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Abstract. The paper presents an extended averaged equation approach to the investiga
tion of nonlinear vibration problems. The proposed method is applied to some free/self
excited oscillators, nonlinear free and forced oscillations of a suspension system with 
two-degree-of-freedom. The results in analyzing the vibration systems with different non
linearity show the efficiency and advantages of the method. 
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1. INTRODUCTION 

All real engineering systems are nonlinear and subject to excitation during their 
operation. Research on vibration phenomena in nonlinear systems with an aim to reduce 
undesired vibration is needed. A great interest to researchers is to develop new methods 
for investigating nonlinear vibrations preferably applicable to wide classes of nonlinear 
systems including weak and strong nonlinearity, subject to deterministic and/or random 
excitations [1-9]. 

The method of moment equation is well known for analysis of random nonlinear 
vibration phenomena and gives also good approximate solutions for systems with strong 
nonlinearity [10-11]. The question is whether the method can be extended to deterministic 
systems. A proposed approach given in this paper concerned with some following classical 
methods. The averaging method is attributed to Bogoliubov and Mitropolsky [2]. The 
method, however, dates from the 18th century and was proved first to be correct by 
Fatou. More up-to-date references for the averaging method were given in [15, 16]. An 
extension of averaging method to nonlinear to strongly nonlinear oscillations is proposed 
in [17]. The idea of putting the nonlinear system in the form of the extended equation was 
proposed by Povzner in 1974, see also the book by Bogaevsky and Povzner [18] . In the 
paper, an extended averaged equation for deterministic systems is presented and then, for 
illustration, some free/ self-excited oscillators and nonlinear free/ forced oscillations of a 
suspension system with two-degree-of-freedom [21 - 22] are investigated. 
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2. EXTENDED AVERAGED EQUATION FOR DETERMINISTIC 
SYSTEM 

Consider a nonlinear system 

Z = F(Z) + Pcosvt, Z = (z1, z2, ... , znf, (1) 

where, F(Z) = (F1 (Z), F2 (Z), ... , Fn(Z))T is a nonlinear vector function of the vector Z, 
P=[p1 ,p2, ... ,pn]T is a constant vector. It is assumed that there exists a corresponding 
linear system 

(2) 

where A is a constant matrix. The term "corresponding" means the nonlinear and linear 
systems have the same dimension, i.e, the numbers of components of the vectors Z and X 
are equal to each other. Furthermore, the linear system should have expected properties of 
the nonlinear system. For example, if we are interested in periodic solutions of the nonlinear 
system then the corresponding linear system should be taken in the form that can possess 
them too. In general, the matrix A is fully unknown; however, if some properties of the 
nonlinear system responses are prior known then the matrix A should be choosen in such 
a way to provide those properties. 

For an arbitrary differentiable function w(t, Z, X) one gets 

dw aw n aw n aw n 
dt =at+ L oz (Fi(Z) +Pi cos vt) +Lox (L aijXj). (3) 

i = l i i=l i j=l 

Denote the averaging operator as 
T 

<. >= lim Tl J (.)dt. 
T->+= 

(4) 

0 

Suppose that the averaged value of w doesn't depend on the time 

(w) = const. (5) 

It follows 

Thus, one gets 

n I aw ) n I aw n ) ~ \ ozi (Fi(Z) +Pi cos vt) + ~ \ oxi (ff; aijXj) = 0. (6) 

Here, we consider functions of the form W = rks(t)zk'z~ ,W = 9ks(t)x'ki1; and W = 
hks(t)x'kz~ where k, s, m, p = 0, 1, 2, ... and rks(t), 9ks(t), hks(t) are functions of t, 
respectively. It should be noted that the equation (6) could be referred to as an extended 
averaged equation, which is similar to the moment equations in the theory of random 
vibrations, where the averaging operator is taken in the probabilistic sense [10-11], [13-
14]. The first advantage of the Eq. (6) is that this equation is exact if the condition (5) is 
satisfied. The second advantage is that the Eq. (6) can be applied to arbitrary nonlinear 
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systems since the condition of small nonlinearity of the system is not used for establishing 
the Eq. (6). Furthermore, the Eq. (6) contains both the response Z(t) of the original 
system and the response X(t) of it's corresponding homogeneous linear system. Thus, it 
can express links between the responses. Consequently, it allows us to make choices for the 
solution Z(t) in some optimal ways. It seems that the averaged equation (6) may give good 
approximate solutions for nonlinear systems. It is noted also that the averaging procedure 
proposed directly to the equation (1) differs from the conventional averaging one which is 
performed using Lagrange variation. 

The exact solution of (6) is, however, difficult to determine. One needs to solve it 
approximately. In order to close a set of averaged equations one needs some additional 
relationships between the variables. For instance, in the classical equivalent linearization 
and averaging methods one puts Z(t) = X(t) . Thus, with these methods, only a certain 
limited set of the equations from the hierarchy of the averaged equations can be satisfied. 
However, for the exact solution, all extended averaged equations have to be satisfied. One 
might expect that the accuracy of the technique may be better if more averaged equations 
are satisfied. On the other hand, X(t) represents only a linear system while Z(t) is from 
a nonlinear one. In order to satisfy more equations as well as to reduce the unknown 
variables one may express Z(t) as a nonlinear function of X(t): Z = G(X, a 1 , a 2 , ... ai, ... ) 
where ai are some unknown .. parameters. Now, Z(t) can express a no.nlinear response 
properties depending on the nonlinearity level of the motion equation, which is used to 
be ignored when applying the above-mentioned classical methods. Which optimal form 
of nonlinear function G that can give the best approximate solution to Z(t) is an open 
question. Since the nonlinear response is deviated from linearity, it can be expressed in a 
form of polynomial up to an order adequate enough to represent the original non-linear 
characteristics [19, 20], [13] as follows: 

N N N 

Zi =Xi+ L L ··· L O'.k1 k2 ... kn X~1 X~2 
. .. x~n; 

k1 =0 k2=0 kn=O 
(7) 

Thus , the problem is reduced to the problem of determining X(t) (or the matrix A) 
and the parameters ak1 k2 ... kn· One possibility is to apply the extended averaged equations. 
In order to receive a closed equation system, the number of equations will be taken to 
be equal to the number of unknowns. Thus, the problem of solving differential equation 
is reduced to the problem of solving a system of algebraic equations. Which system of 
averaged equations is better is an open question. However, from computation and nonlin
earity point of view, priority may be proposed to the functions 'ljJ with a degree as low as 
possible, and to the simple extended averaged equation as well as to the averaged equation 
depending on the nonlinearity level of the motion equation. A certain extended averaged 
equation system may have no solution at all or many ones. If the chosen system does not 
give any solution one should modify this system by changing some the original equations 
with other new ones. For illustration, some examples are considered. 
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3. FREE OSCILLATORS 

3.1. Free oscillator with higher nonlinearity degree 

Consider an one-degree of freedom oscillator 

{ 
z + z + E z3 + 'Y z5 = 0 

with 

together with it 's corresponding linear system 

x + k 2 x = 0. 

whe1e k is unknown constant. In this case, one has 

(a) 
z(O) = zo (b) 
i(O) = 0, (c) 

Z = {z, i}, X = {x, ±}, F(Z) = {i, -(z + cz3 + "(Z
5
)}, Pi= 0. 

Then, the Eq. (6) takes the form 

( ~~ i )- ( ~~ (z + cz
3 + "(z5

)) + ( ~= x )- ( ~= k2x) = 0. 

(8) 

(9) 

(10) 

(11) 

Taking "the lowest" polynomial functions w(z , i, x, x) from (11), one gets, for ex
ample: 

for 

for 

\[! = zi < i 2 > - < z (z +cz3 +'Yz5
) >= 0, 

w =xi < x (z + 10z3 + 'Yz5
) > - <ix>= O. 

(12) 

(13) 

The equation (12) is conventional averaged for original variables z, i while the 
equation (13) contains z, i , x, x. We establish the response of the nonlinear Eq. (8) in the 
form 

z(t) = x(t) + ax3 (t), 
where x (t ) is the solution of the Eq. (9), namely, 

x = acos<p, 

For a T-period solution z(t), one gets 

'P =kt. 

T 2n 

<. >= 2_ J (.)dt = ~ J (.)d<p. 
T 27r 

0 0 

It follows from (8.b), (15), (16) 

a= (zo - a)/a3
. 

(14) 

(15) 

(16) 

(17) 

Substituting (14)-(17) into (12), (13), after some calculations, one obtains two Eqs. 
for two unknowns: the amplitude a and the period T (or the frequency k) of x(t) as follows 

819207r2a2 
- 4096a2T 2 - 448rn4T 2 

- 55"(a6T 2 
- 983047r2zoa - 8192zoaT2 

- 1280czoa3T 2 
- 210"(zoa5T 2 + 1474567r2z6 - 20480z6T2 

- 2688cz6a2T 2 

- 525"fz6a4T 2 
- 5376czJaT2 

- 1100"(zJa3T 2 
- 14784cz6T2 

- 2145'Yzcia2T 2 
(18) 

- 4290"fz8aT2 
- 12155'Yz8T2 = 0, 
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163847r2 - 4096T2 - 384rn2T 2 - 451'a4T 2 - 40/'zoa3T 2 -

-2688c:z5 T 2 _.: 3301'z5 a2T 2 - 21451'z~T2 = 0, 

5 

(19) 

As a result, the solution z(t) of the original nonlinear system (8) can be obtained 
from (14). The period Tp obtained by the proposed method is compared with the exact 
period TE in the Table 1 for zo = 1 and different values of c and /'. The graphs obtained 
by the proposed method and by numerical simulation are presented in the Figs.l. (a-d). 
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Fig. 1. Graphs of the free oscillator with higher nonlinearity with E =I= 0.1; b. 
with E = / = l; c. with E = / = 10; d . with E = / = 100 

Table 1. The period of free oscillation of the system 3.1 

c = /' TE Tp error 
0.1 5.9023 5.8912 0.19% 
1 4.1320 4.1173 0.36% 
10 1.6916 1.6772 0.853 
100 0.5545 G.5491 0.97 % 

It can be seen from the Table 1 and from the Figs. 1.(a - d) that the proposed 
method can give results with very high accuracy for the arbitrary values of nonlinearity. 
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4. SELF-EXCITED OSCILLATOR 

4.1. Consider the VanderPol oscillator 
·I . 11 , 

. . . . . ( 

z'+ z + c;(~2 - 1')f = 0, 
1 ' ~ '., 1 

· 1, . 

together-with it's corresponding linear system (9).Jn this case, one has 

F(Z) = {i, -(z + E(z2 - l)i)}, Pi= 0. 

(20) 

(21) 

Taking "the lowest" polynomial functions w(z, i, x, x) from (11) , one gets, for ex
ample: 

for W = zi < i 2 > - < zf(z, i) >= 0, (22) 

for w =xi< xf(z, z) > - <ix >= 0, (23) 

for w =xi< xf(z, z) > -k2 <xi>= 0, (24) 

for w = i 2 /2 < if(z, z) > = 0, (25) 

where 

f(z, i) = z + E(z2 
:--- l)z. (26) 

In order to close a set of the equations, as well as to express the non-linearity of the 
solution z(t) of the nonlinear Eq. (20), we propose 

z(t) = x(t) + o:±(t) + {3x 2(t)x(t), (27) 

where x(t) is the solution of the linear Eq. (9). Substituting (26), (27) into Eqs. (22) - (25) 
and using (15), (16), after some calculations, one obtains the following equations: 

64k2 + 8rn4k4o:2{3 - 16rn2k2{38rn4 k2{3 + 30.72rn8k4{33+ 
(28) 

- 5rn6 k2{32 - l6a2{3 - 16rn2 + 64k2o: + l6a2k2{3 

- 16rn4 k2o:{3 - 16rn2k2o:2 - 640: + 64E = 0, 
(29) 

8k2 + 5a4 k4 {32 - a4 k2 {32 - 8k2 0'.2 

+ 8k4 o:2 + 4a2 k4 o:{3 - 4a2k2o:{3 - 8 = 0, 
(30) 

272a6 k2{32 + 128a2 - 512 + 512a4 k2o:{3 + 256a2k2o:2 

- 320a4k2{32 + 128a2k4o:4 + 6484k4o:{33 + 112a6k4o:{32 (31) 

- 256a2k2o:{3 - 512k2o:2 + l3a10k4{34 = 0, 

with the 4 unknowns: the amplitude a, frequency k (or the period T) of x(t), polynomial 
coefficients o: and {3. As a result, the solution z(t) of the original nonlinear equation (20) 
can be obtained from (27). The oscillation amplitude zp and the oscillation period Tp 
obtained by the proposed method are compared with the simulation quantities zs and Ts 
in the Table 2 for different values of E. 
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' ' Table.°]. The-period of the Vanderpol oscillation 1. 

li zp( error) Ts Tp(error) E zs 
0.1 1.9950 1.9997 (0.00233) 6.2949 6 ~ 2871 (0.00123) 
1 . 2.0080 1.9739 (0.0173) 6.6628 6.4901 (0.0263) 
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Fig. 2. Graphs of Vanderpol oscillator: a. with E. = 0.1; b. with E. = l ; c. with E. 

= 5; d. with E = 10 

2.b 

2.d 

The graphs obtained by the proposed method and by numerical simulation are 
presented in the Figs. 2 (a-d). It can be seen from the Table 2 and from the graphs 
in Figs. 2(a - d) that the results of the Vanderpol oscillator obtained by the proposed 
method are very close to the ones obtained by numerical simulations for arbitrary values 
of nonlinearity. 
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5. OSCILLATION OF A NONLINEAR SUSPENSION SYSTEM 

5.1. Freee oscillation of a nonlinear suspension system 

Consider the free oscillation of a suspension system, Mueller, Popp and Schiehlen 
[21], Roseau [22] which is represented schematically in Fig.3 by two bodies of mass m 1 and 
m2 linked to each other by a nonlinear spring (k3), a linear one (k1) and a shock damper 
with viscous damping (d1). Mass m 2 is contacting with the ground through a linear spring 
(k2). The non-traveling vehicle without damping d1 = 0 is governed by nonlinear equations 
as follows 

where it is denoted 

.Z1 = buz1 + bi2z2 + bi3z~, 
Z2 = b21Z1 + b22Z2 + b23Z~, 

__1 y, (t) 

t 

Ut) = pcosvt 

Fig. 3. Nonlinear suspension system 

The linear system corresponding to the nonlinear one (32) has the form 

i1 + aux1 + ai2x2 = 0, 

i2 + a21X1 + a22X2 = 0, 

an = wi(l + µ)(1 + c), 
2 

ai2 = -w2, 

a21 = -wiµ(l + c), 
2 

a22 = W2 , 

(32) 

(33) 

(34) 

(35) 
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where c is unknown. The general solution of the system (32) has the form 

x1 = c1r1sin(v1t+fh)+c2r2sin(v2t+fh), 
X2 = c1 sin(v1t + 81) + c2 sin(v2t + 82), 

where 

r1 = ' r2=---
v1 - an v2 - an 

The frequencies v1 and v2 are determined from the characteristic equation 

I 
(an - v

2
) a12 2 I = O. 

a21 (an - v ) 

g 

(36) 

(37) 

(38) 

The constants c1, c2 and phase values 81, 82 are determined by initial conditions of 
the free oscillation, e.g. 

x1(0) = 1, ±1(0) = 1, 

x2(0) = 1, ±2(0) = 1. 
(39) 

The initial conditions (39) allow to represent c1, c2, v1, v2 as functions of c. Now, 
one takes the response of equation (32) in the form 

z1(t) = x1(t) + a1xr(t), 

z2(t) = x2(t) + a2x~(t). 
(40) 

Consequently, one has got 3 unknowns c, a1, a2 whl'Ch can be found from the GEA 
equation which for an arbitrary differentiable function 

takes the form 

where 

w(X, Z) = w (x1, ±1, X2, ±2, z1, z1, z2, z2) 

= -aux1 - a12x2, 

h = wiµ(l + c)x1 - wix2 

= -a21 x1 - a22X2, 

h = -wi(l + µ)z1 + wiz2 - ,8(1 + µ)zr 

= bnz1 + b12z2 + b13zr, 
2 2 3 f4 = W1µz1 - W2Z2 + ,8µz1 

= b21Z1 + b22Z2 + b23Zr. 

Taking the lowest polynomial functions w(X, Z) from (41) , one gets: 

(41) 

(42) 
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· < ±1.Z1 > - < xif3 >= 0. 

After some calculations, from (43-45), one obtains 3 equations 

96b23cfri + 384b23c~c§rir§ + 96b23ciri + 240b23c7r7a1 + 2160b23cf c§rfr§a1 
I', ' 

+ 2160b23ciciriria1 + 240b23cgrga1 + 210b23c~r~ai + 3360b23c7c§rtr§ai + 75 

60b23cfcirfriai + 3360b23cicgrirgai + 210b23c~r~ai + 63b23ci0ri0ai + 1575 

b23c~c§r~r§ai + 6300b23c7cir7riai + 6300b23cf cgrfrgai + 1575b23cic~rir~ai 

+ 63b23d0r~0ai + 32b21(3cfria1+4ciri(l + 3c§r§a1) + c§r§(4 + 3c§r§a1)) 

+ 32b22(3cfr1a2 + c§r2(4 + 3c§a2) + ci(6c§r2a2 + ri(4 + 6c§a2))) + 12Scir1vf 

+ 96cfr1a2vf + 192cic§r1a2vf + 128c§r2vi + 192cic§r2a2vi + 96cir2a2vi = 0 

(43) 

(44) 

(45) 

(46) 

96b13cfd + 192b13cic§rir2 + 192b13cic§r1r§ + 96b13cir~ + 240b13c7rf a1 + 720b13c7c§ 

rfr2a1 + 1440b13cf c§dr§a1 + 1440bi3cicirida1 + 720b13cicir1ria1 + 240b13c~rga1 

+ 210b13c~r{ ai + 840b13c7c§r7r2ai + 2520b13c7c§rfr§ai + 3780b13cfcirfdai + 37 

80b13cfciririai + 2520b13cicgrirgai + 840bi3cicgr1rgai + 210b13c~r;ai + 63b13ci0 

riai + 315b13c~c§r~r2ai + 1260b13c~c§r{r§ai + 2520bi3c7cir7dai + 3780b13c7cirf 

riai + 3780bi3cfcgrfrgai + 2520b13cfcgdrgai + 1260b13cic~dr;ai + 315b13cic~r1 

r~ai + 63b13d0r~ai + 32b11(3cfria1+c§r2(4+3c§r§a1) + 2cir1(2 + 3c§r2(r1 + r2) 

a1)) + 32bi2(3cfa2 + 4ci(l + 3c§a2) + c§(4 + 3c§a2)) + 12Scir1vf + 96cfria1vf 

+ 192cicir1r§a1vf + 128c§r2vi + 192cic§dr2a1vi + 96cir~a1vi = 0 

96b13cfri + 384b13cic§rir~ + 96b13ciri + 240bi3c7r7a1 + 2160b13cfc§rfr§a1 

+ 2160b13ciciriria1+ 240b13cgrga1 + 210b13c~r~ai + 3360b13c7c§r7r§ai + 75 

60b13cfcirfriai + 3360b13cicgrirgai + 210b13c~r~ai + 63b13ci0ri0ai + 1575 

bi3c~c§r~r§ai + 6300b13c7cir7riai + 6300b13cfcgrfrgai + 1575b13cic~rir~ai 

+ 63b13d0d0ai + 32b11(3cfria1+4ciri(l + 3c§r§a1) + c§r§(4 + 3c§r§a1)) 

+ 32b12(3cfr1a2 + c§r2(4 + 3c§a2) + ci(6c§r2a2 + ri(4+6c§a2)))+12Scirivi 

+ 96cfria1vf + 192cic§da1vf + 128c§r§vi + 192cic§rir§a1vi + 96ciria1vi = 0 

(47) 

(48) 
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for the three unknowns c:, a 1, a2 where c1(c:), c2(c:), v1(c:), v2(c:) . The system (46-48) can 
be solved numerically as follows: . 

Step 1: let /3 = O(or k3 = 0). Then, the system is linear, one obtains E = a1 = a2 = 0, 
in other words, z1(t) = x1(t); z2(t) = x2(t). 

Step 2: let /3 = 0.1 (or k3 = 8) , the system is weak nonlinear, c:, a1 , a2 are found in 
neighborhood of an initial condition (0, 0, O) ; 

Step 3: let /3 = 1 (or k3 = 80), c:, a1, a2 are found in neighborhood of the initial 
condition (c:0, a~, ag), which are determined in the step 2. 

To do the same, step 3 will be applied for any other greater value up to the given 
one of /3 (or k3)· 

This procedure is established into a loop for software like Mathematica with "Find
Root" statement , or Matlab or Maple with "fsolve" statement , respectively. Once E is 
found, the linear system ( 43) is determined, the calculations from (37-39) allow us to fipd 
out, first v1, v2 , next r 1, r2 then c1, c2, fh , B2 and then the responses of the linear system 
x1(t) , x2(t). As a result , the solution Zp(t) = [z1(t), z2 (t)]T of the proposed method can 
be obtained from (40). This response Zp(t) is compared with a numerical simulation Zs(t) 
in the Table 3 for m1 = 80 kg, m2 = 1200 kg, ki = 30000 N/m, k2 = 320000 N/m and 
different values of k3. The graphs obtained by the proposed method and by the numerical 
simulation technique are presented in the Figs. 4. (a - b) , Figs. 5. (a - b). 
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Fig. 4. Graphs of the free oscillation of the suspension system, with k3 = 800.0N/ m3 
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Fig. 5. Graphs of the free oscillation of the suspension system, with k3 = 20000N/m3 

It can be seen from Table 3 that the proposed method can give the oscillation 
amplitudes with good accuracy in comparison with the simulation. Figs.4-5 show that the 
frequencies obtained by t he two methods are coincided in the free vibration for the system 
with different nonlinearity. 

Table 3. Free oscillation amplitude 

No k3 z1s max ZlPmax error z2s max Z2Pmax error 
1 80 1.9039 1.9170 0.68% 1.0294 1.0217 -0.75% 
2 4000 0.7798 0.7945 1.88% 0.5369 0.5609 4.46% 
3 8000 0.7273 0.7256 -0.24% 0.5513 0.5728 3.90% 
4 16000 0.6719 0.6465 -3.77% 0.5755 0.5907 2.65% 
5 20000 0.6692 0.6201 -7.34% 0.5825 0.5959 2.30% 
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5.2. Forced oscillation of a nonlinear suspension system 

Consider the forced periodic vibration of the suspension system shown in Fig. 3, 
which is governed by a differential equation system as follows 

(49) 

where 

(50) 

Now, for system (49), the corresponding linear one is considered 

(51) 

Firstly, the forced vibration of system (49) can be found in a form 

x1 = c1 cos vt + !1 sin vt, x2 = c2 cos vt + s2 sin vt. (52) 

Substitution of (52) into (51), yields the following algebraic equations 

(53) 

Four unknowns ci, c2, s1, s2 can be found from (53). Then, according to (52), the 
solutions of the linear system x1(t) and x2(t) are determined. Now, one establishes the 
response of the nonlinear system ( 49) in the form 

z1(t) = x1(t) + a1xf(t) = (c1 cosvt + s1 sinvt) + a1 (c1 cosvt + s1 sinvt)3
, 

z2 ( t) = x2 ( t) + 0:2x~ ( t) = ( c2 cos v t + s2 sin v t) + 0:2 ( c2 cos v t + s2 sin v t) 3 
, 

where, o:1, o:2 are to be found from the GEA equation ( 41), with 

Ji= -wr(l + µ)x1 + wix2 - ((1 + µ)±1 - pcosvt, 
h = wrµx1 - wix2 + (µ±1 + pcosvt, 
h = - wr(l + µ)z1 + wiz2 - ,6(1 + µ)zf - ((1 + µ) i1 - pcosvt, 
f4 = wrµz1 - wiz2 + ,6µzf + (µi1 + pcosvt. 

Taking the lowest polynomial functions -W(X, Z) from (41), one gets 

for 

for 

'11 = x2i1 < ±2i1 > - < x2h >= 0, 

'11 = x1i2 < ±1i2 > - < xif4 >= 0. 

(54) 

(55) 

(56) 

(57) 
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Substitution of (52), (54), (55) into (56), (57), after some calculations, one obtains 
two equations for two unknowns a 1, a 2, as follows: 

3p4(21p6arf'.J(l + µ) v1s(v2 - wi) + 70p4aif'.J(l + µ) vl4(v2 - wi)((2 

((1 + µ) v3 
- vwi)2 + (v4 + wiwi - v2((1 + µ)wi + wi))2) + 80p2a1f'.J 

(1 + µ)v 10 (v2 
- wi)((2((1 + µ) v3 

- vwi)2 + (v4 + wiwi - v2((1 + µ) 

wi + wi))2)2 + 32(;'.3(1 + µ) v6 (v2 
-- wi) - a 1v6((2(1 + µ) v2 + (v2 

- wi)(v2 - (1 + µ)wi)) + a 2((2v2 + (v2 - wi) 2)2wi)((2((1 + µ)v 3 

- vwi)2 + (v4 + wiwi - v2((1 + µ)wi + wi)) 2)3) = 0 

3p4v2(21p6aif'.Jµvl8 + 70p4aif'.Jµvl4((2((1 + µ) v3 - vwi)2 + (v4 

+ wiwi - v2( (1 + µ)wi + wi)) 2) + 80p2a1f'.Jµv 10 ((2( (1 + µ) v3 
- vwi)2 

(58) 

+ (v4 + wiwi - v2((1 + µ)wi + wi) )2)2 - 32(-µ v6 (;'.3 + a1wi) + a2 (59) 

(v2 - wi)((2v2 + (v2 - wi)2)(v2 - wi))((2((1 + µ)v3 - vwi)2 + (v4 

+ wiwi - v2
( (1 + µ)wi + wi) )2

)
3

) = 0 

The amplitude of Zp(t) and the maximum of a numerical simulation response Zs(t) 
in stability stage are compared in Table 2 for m 1 = 80 kg, m2 = 1200 kg, k1 = 30000 
N/m, k2 = 320000 N/m, d1 =4800 Ns/m, v = 27r 1/s and different values of k3 . 

Table 4. Forced oscillation amplitude 

No k3 z1s max ZlPmax error z2s max Z2Pmax error 
1 80 5.5717 5.6994 2.24% 75.6614 76.0461 0.51% 
2 800 4.8015 4.5172 -5.92% 75.9515 76.0369 0.11% 
3 4000 3.3624 3.2369 -3.73% 76.3699 76.0249 -0.45% 
4 8000 3.0027 2.9031 -3.32% 74.5263 76.0192 2.01% 
5 16000 2.5791 2.6512 2.79% 73.3357 76.0135 3.65% 

It is seen from Table 4 that the proposed method can give results with very high 
accuracy for arbitrary values of nonlinearity. 

6. CONCLUSIONS 

The method introduces the so-called extended averaged equations involving the vari
ables of the original nonlinear and of the corresponding linear systems. Furthermore, the 
technique proposes to represent a periodic solution of nonlinear systems by a polynomial of 
harmonic solution of its corresponding linear systems. Thus, a possible way to determine 
the solution polynomial coefficients and the linear system can be derived. The technique 
is quite simple since it can use properties of harmonic functions although the calculations 
are more complicated than the averaging method. 

The proposed method can be applied to both stochastic oscillations and determin
istic oscillations. The extended averaged equation is established not using the condition 
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of small nonlinearity. Thus, the method can be applied to arbitrarily nonlinear systems. 
The corresponding linear system is essential for this methodology. The term "correspond
ing" means the nonlinear and linear systems have the same dimension, i.e, the numbers 
of components of the vectors Z and X are equal to each other. Furthermore, the lin
ear system should have expected properties of the nonlinear system. For illustration, for 
illustration, some free/self-excited oscillators and nonlinear free/ forced oscillations of a 
suspension system with two-degree-of-freedom are investigated. The numerical results give 
good approximate solutions for the system with the quite large range of the values of the 
nonlinearity coefficient. However, the technique should be tested for other nonlinear sys
tems, for example, for systems with unsymmetry properties. Some related questions on 
the set of extended averaged equations and the form of polynomials to be chosen to get a 
better approximate solution have to be discussed. 
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PHUdNG PHAP PHUdNG TRINH TRUNG BINH HOA SUY RQNG VA 
UNG DlJNG TRONG v1¢c PHAN TiCH MQT so 

H~ DAO DQNG PHI TUYEN 

Bai bao trlnh bay phuong phap phuong trlnh trung blnh hoa suy r()ng trong vi~c 
nghien cli'u bai toan dao d<?ng phi tuy@n. Phucmg phap d~ xu§.t du<;1c ap di,mg cho m<?t 
s6 M dao d()ng W do/ tv dao d()ng phi tuyen m<?t b~c W do ciing nhu dao d()ng W do/ 
cuang b11c cua M treo phi tuy@n hai b~c tv do. Cac k@t qua trong vi~c phan tfch cac M 
dao d()ng nay vCli mU'.c dQ phi tuy@n khac nhau da chi ra tfnh hi~u qua va nhililg lfU di~m 
cua phuclng phap nay. 




