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NONLINEAR ANALYSIS OF BUCKLING AND
POSTBUCKLING FOR AXIALLY COMPRESSED

FUNCTIONALLY GRADED CYLINDRICAL PANELS
WITH THE POISSON’S RATIO VARYING SMOOTHLY

ALONG THE THICKNESS

Dao Van Dung, Le Kha Hoa
Hanoi University of Science, VNU

Abstract. In this paper an approximate analytical solution to analyze the nonlinear
buckling and postbuckling behavior of imperfect functionally graded panels with the
Poisson’s ratio also varying smoothly along the thickness is investigated. Based on the
classical shell theory and von Karman’s assumption of kinematic nonlinearity and ap-
plying Galerkin procedure, the equations for finding critical loads and load-deflection
curves of cylindrical panel subjected to axial compressive load with two types boundary
conditions, are given. Especially, the stiffness coefficients are analyzed in explicit form.
Numerical results show various effects of the inhomogeneous parameter, dimensional pa-
rameter, boundary conditions on nonlinear stability of panel. An accuracy of present
theoretical results is verified by the previous well-known results.
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1. INTRODUCTION

Functionally graded structures such as cylindrical panels and cylindrical shells in
recent years play the important part in the modern industries [1]. They are lightweight
structures and are able to withstand high-temperature environments while maintaining
their structural integrity. Therefore, researches on stability problems of functionally graded
materials (FGMs) structures have received considerable attention. Some investigations on
postbuckling of FGM cylindrical panels and cylindrical shells subjected to axial loading or
pressure loading in thermal environments are presented by Shen and Noda [2, 3]. They em-
ployed singular perturbation techniques to determine the buckling loads and postbuckling
equilibrium paths. Chang and Librescu [4] reported postbuckling of shear deformable flat
and curved panels under combined loading conditions. The problem on structural stability
of functionally graded panels subjected to aero-thermal loads is considered by Sohn and
Kim [5]. The studies involving postbuckling of laminated cylindrical panels loaded by im-
proved arc-length method can be found in the paper of Kweon and Hong [6]. Wilde et al.
[7] presented investigation on critical state of an axially compressed cylindrical panel with
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three edges simply supported and one edge free. Huang and Taucher [8] solved the problem
on large deflection of laminated cylindrical and doubly-curved panels under thermal load-
ing. By different methods, the authors Dennis et al. [9], Yamada and Croll [10], investigated
instability, buckling behavior of pressure loaded cylindrical panels. Kabir and Chaudhur
[11] presented a direct Fourier approach for the analysis of thin finite-dimensional cylindri-
cal panels. Thermomechanical postbuckling of FGM cylindrical panels with temperature
dependent properties is investigated by Yang et al. [12]. Geometrically nonlinear analysis
of functionally graded shells are considered by Zhao and Liew [13]. Alijani and Aghdam
[14], by applying the extended Kantorovich method, given a semi-analytical solution for
stress analysis of moderately thick laminated cylindrical panels with various boundary
conditions.

In the field of dynamic buckling of FGM structures, Sofiyev [15], Huang and Han
[16], Ng et al. [17], Bich and Long [18], Dung and Nam [19] presented nonlinear dynamic
buckling and postbuckling analysis of FGM shallow and cylindrical shells subjected to
various loadings.

However, analytical investigations on nonlinear analysis of FGM cylindrical shells
and panels under mechanical or thermal loading are limited in number, so it is necessary to
be more accelerated in this area. Recently, the results on the nonlinear analysis of stability
for functionally graded cylindrical panels under axial compression have been obtained by
Duc and Tung [20]. They presented an analytical approach to obtain explicit expressions
of buckling load and postbuckling load-deflection curves in the case Poisson’s ratio ν being
constant and boundary conditions being simply supported.

When Poisson’s ratio ν depends on thickness z, there exists some investigations of
Huang and Han [21, 22, 23]. These authors touched upon the problem on nonlinear buck-
ling and postbuckling of imperfect functionally graded closed circular cylindrical shells
subjected to different mechanical and thermal loadings with ν = ν(z) in the power law of
z, but the stiffness coefficients Aij being still defined in the integrating form, not yet ana-
lyzed. Therefore, an aim of this present research is to extend the results of [20] considering
Young’s modulus E = E(z) and Poisson’s ratio ν = ν(z), simultaneously for calculat-
ing and giving the stiffness coefficients Aij of [21, 22, 23] in explicit form. Based on the
classical shell theory and geometrical nonlinearity in von Karman sense, the approximate
analytical solutions have been presented. The resulting equations are solved by Galerkin’s
procedure to obtain equations for finding critical loads and postbuckling load-deflection
curves with two types of boundary conditions. In the case ν is a constant, the reached
results return to ones of [20].

2. FUNCTIONALLY GRADED CYLINDRICAL PANELS AND
FUNDAMENTAL RELATIONS

2.1. Functionally graded cylindrical panels

Let us consider a FGM cylindrical panel with uniform thickness h, mean radius
R and length of straight edge a, of curved edge b. We choose a cylindrical coordinate
(x, y = Rθ, z) so that the axes x, y are in the longitudinal, circumferential directions
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respectively and axe z is perpendicular to the middle surface and in the inward thickness
direction (−h/2 ≤ z ≤ h/2) (see Fig. 1). The cylindrical panel is subjected to the uniform

Fig. 1. FGM cylindrical panels

plane compressive loads of intensities r0 on x = 0, x = a and p0 on y = 0, y = b and an
uniform radial load of intensity Q0.

Assume that material properties vary through the thickness z with the power law
as follows [21]

E = E(z) = Em + (Ec − Em)
(

2z + h

2h

)k

≡ Em + Ecmrk (1)

ν = ν(z) = νm + (νc − νm)
(

2z + h

2h

)k1

≡ νm + νcmrk1 (2)

in which

Ecm = Ec − Em, r =
2z + h

2h
, νcm = νc − νm, k ≥ 0, k1 ≥ 0. (3)

The quantities Em, Ec and νm, νc are Young’s moduli and Poisson’s ratios of metal
(m) and ceramic (c), respectively.

2.2. Governing relations and equations

The strain components on the middle surface of imperfect cylindrical panel based
upon the von Karman’s theory are [21]

ε0
x = u,x +

1
2
w2

,x + w,xw∗
,x,

ε0
y = v,y −

w

R
+

1
2
w2

,y + w,yw
∗
,y,

γ0
xy = u,y + v,x + w,xw,y + w,xw∗

,y + w,yw
∗
,x.

(4)
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where u = u(x, y), v = v(x, y), w = w(x, y) are the displacements along x, y and z axes
respectively. The quantity w∗ = w∗(x, y) is an initial imperfection of panel and assumed
smaller than thickness of panel.

The strain components across the panel thickness at a distance z from the mid-plane
are in the form

εx = ε0
x + zkx, εy = ε0

y + zky, γxy = γ0
xy + 2zkxy,

kx = −w,xx, ky = −w,yy, kxy = −w,xy.
(5)

Note that the subscript A,i in this paper indicates the partial derivative of A for i.
The stress-strain relationships of cylindrical panel are defined by Hookian law, as

(σx, σy) =
E

1− ν2
[(εx, εy) + ν (εy, εx)] , σxy =

E

2 (1 + ν)
γxy. (6)

The force and moment resultants are expressed by

{(Nx, Ny, Nxy) , (Mx,My,Mxy)} =

h/2∫
−h/2

{σx, σy, σxy} (1, z) dz. (7)

Substituting Eqs (4)÷(6) into (7), we get
Nx

Ny

Nxy

Mx

My

Mxy

 =


A10 A20 0 A11 A21 0
A20 A10 0 A21 A11 0
0 0 A30 0 0 A31

A11 A21 0 A12 A22 0
A21 A11 0 A22 A12 0
0 0 A31 0 0 A32




ε0
x

ε0
y

γ0
xy

kx

ky

2kxy

 (8)

where the stiffness coefficients Aij (i = 1, 2, 3; j = 0, 1, 2) are defined by the formulae

A1j =

h/2∫
−h/2

E(z)
1− ν2(z)

zjdz, A2j =

h/2∫
−h/2

E(z)ν(z)
1− ν2(z)

zjdz,

A3j =

h/2∫
−h/2

E(z)
2 [1 + ν(z)]

zjdz =
1
2

(A1j −A2j) .

(9)

The explicit analytical expressions of Aij are calculated and given in the Appendix.
The equilibrium equations of imperfect cylindrical panel are derived from [21]

Nx,x + Nxy,y = 0, (10)

Nxy,x + Ny,y = 0, (11)

Mx,xx + 2Mxy,xy + My,yy +
Ny

R
+ Nx

(
w,xx + w∗

,xx

)
+

+ 2Nxy

(
w,xy + w∗

,xy

)
+ Ny

(
w,yy + w∗

,yy

)
+ Q0 = 0.

(12)
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The geometrical compatibility equation deduced from (4) and (5), assuming w∗
,ij

small so the quadratic terms of w∗
,ij may be omitted, becomes

ε0
x,yy + ε0

y,xx − γ0
xy,xy = − 1

R
w,xx + w2

,xy − w,xx.w,yy + 2w,xyw
∗
,xy−

− w,xx.w∗
,yy − w,yyw

∗
,xx

(13)

Introducing Airy’s stress function f = f(x, y) so that

Nx = f,yy, Ny = f,xx, Nxy = −f,xy. (14)

It is easy seen that two equations (10), (11) are automatically satisfied.
Substituting these functions (14) into Nij of relations (8) and solving conversely, we

obtain
ε0
x = J0 (A10f,yy −A20f,xx + J1w,xx + J2w,yy)

ε0
y = J0 (A10f,xx −A20f,yy + J1w,yy + J2w,xx)

γ0
xy =

1
A30

(2A31w,xy − f,xy) ,

(15)

where
J0 =

1
A2

10 −A2
20

, J1 = A10A11 −A20A21, J2 = A10A21 −A20A11. (16)

Substituting once again Eq. (15) into the expressions of Mij in (8), then Mij into
the equation (12) and taking into account (14), leads to

C3∇4f +
1
R

f,xx + C4∇4w + f,yy

(
w,xx + w∗

,xx

)
− 2f,xy

(
w,xy + w∗

,xy

)
+ f,xx

(
w,yy + w∗

,yy

)
+ Q0 = 0

(17)

where
C3 = J0J2, C4 = J0 (A11J1 + A21J2)−A12,

∇4 =
∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
.

The equation (17) includes two unknowns functions w and f , so it is necessary to
find a second equation relating to these two functions. For this aim, substituting expression
(15) into the compatible equation (13), after some calculations, we get

∇4f+C1∇4w−C2

(
w2

,xy − w,xxw,yy −
w,xx

R
+ 2w,xyw

∗
,xy − w,xxw∗

,yy − w,yyw
∗
,xx

)
= 0 (18)

where C1 =
J2

A10
, C2 =

1
J0A10

.

Two equations (17) and (18) are the governing equations used to investigate the
nonlinear stability of imperfect FGM cylindrical panels.

Remarks
i) If R →∞, the equations (17) and (18) return to the basic stability equations for

imperfect FGM plates.
ii) In the case w∗ = 0, from (17) and (18) we obtain the governing equations for

perfect cylindrical panels.
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iii) Eqs. (15), (17) and (18) are similar to ones of [21], but the stiffness coefficients
Aij , in this paper, are analyzed in the explicit form.

iv) If ν = const, Eqs.(17) and (18) coincide with ones of [20].

3. BOUNDARY CONDITIONS AND SOLUTION OF THE PROBLEM

3.1. Boundary conditions

Suppose that two cases boundary conditions will be considered below
Case (1). Four edges of cylindrical panel are simply supported

w = Mx = Nxy = 0, Nx = −r0h at x = 0, x = a

w = My = Nxy = 0, Ny = −p0h at y = 0, y = b
(19)

Case (2). Two edges loaded x = 0 and x = a are simply supported, the remaining
two edges y = 0, y = b being unloaded and clamped. So we have

w = Mx = Nxy = 0, Nx = −r0h at x = 0, x = a

w =
∂w

∂y
= Ny = Nxy = 0 at y = 0, y = b.

(20)

3.2. Solving for FGM cylindrical panel with simply supported four edges

Based on mentioned boundary conditions (19), the deflection w and function f are
chosen in the form [20]

w = W sin
mπx

a
sin

nπy

b
, f = F

[
sin

mπx

a
sin

nπy

b
− θ(x)− λ(y)

]
, (21)

in which F
d2θ(x)
dx2

= p0h, F
d2λ(y)

dy2
= r0h, m, n = 1, 2, 3, ...

For the initial imperfection w∗ = w∗(x, y), we assume it has the form like the
deflection w, i.e.

w∗ = ξh sin
mπx

a
sin

nπy

b
, m, n = 1, 2, 3, ... (22)

where the coefficient ξ ∈ [0, 1] expresses an imperfection size of panel.
Now substituting Eqs. (21) and (22) into Eqs. (17) and (18) and applying Galerkin’s

procedure, leads to nonlinear algebraic two equations for F and W as

F = −C1W +
C2W

R

[(mπ

a

)2
+

(nπ

b

)2
]2

[(mπ

a

)2
− 16Rmnπ2

3a2b2
(W + 2ξh)δ1δ2

]
, (23)

[(mπ

a

)2
+

(nπ

b

)2
]2

(C3F + C4W ) + F

[
32
3

(W + ξh)
mnπ2

a2b2
δ1δ2−

1
R

(mπ

a

)2
]

+

+ (W + ξh)
[
r0h

(mπ

a

)2
+ p0h

(nπ

b

)2
]

+
16

mnπ2
δ1δ2

[
Q0 −

p0h

R

]
= 0.

(24)

Herein, note that δ1 =
1
2

[1− (−1)m], δ2 =
1
2

[1− (−1)n], so δ1δ2 = 1 if m and n

being odd numbers while δ1δ2 = 0 if m or n even.
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By eliminating F in Eqs. (23), (24), after some calculations we obtain[
(C4 − C3C1) π4(m2B2

a + n2)4 +
(C1 + C2C3)

R
(mπbBa)

2 (m2B2
a + n2)2−

−C2 (mbBa)
4

R2

]
W − 16mnπ2B2

a

3
(m2B2

a + n2)2
[

(C2C3 + 2C1) W + 2 (C2C3+

+C1)× ξh

]
Wδ1δ2 +

16m3nb2B4
a

3R
C2W (3W + 4ξh)δ1δ2 −

512m2n2B4
a

9
C2W×

× (W + ξh) (W + 2ξh)δ2
1δ

2
2 + π2b2r0h(m2B2

a + n2)2
(
m2B2

a + βn2
)
(W + ξh) +

+
16b4

mnπ2
(m2B2

a + n2)2
[
Q0 −

βr0h

R

]
δ1δ2 = 0

(25)

where Ba = b/a, β = p0/r0.
The equation (25) establishes the relation of load-deflection, so it is used to analyze

buckling and postbuckling behavior of imperfect FGM cylindrical panels subjected to loads
r0, p0 and Q0.

Since the aim of present study is only to consider cylindrical panel subjected to
axial compressive load, thus taking Nx0 = −r0h, Ny0 = −p0h = 0, Q0 = 0, Eq. (25) yields

r0 =
W(

W + ξ
)[

π2(m2B2
a + n2)2

B2
hm2B2

a

(
D + C3C1

)
−

(
C1+E1h

2C3

)
R

+
E1R

2
am

2B4
a

π2(m2B2
a + n2)2

]

+
16nh

3b2m

W(
W + ξ

) [(
E1h

2C3 + 2C1

)
W + 2

(
E1h

2C3 + C1

)
ξ
]
∗ δ1δ2−

− 16mnRaB
3
aE1

3π2Bh(m2B2
a + n2)2

W (3W + 4ξ)(
W + ξ

) δ1δ2 +
512n2B2

aE1

9π2B2
h(m2B2

a + n2)2
W (W + 2ξ)δ2

1δ
2
2 ,

(26)

where

D = −C4

h3
, E1 =

C2

h
, Bh =

b

h
,

Ra =
a

R
, W =

W

h
, C1 =

C1

h
, C3 =

C3

h2
.

(27)

For a perfect cylindrical panel (ξ = 0) subjected to only axial compressive load r0,
Eq. (24) leads to

r0 =
π2(m2B2

a + n2)2

B2
hm2B2

a

(
D+C3C1

)
−

(
C1+E1h

2C3

)
R

+
E1R

2
am

2B4
a

π2(m2B2
a + n2)2

+
16nh

3b2m
×

×
(
E1h

2C3+2C1

)
Wδ1δ2−

16mnRaB
3
aE1

π2Bh(m2B2
a+n2)2

Wδ1δ2+
512n2B2

aE1

9π2B2
h(m2B2

a+n2)2
W 2δ2

1δ
2
2

(28)
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from which upper buckling compressive load may be obtained with W → 0 as

r0 upper =
π2(m2B2

a + n2)2

B2
hm2B2

a

(
D + C3C1

)
−

(
C1 + E1h

2C3

)
R

+
E1R

2
am

2B4
a

π2(m2B2
a + n2)2

. (29)

Note that the relation (29) may also be deduced from Eq. (28) with m or n being even
numbers.

Now we are interested in finding a lower buckling load. For that, consider r0 = r0(W )

and m, n odd numbers and calculating
dr0

dW
= 0 we get

W th =
9mRaBhBa

64n
− 3π2Bh(m2B2

a + n2)2

64bmnB2
aE1

(
E1h

2C3 + 2C1

)
.

In addition
d2r0

dW
2

∣∣∣∣
W=W th

> 0, the value of lower buckling load is

r0lower =
π2(m2B2

a + n2)2

B2
hm2B2

a

(
D + C3C1

)
−

(
C1 + E1h

2C3

)
R

+
E1R

2
am

2B4
a

π2(m2B2
a + n2)2

+

+
3RaBhBah

4b2
×

(
E1h

2C3 + 2C1

)
− π2hBh(m2B2

a + n2)2

4b3m2B2
aE1

(
E1h

2C3 + 2C1

)2−

− 9m2R2
aB

4
aE1

4π2(m2B2
a + n2)2

+
3RaBa

4b

(
E1h

2C3 + 2C1

)
+

+
B2

aE1

8π2(m2B2
a + n2)2

[
3mRaBa −

π2(m2B2
a + n2)2

bmB2
aE1

(
E1h

2C3 + 2C1

)]2

.

(30)

Quantities r0upper and r0lower given by (29) and (30) still depend on values of m
and n, therefore one must minimize these expressions with respect to m and n to obtain
critical values of axial compressive load.

Remarks
i) If Poisson’s ratio ν = const, i.e. k1 = 0, m,n are odd numbers and Nx = −r0h,

Q0 = 0, Ny = −p0h = 0 then C1 = C3 = 0.
Eq. (24) becomes

r0 =
W(

W + ξ
) [

Dπ2(m2B2
a + n2)2

B2
hm2B2

a

+
E1R

2
am

2B4
a

π2(m2B2
a + n2)2

]
−

− 16mnRaB
3
aE1

3π2Bh(m2B2
a + n2)2

W (3W + 4ξ)(
W + ξ

) +
512n2B2

aE1

9π2B2
h(m2B2

a + n2)2
W (W + 2ξ)

(31)

ii) If ν = const, ξ = 0 and m, n odd numbers then Eq. (28) gives us

r0 =
Dπ2(m2B2

a + n2)2

B2
hm2B2

a

+
E1R

2
am

2B4
a

π2(m2B2
a + n2)2

− 16mnRaB
3
aE1

π2Bh(m2B2
a + n2)2

W +
512n2B2

aE1

9π2B2
h(m2B2

a + n2)2
W

2
.

(32)
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Taking W → 0 then Eq. (32) gives the upper buckling load for a perfect panel

r0 =
Dπ2(m2B2

a + n2)2

B2
hm2B2

a

+
E1R

2
am

2B4
a

π2(m2B2
a + n2)2

. (33)

Eqs. (31), (32) and (33) coincide with ones given in the paper [20].
iii) If cylindrical panel is perfect and isotropic and W → 0 then

E1 = Eh, E2 = 0, E3 =
Eh3

12
, E1 =

E1

h
= E,

D =
E1E3 − E2

2

E1 (1− ν2) h3
=

E

12 (1− ν2)
.

Noting Ba =
b

a
, Bh =

b

h
, Ra =

a

R
, Eq. (33) leads to

r0 =
Eπ2(m2 b2

a2
+ n2)2a2h2

12 (1− ν2) b4m2
+

Eb4m2

π2R2a2(m2
b2

a2
+ n2)2

. (34)

The minimum value of r0, in this case, is

r0cr =
Eh

R
√

3 (1− ν2)
. (35)

This is result can be found in [24].

3.3. Solving for FGM cylindrical panel with simply supported loaded two
edges and clamped unloaded two edges

Suppose a FGM cylindrical panel is only subjected to uniform axial compressive
load of intensity r0 on x = 0, x = a and uniform compressive radial load of intensity Q0.
Two edges y = 0, y = b are clamped and unloaded, while the remaining two edges are
simply supported.

In this case, the approximate solutions satisfying boundary conditions (20) are follow
as

w = W sin
mπx

a

(
1− cos

2nπy

b

)
f = F

[
sin

mπx

a
sin

nπy

b
− λ(y)

]
, Fλ”(y) = r0h

w∗ = ξh sin
mπx

a

(
1− cos

2nπy

b

)
, m, n = 1, 2, 3, ...

(36)

By the same method in the part 3.2, we substitute Eq. (36) into left side of Eqs.
(17) and (18), and then apply Galerkin’s procedure, we get

F =
1
A

{
−W

4C1

3nπ
δ2

[
3

(mπ

a

)4
+ B

]
+ C2

[
W

R

16m2π

3na2
δ2 −W (W + 2ξh)

1024mnπ2

45a2b2
δ1δ2

]}
,

(37)
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[
C3A−

1
R

(mπ

a

)2
]

4ab

3nπ
δ2F + C4W

ab

4

[
2

(mπ

a

)4
+B

]
+F (W +ξh)

(
mnπ2

ab

)2

×

× 512ab

45mnπ2
δ1δ2 + r0h (W + ξh)

(mπ

a

)2 3ab

4
+ Q0

2ab

mπ
δ1 = 0,

(38)

where A =
[(mπ

a

)2
+

(nπ

b

)2
]2

, B =

[(mπ

a

)2
+

(
2nπ

b

)2
]2

.

Eliminating F in Eqs. (37) and (38), leads to

α1W + α2W (W + 2ξh) + α3W (W + ξh) + α4W (W + ξh) (W + 2ξh)+

+ r0h (W + ξh)
3bm2π2

4a
+

2ab

mπ
δ1Q0 = 0

(39)

in which

α1 =
[
C3 −

1
RA

(mπ

a

)2
]{
−16abC1

9n2π2
δ2
2

[
3

(mπ

a

)4
+ B

]
+

64m2bC2

9n2aR
δ2
2

}
+

+
abC4

4

[
2

(mπ

a

)4
+ B

]
,

α2 = −
[
C3 −

1
RA

(mπ

a

)2
]

4096mπC2

135ab
δ1δ

2
2 ,

α3 =
{
−2048mπC1

135abA

[
3

(mπ

a

)4
+ B

]
+

8192m3π3C2

135a3bRA

}
δ1δ

2
2 ,

α4 = −524288m2n2π4C2

2025a3b3A
(δ1δ2)

2 .

(40)

Now, consider the case Q0 = 0, i.e. the panel only is subjected to axial compressive
load, from Eq. (39), deduces

r0 =
−4a

3bm2π2

[
α1

W

h
(
W + ξ

) + α2
W (W + 2ξ)(

W + ξ
) + α3W + α4hW (W + 2ξ)

]
. (41)

Herein denote W = W/h.
If a cylindrical panel is perfect (ξ = 0), Eq. (41) becomes

r0 =
−4a

3bm2π2

[α1

h
+ (α2 + α3) W + α4hW

2
]
. (42)

From this relation, let W → 0, we obtain the expression of upper buckling compres-
sive load as

r0upper =
−4a

3bm2π2h
α1 =

[
C3 −

1
RA

(mπ

a

)2
]
×

×
{

64a2C1

27m2n2π4h
δ2
2

[
3

(mπ

a

)4
+ B

]
− 256C2

27n2π2Rh
δ2
2

}
− a2C4

3m2π2h

[
2

(mπ

a

)4
+ B

] (43)
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In order to find a lower buckling compressive load, from (42) calculate
dr0

dW
= 0, it

is easy to receive

W th =
− (α2 + α3)

2α4h
. (44)

In addition
d2r0

dW
2

∣∣∣∣
W=W th

> 0, so yields to

r0lower =
−4a

3bm2π2

[
α1

h
− (α2 + α3)

2

4α4h

]
. (45)

4. NUMERICAL CALCULATIONS AND DISCUSSIONS

The FGMs considered, in this section, are made from two constituent materials:
Stainless steel (SUS304) and Silicon nitride (Si3 N4) with the properties given by Shariyat
[25] Ec = 322.2 (GPa), Em = 207.7 (GPa), νc = 0.24, νm = 0.3177.

The accuracy of proposed approach and effects of dimensional parameters, of power
law indexes k and k1, of imperfection and boundary conditions on buckling and postbuck-
ling behavior are presented by numerical results.

For the sake of simplifying calculations Aij , the sum in Appendix taken values from
0 to 5.

As a first example, the buckling load Nx/(ER), Nx = r0h, r0 given by Eq. (34)
for isotropic cylindrical panels under axial compression (with ν = 0.3) studied by Turvey
(1977) and Shen (2002) in [2] are reexamined and are compared in Table 1.

Table 1. Comparisons of buckling load Nx/(ER) for isotropic cylindrical panels
under axial compression

Calculated by
Geometrical parameters Turvey Shen Present Percent (%)

a/b=0.4, a/R=1.0, 0.73675e-4 0.71410e-4 0.77355e-4
4.99b/h=25 (m,n)=(3,1) (m,n)=(3,1)

a/b=1.333, a/R=1.0, 0.60523e-4 0.58737e-4 0.60756e-4
0.38b/h=75 (m,n)=(2,2) (m,n)=(2,2)

The axial buckling loads Pcr = r0upperbh, r0upper in Eq. (29), for perfect Si3N4 -
SUS304 cylindrical panels with different values of volume fraction indexes k and k1 are
given and compared with results of Shen [2] in Table 2.

Two above comparisions show that the results from the present proposed method
agree well with the comparator solutions.

For further examples see below, the graphs from Fig. 2 to Fig. 7 are traced according
to Eq.(26) for simply supported panels and Eq.(41) for clamped panels respectively.

As part of the effects of imperfections, the postbuckling load-deflection curves for
FGM cylindrical panels shown in Fig. 2a and Fig. 2b. As can be observed, when the de-
flection exceeds a specific value, the curves become higher when ξ is increased.
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Table 2. Comparisons of buckling loads Pcr of perfect FGM simply supported
cylindrical panels

k1 = k
Pcr (MN)

Percent (%)
Shen (2002) Present

∞ 4.9565 5.2719 5.98
5.0 5.4489 5.9632 8.62

(m, n) = (1, 1) 2.0 5.8836 6.3736 7.69
b = 0.3 m, a/b = 1.2 1.0 6.2758 6.7490 7.01
T0 = 300 K 0.5 6.6488 7.1451 6.95
a/R = 0.5, b/h = 30 1/3 6.8431 7.3522 6.92

0.2 7.0594 7.5636 6.67
1/8 7.2280 7.7057 6.20
0.1 7.2968 7.7575 5.94

∞ 10.290 10.544 2.41
5.0 11.314 11.930 5.17

(m,n)=(3,1) 2.0 12.215 12.747 4.18
b=0.3m; a/b=1.2 1.0 13.026 13.494 3.47
T0 = 300K 0.5 13.797 14.284 3.41
a/R=1.0; b/h=30 1/3 14.199 14.698 3.40

0.2 14.648 15.121 3.13
1/8 14.998 15.405 2.64
0.1 15.142 15.509 2.37

∞ 1.2968 1.3180
1.61

(m, n) = (1, 3) (m, n) = (3, 1)
5.0 1.4261 1.4913 4.37

b=0.3m; a/b=1.2 2.0 1.5396 1.5934 3.38
T0 = 300K 1.0 1.6413 1.6867 2.69
a/R = 0.5, b/h = 60 0.5 1.7377 1.7855 2.68

1/3 1.7881 1.8373 2.68
0.2 1.8445 1.8901 2.41
1/8 1.8889 1.9256 1.91
0.1 1.9071 1.9386 1.62

(a) For simply supported FGM cylindrical pan-
els

(b) For FGM cylindrical panels with two edges
simply supported and two edges clamped

Fig. 2. Effects of imperfection ξ on postbuckling load-deflection curves
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Fig. 3a and Fig. 3b illustrate the effects of volume fraction indexes k and k1. Three
values of k = k1 = 0, 1, 5 are used. As shown, the postbuckling load-deflection curves
are gradually lower when the values of k = k1 increase, i.e. the load carrying capacity of
structure decreases with the greater percentage of metal. The prime reason for the fall of
the critical loads is that the higher value of k corresponds to a metal-richer cylindrical
panel which usually has less stiffness than a ceramic-richer one.

(a) For simply supported FGM cylindrical panels (b) For FGM cylindrical panels with two edges
simply supported and two edges clamped

Fig. 3. Effects of volume fraction indexes k and k1 on postbuckling load-deflection curves

For the effects of geometrical parameters, the numerical calculations are manifested
by graph below

(a) For simply supported FGM cylindrical pan-
els

(b) For clamped FGM cylindrical panels

Fig. 4. Effects of ratio b/h on postbuckling load-deflection curves

Fig. 4. plots relation curves load-deflection versus width-to-thickness ratio b/h with
k = k1 = 1, ξ = 0, ξ = 0.1.
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(a) For simply supported FGM cylindrical
panels

(b) For clamped FGM cylindrical panels

Fig. 5. Effects of ratio a/b on postbuckling load-deflection curves

Fig. 5. plots these relation curves versus length-to-width ratio a/b with k = k1 = 1,
ξ = 0, ξ = 0.1.

Fig. 6. shows the effect of length-to-radius ratio a/R on (W/h, r0) relation curves.
It is obvious, from these figures, that the buckling loads and postbuckling load bearing

(a) For simply supported FGM cylindrical
panels

(b) For clamped FGM cylindrical panels

Fig. 6. Effects of ratio a/R on postbuckling load-deflection curves

capacity of imperfect FGM cylindrical panels are considerably reduced when b/h ratios
increase (Fig. 4). The values of r0 when the deflection is still small, are decrease when a/b
increase, and they only increase together a/b when W/h ratio exceeds special value (Fig.
5). In Fig. 6, can be seen that the (W/h, r0) relation curves graduate higher according to
a/R with W/h being still small and they become gradually lower when the W/h ratios
are greater than a any special value.
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The influence of two types boundary conditions on stability behavior has been also
carried out. The numerical results are represented by graph in Fig. 7 (a, b, c). It can be
seen that the critical buckling loads when panels are simply supported, are smaller than
ones when those structures are clamped. These results correspond to the facts.

(a) For FGM cylindrical panels with a/b = 1.2,
b/h = 30, a/R = 0.5

(b) For FGM cylindrical panels with a/b = 1.5,
b/h = 40, a/R = 0.5

(c) For FGM cylindrical panels with a/b = 1,
b/h = 40, a/R = 0.75

Fig. 7. Effects of boundary conditions on postbuckling load-deflection curves

The influence of boundary conditions, indexes k and k1, buckling mode (m, n) on
critical loads r0upper and r0lower for imperfect FGM cylindrical panel with b/h = 30, a/b
= 1.2, a/R = 0.5, again are confirmed by numerical calculation in Table 3.

For this example, it can be seen that the critical buckling loads of simply supported
FGM cylindrical panels correspond to the buckling mode (m,n)=(1,1), while the critical
buckling loads of clamped FGM panels reached with (m,n)=(3,1).
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Table 3. The influence of boundary conditions, of indexes k and k1, of buckling
mode (m,n) on critical loads r0cr

Boundary
r0cr (Gpa) (m,n)=(1,1) (m,n)=(1,3) (m,n)=(3,1) (m,n)=(3,3)

conditions

r0upper(k1 = k = 0) 2.6632 42.335 3.3023 11.781
r0upper(k1 = k = 0.5) 2.3817 37.073 2.9357 10.348
r0upper(k1 = k = 10) 1.9046 31.241 2.4179 8.7018

Simply r0upper(k1 = k =∞) 1.7573 28.611 2.2109 7.9575
supported r0lower(k1 = k = 0) 1.1207 42.288 2.5439 11.609

r0lower(k1 = k = 0.5) 0.9733 36.970 2.2184 10.146
r0lower(k1 = k = 10) 0.8337 31.178 1.8779 8.5583
r0lower(k1 = k =∞) 0.7627 28.581 1.7220 7.8470

r0upper(k1 = k = 0) 4.7677 202.13 3.7008 31.070
Simply r0upper(k1 = k = 0.5) 4.2414 176.76 3.2834 27.176
supported r0upper(k1 = k = 10) 3.4704 149.05 2.7130 22.913
x = 0, x = a r0upper(k1 = k =∞) 3.1813 136.61 2.4811 20.999
Clamped r0lower(k1 = k = 0) 3.2858 20.212 2.9723 31.052
y = 0, y = b r0lower(k1 = k = 0.5) 2.8558 176.73 2.5926 27.150

r0lower(k1 = k = 10) 2.4239 149.03 2.1933 22.895
r0lower(k1 = k =∞) 2.2259 136.61 2.0114 20.987

5. CONCLUSIONS

This paper deals with the nonlinear buckling and postbuckling problem of axially
compressed imperfect FGM cylindrical panels by using the nonlinear deflection shell theory
taking into account the Poisson’s ratio ν = ν (z). The stiffness coefficients Aij defined in
the integrating form in [21, 22, 23] are analyzed in explicit form.

Approximate analytical solutions for two types boundary conditions are given and
applying Galerkin’s procedure are obtained the explicit relations finding critical buckling
loads and postbuckling load-deflection curves.

The nonlinear stability problem of simply supported-clamped FGM cylindrical pan-
els which has not been considered in [20] is solved too here.

The effects of inhomogeneous parameter, dimensional parameter, boundary condi-
tions, initial imperfections, buckling mode on nonlinear stability behavior of FGMs cylin-
drical panels are investigated.

The comparisions of results of present paper with the ones other authors [2, 20, 24]
have affirmed the reliability and accuracy of the proposed approach.

In the case ν = const, the present results return to ones of [20].
In this paper, we does not compare results with these ones of [21, 22, 23] because

those articles were only considered for the FGM closed circular cylindrical shell while our
results are obtained for FGM cylindrical panels.
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APPENDIX
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