frequency w, and wave number k on the space coordinates and time· is determined by 
relations (3.75), (3 .82), and (3.83). 
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The first equation in system (3.26) obtained for the Bretherton equation (3.2) by the 
KBM method (under our assumptions concerning the physical meaning of the problem) 
coincides with Eq. (3.82). Furthermore, it is easy to show that the sum on the right
hand side of expression (3.69) for the solution of Eq. (3.2) completely coincides with the 
expression for u1(a, 'l/J) obtained above [see formula (3.62)]. 
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XA Y DVNG NGHitM TitM C~N THEO NGHIA 
KRYLOV-BOGOLIUBOV-MITROPOLSKII 

CHO PHUONG TRINH SONG 

Trong bai bao da nghien dru hai vf d1,1 ap d1,1ng phucrng phap KIJM de xay d\rng 
nghi~m gan dung cua phl.l'cmg trlnh Klein-Gordon-Bretherton hay g~p trong nhieu t'rng 
d1,1ng. 


