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Abstract. We further study isogeometric approach for response analysis of laminated
composite plates using the higher-order shear deformation theory. The present theory is
derived from the classical plate theory (CPT) and the shear stress free surface conditions
are naturally satisfied. Therefore, shear correction factors are not required. Galerkin
weak form of response analysis model for laminated composite plates is used to obtain
the discrete system of equations. It can be solved by isogeometric approach based on
the non-uniform rational B-splines (NURBS) basic functions. Some numerical examples
of the laminated composite plates under various dynamic loads, fiber orientations and
lay-up numbers are provided. The accuracy and reliability of the proposed method is
verified by comparing with analytical solutions, numerical solutions and results from
Ansys software.

Keywords: Transient analysis, laminated composite plate, isogeometric analysis, NURBS,
Newmark integration.

1. INTRODUCTION

The transient response of laminated composite plates has received much attention
from designers due to increasing applications of composite in high performance aircraft,
vehicles and vessels. Whether they are used in civil, marine or aerospace, most structures
are subjected to dynamic loads during their operation. Therefore, there exists a need for
assessing the natural frequency and transient response of structures.

Many numerical methods have been developed to compute, analyze and simulate
the response as well as dynamic characteristics of laminated composite plates. Out of
these methods, the finite element method (FEM) has become the universally applicable
technique for solving boundary and initial value problems. In the past years, Reismann
[1], Reismann and Lee [2] have analyzed simply supported rectangular isotropic plates,
which are subjected to suddenly a uniformly distributed load over a square area on the
plate. The transient finite element analysis of isotropic plate was also carried out by
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Rock and Hinton [3] for thick and thin plates. Akay [4] determined the large deflection
transient response of isotropic plates using a mixed FEM. For composite plates, Reddy [5]
presented finite element results for the transient analysis of layered composite plates based
on the first-order shear deformation theory (FSDT). Mallikarjuna and Kant [6] presented
an isoparametric finite element formulation based on a higher-order displacement model
for dynamic analysis of multi-layer symmetric composite plate. Wang and his co-workers
developed the strip element method (SEM) for static bending analysis of orthotropic
plates. Then, Wang et al. [7] extended the SEM to analyze dynamic response of symmetric
laminated plates.

Although FEM is an extremely versatile and powerful technique, it has certain dis-
advantages. Recently, Hughes and his co-workers have proposed a robustly computational
isogeometric analysis [8]. Following this approach, the CAD-shape functions, commonly
the non-uniform rational B-splines (NURBS) are substituted for the Lagrange polynomial
based shape functions in the CAE. The computational cost is decreased significantly as
the meshes are generated within the CAD. IGA gives higher accurate results because of
the smoothness and the higher-order continuity between elements [9, 10].

In this paper, a higher-order displacement field in which the in-plane displacement is
expressed as cubic functions of the thickness coordinate with constant transverse displace-
ment across the thickness is used. The finite element formulation based on the higher-order
shear deformation theory (HSDT) requires elements with at least C1-inter-element con-
tinuity. It is difficult to achieve such elements for free-form geometries when using the
standard Lagrangian polynomials as basis functions. Fortunately, IGA can be easily ob-
tained because NURBS basis functions are Cp−1 continuous. The governing equations of
the laminated composite plates are transformed into a standard weak-form, which is then
discretized into the system of time-dependent equations to be solved by the unconditionally
stable Newmark time integration scheme. Several numerical examples with many different
models are provided to illustrate the effectiveness and reliability of the present method in
comparison with other results from the literature.

The paper is outlined as follows. Next section introduces the HSDT for laminated
composite plates. In section 3, the numerical formulation relied on the HSDT and IGA
is described. The numerical results and discussions are provided in section 4. Finally, in
section 5, concluding remarks are presented with the brief discussion of the numerical
results obtained by the developed methodology.

2. THE HIGHER-ORDER SHEAR DEFORMATION
THEORY FOR PLATES

Let Ω be the domain in R2 occupied by the mid-plane of the plate and u0, v0, w
and β = (βx;βy)

T denote the displacement components in the x; y; z directions and the
rotations in the x−z and y−z planes (or the-y and the-x axes), respectively. Fig. 1 shows
the geometry of a plate and the coordinate system. A generalized displacement field of an
arbitrary point in the plate based on higher-order shear deformation theory derived from
the classical plate theory is defined as follows [9]
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u (x, y, z, t) = u0 (x, y, t)− z ∂w (x, y, t)

∂x
+ f (z)βx (x, y, t)

v (x, y, z, t) = v0 (x, y, t)− z ∂w (x, y, t)

∂y
+ f (z)βy (x, y, t),

(
−h
2
≤ z ≤ h

2

)
w (x, y, z, t) = w (x, y, t)

(1)

In this paper we exploit the third-order shear deformation theory (TSDT) of Reddy
[11] and the distribution function is written as f (z) = z − 4z3/3h2.

2 
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where  

Fig. 1. Plate model and coordinate system

The relationship between strains and displacements is described by

εp = [εxx εyy γxy]
T = ε0 + zε1 + f(z)ε2,

γ = [γxz γyz]
T = f ′(z)εs

(2)

where

ε0 =



∂u0

∂x
∂v0

∂y
∂v0

∂x
+
∂u0

∂y

 , ε1 =


−∂

2w

∂x2

−∂
2w

∂y2

−2
∂2w

∂x∂y

 , ε2 =



∂βx
∂x
∂βy
∂y

∂βy
∂x

+
∂βx
∂y

 , εs =

[
βx
βy

]
(3)

Neglecting σz for each orthotropic layer, the constitutive equation of an orthotropic
lamina in the local coordinate system is derived from Hooke’s law for a plane stress con-
dition as 

σk1
σk2
τk12

τk13

τk23

 =


Q11 Q12 0 0 0
Q12 Q22 0 0 0

0 0 Q33 0 0
0 0 0 Q55 0
0 0 0 0 Q44


k

εk1
εk2
γk12

γk13

γk23

 , (4)



270 Lieu B. Nguyen, Chien H. Thai, Ngon T. Dang, H. Nguyen-Xuan

where subscripts 1 and 2 are the directions of the fiber and in-plane normal to fiber,
respectively, subscript 3 indicates the direction normal to the plate, and the reduced
stiffness components, Qkij are given by

Qk11 =
Ek1

1− νk12ν
k
21

, Qk12 =
νk12E

k
2

1− νk12ν
k
21

, Qk22 =
Ek2

1− νk12ν
k
21

, Qk33 = Gk12, Q
k
55 = Gk13, Q

k
44 = Gk23,

(5)
in which E1, E2, G12, G23, G13 and ν12 are independent material properties for each layer.

The laminate is usually made of several orthotropic layers. Each layer must be
transformed into the laminate coordinate system (x, y, z). The stress-strain relationship is
given as 

σkxx
σkyy
τkxy
τkxz
τkyz

 =


Q̄11 Q̄12 Q̄16 0 0
Q̄12 Q̄22 Q̄26 0 0
Q̄61 Q̄62 Q̄33 0 0

0 0 0 Q̄55 Q̄54

0 0 0 Q̄45 Q̄44


k

εkxx
εkyy
γkxy
γkxz
γkyz

 , (6)

where Q̄kij is the transformed material constant matrix (see [12] for more details).
From Hooke’s law and the linear strains given by Eq. (2), the stress is computed by

σ =

[
σp
τ

]
=

[
D∗ 0
0 Ds

] [
εp
γ

]
, (7)

where σp and τ are the in-plane stress component and shear stress, respectively, and D∗

is material constant matrices given in the form as

D∗ =

 A B E
B D F
E F H

 , (8)

where

Aij , Bij , Dij , Eij , Fij , Hij =

∫ h/2

−h/2
(1, z, z2, f(z), zf(z), f2(z))Q̄ijdz, i, j = 1, 2, 6,

Ds
ij =

∫ h/2

−h/2

[
(f ′(z))2

]
Q̄ijdz, i, j = 4, 5.

(9)

For forced vibration analysis of the plates, a weak form can be derived from the
following undamped dynamic equilibrium equation as∫

Ω
δεTp D∗εpdΩ +

∫
Ω
δγTDsγdΩ +

∫
Ω
δũTm¨̃udΩ =

∫
Ω
δwq(x, y, t)dΩ, (10)

where q(x, y, t) is the transverse loading per unit area and the function depending on time
and space; the mass matrix m is calculated according to the consistent form given by

m =

 I1 I2 I4

I2 I3 I5

I4 I5 I6

 , (I1, I2, I3, I4, I5, I6) =

h/2∫
−h/2

ρ
(
1, z, z2, f(z), zf(z), f2(z)

)
dz, (11)
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in which ũ =
[

u1 u2 u3

]T with

u1 =

 u0

v0

w

 , u2 =

 −w,x−w,y
0

 , u3 =

 βx
βy
0

 , (12)

where ρ is the mass density.

3. THE LAMINATED COMPOSITE PLATE FORMULATION
BASED ON NURBS BASIS FUNCTIONS

3.1. Introduction to NURBS basis functions [9]

Given a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, the associated B-spline basis functions
are defined recursively starting with the zeroth order basis function (p = 0) as

Ni,0 (ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise

}
, (13)

and for a polynomial order p ≥ 1

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) . (14)

A knot vector Ξ is defined as a sequence of knot value ξi ∈ R, i = 1, . . . , n + p. If
the first and the last knots are repeated p+ 1 times, the knot vector is called open knot.

By the tensor product of basis functions in two parametric dimensions ξ and η
with two knot vectors Ξ = {ξ1, ξ2, . . . , ξn+p+1} and H = {η1, η2, . . . , ηm+q+1}, the two-
dimensional B-spline basis functions are obtained as, NA (ξ, η) = Ni,p (ξ)Mj,q (η). Fig. 2
illustrates a bivariate cubic B-spline basic function.
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Fig. 2. A bivariate cubic B-spline basis function with knot 

vectors  0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1 Ξ Η  
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where n×m is the number basis functions,  T x yx  is the physical coordinate vector.  
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(17) 

For forced vibration analysis of the plates, undamped dynamic discrete equation can be written 

from Eq. (10) as, 

(t)Mq + Kq = F  
(18) 

where the global stiffness matrix K is given by 

Fig. 2. A bivariate cubic B-spline basis function with knot vectors
Ξ = H = {0, 0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1, 1}
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To exactly represent some curved geometries (e.g. circles, cylinders, spheres, etc.)
the non-uniform rational B-splines (NURBS) functions are used. Being different from B-
spline, each control point of NURBS has additional value called an individual weight ζA [8].

Thus, the NURBS functions can be expressed as RA (ξ, η) = NAζA/
m×n∑
A=1

NA (ξ, η) ζA. It

is clear that B-spline function is only the special case of the NURBS function when the
individual weight of control point is constant.

3.2. A higher-order plate formulation based on NURBS approximation

Using the NURBS basis functions defined above, both the description of the geom-
etry (or the physical point) and the displacement field u of the plate are approximated as

xh (ξ, η) =
m×n∑
A=1

RA (ξ, η)PA; uh (ξ, η) =

m×n∑
A=1

RA (ξ, η)qA, (15)

where n×m is the number basis functions, xT = (x y) is the physical coordinate vector.
In Eq. (15), RA (ξ, η) is rational basic functions, PA is the control points and

qA =
[
u0A v0A wA βxA βyA

]T is the vector of nodal degrees of freedom associ-
ated with the control point A.

Substituting Eq. (15) into Eq. (3), the in-plane and shear strains can be rewritten as

[εp γ]T =
m×n∑
A=1

[
Bm
A Bb1

A Bb2
A Bs

A

]T qA, (16)

in which

Bm
A =

 RA,x 0 0 0 0
0 RA,y 0 0 0

RA,y RA,x 0 0 0

 , Bb1
A =

 0 0 −RA,xx 0 0
0 0 −RA,yy 0 0
0 0 −2RA,xy 0 0


Bb2
A =

 0 0 0 RA,x 0
0 0 0 0 RA,y
0 0 0 RA,y RA,x

 , Bs
A =

[
0 0 0 RA 0
0 0 0 0 RA

]
.

(17)

For forced vibration analysis of the plates, undamped dynamic discrete equation
can be written from Eq. (10) as

Mq̈ + Kq = F(t), (18)

where the global stiffness matrix K is given by

K =

∫
Ω




Bm

Bb1

Bb2


T  A B E

B D F
E F H


Bm

Bb1

Bb2

+ (Bs)TDsBs

dΩ. (19)

The distributed transverse force in the z direction one has the following expression

F(t) =

∫
Ω

Rq(x, y, t)dΩ, (20)
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where
R =

[
0 0 RA 0 0

]
. (21)

The global mass matrix M is given as

M =

∫
Ω


 N1

N2

N3

T  I1 I2 I4

I2 I3 I5

I4 I5 I6

  N1

N2

N3


 dΩ, (22)

where

N1 =

RA 0 0 0 0
0 RA 0 0 0
0 0 RA 0 0

; N2 =

0 0 −RA,x 0 0
0 0 −RA,y 0 0
0 0 0 0 0

; N3 =

0 0 0 RA 0
0 0 0 0 RA
0 0 0 0 0

.
(23)

It should be noted that for forced vibration analysis, the approximate function is
done with both space and time. For the displacements and accelerations at time t + ∆t,
Eq. (18) should be considered at time t+ ∆t as follows

Mq̈t+∆t + Kqt+∆t = Ft+∆t(t). (24)

To solve this second order time dependent problem, several methods have been
proposed such as, Wilson, Newmark, Houbolt, Crank-Nicholson, etc. In this paper, Eq.
(18) is solved by the Newmark time integration method. The Newmark method is an
implicit method. This method assumes that the acceleration varies linearly within the
interval (t, t+ ∆t). The formulation of the Newmark method is [13][

M + αK(∆t)2
]
q̈1 = F1 − [Kq0 + K∆tq̇0 + (

1

2
− α)Kq̈0(∆t)2], (25)

q̇1 = q̇0 + (1− δ)q̈0∆t+ δq̈1∆t, (26)

q1 = q0 + q̇0∆t+ (
1

2
− α)q̈0(∆t)2 + αq̈1(∆t)2. (27)

The parameters α and δ are constants whose values depend on the finite difference
scheme used in the calculations. Two well-known and commonly used cases are average
acceleration method (α = 1/4 and δ = 1/2) and linear acceleration method (α = 1/6 and
δ = 1/2). Here we used the average acceleration method, which is unconditionally stable
if δ ≥ 0.5 and α ≥ 1/4(δ + 0.5)2.

4. NUMERICAL EXAMPLES

4.1. A study of the convergence

Free vibration analysis of the laminated composite plates is investigated correspond-
ing to right hand side of Eq. (18) equal to zero. Let us consider a four-layer [00/900/900/00]
square plate with simply supported boundary condition. The effects of the length to thick-
ness a/h and elastic modulus ratios E1/E2 are studied. To show the convergence of the
present approach, the length to thickness a/h = 5 and elastic modulus ratios E1/E2 = 40
are used. As shown in Tab. 1, the normalized frequencies are computed using meshes of
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9 × 9, 13 × 13 and 17 × 17. It can be observed that the differences of normalized fre-
quencies between meshes of 9 × 9 and 13 × 13 are not significant and between meshes of
13 × 13 and 17 × 17 are identical. Hence, for a comparison with other methods, a mesh
of 13× 13 cubic elements can be chosen. The first normalized frequency derived from the
present approach is listed in Tab. 2 corresponding to various modulus ratios and a/h = 5.
The obtained results are compared with analytical solutions based on the HSDT [14, 15]
the moving least squares differential quadrature method (DQM) [16] based on the FSDT,
the meshfree method using multiquadric radial basis functions (RBFs) [17] and wavelets
functions [18] based on the FSDT. A good agreement is found for the present method in
comparison with other ones. It is also seen that the present results match very well with
the exact solutions [14, 15]. The influence of the length to thickness ratios is also consid-
ered as displayed in Tab. 3. The obtained results are compared with those of Zhen and
Wanji [19] based on a global-local higher-order theory (GLHOT), Matsunaga [20] based on
a global-local higher-order theory. Again, a good agreement with other published solutions
is obtained.

Table 1. The convergence of non-dimensional frequency parameter $ =
(
ωa2/h

)
(ρ/E2)

1/2

of a four layer [00/900/900/00] simply supported laminated square plate (a/h = 5)

Method
Meshes

9× 9 13× 13 17× 17

IGA (present) 10.7876 10.7873 10.7873

Table 2. A non-dimensional frequency parameter $ =
(
ωa2/h

)
(ρ/E2)

1/2 of a [00/900/900/00]
simply supported laminated square plate (a/h = 5)

Method
E1/E2

10 20 30 40
RBFs-FSDT [17] 8.2526 9.4974 10.2308 10.7329

Wavelets-FSDT [18] 8.2794 9.5375 10.2889 10.8117
DQM-FSDT [16] 8.2924 9.5613 10.3200 10.8490

Exact-HSDT [14,15] 8.2982 9.5671 10.3260 10.8540
IGA (present) 8.2718 9.5263 10.2719 10.7873

Table 3. A non-dimensional frequency parameter $ =
(
ωa2/h

)
(ρ/E2)

1/2 of a [00/900/900/00]
simply supported laminated square plate (E1/E2 = 40)

Methods
a/h

4 5 10 20 25 50 100
Zhen et al. [19] 9.2406 10.7294 15.1658 17.8035 18.2404 18.9022 19.1566
Matsunaga [20] 9.1988 10.6876 15.0721 17.6369 18.0557 18.6702 18.8352
IGA (present) 9.3235 10.7873 15.1073 17.6466 18.0620 18.6718 18.8356
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4.2. Transient analysis

In order to demonstrate the accuracy and effectiveness of the present method for
transient analysis of laminated composite plates, four numerical examples with different
transient loadings are studied. The obtained results are compared with other numerical
or analytical solutions available in the literature or commercial software. For first three
examples, cubic order NURBS basis function with 13×13 elements is used. All layers of
the laminated plates are assumed to have the same thicknesses and material properties.
The time step ∆t = 0.1 ms is chosen for Sections 4.2.1 and 4.2.2.

4.2.1. A three-layer square plate [00/900/00]

First, a fully simply supported three-layer square laminated plate sorted as
[00/900/00] is considered. Material I is used, shown in Tab. 4. This example was also
studied by Wang et al. [7] using the trip element method (SEM), which is chosen here to
demonstrate the accuracy of the IGA in dynamic analysis of plates under different tran-
sient loads including step, triangular, sine and explosive blast loads. The length and the
thickness of square plate are assumed to be a = 20h and h = 0.0381 m, respectively. The
plate is subjected to a transverse load which is sinusoidally distributed in spatial domain
and varies with time as

q(x, y, t) = q0 sin(
πx

a
) sin(

πy

b
)F (t), (28)

in which

F (t) =



{
1 0 ≤ t ≤ t1
0 t > t1

}
Step loading{

1− t/t1 0 ≤ t ≤ t1
0 t > t1

}
Triangular loading{

sin(πt/t1) 0 ≤ t ≤ t1
0 t > t1

}
Sine loading

e−γt Explosive blast loading

(29)

where t1 = 0.006 s, γ = 330 s−1 and q0 = 3.448 MPa.

Table 4. Properties of material

Material E1(GPa) E2 (GPa) G12 (GPa) G13 (GPa) G23 (GPa) ν12 ρ (kg/m3)

I 172.369 6.895 3.448 3.448 3.448 0.25 1603.03

II 172.369 6.895 3.448 3.448 1.379 0.25 1603.03

III 131.69 8.55 6.67 6.67 6.67 0.3 1610

Fig. 3 shows the time histories of central deflection of the plate under various dy-
namic loadings. The obtained results of present solution using IGA are compared with
those obtained by Wang et al. [7] using the strip element method (SEM). As expected, the
effectiveness of this work is fully believable when profiles relatively coincide with Wang et
al.’s solutions.
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a) step loading b) Triangular loading 

  

c) sine loading d) explosive blast loading 

Fig. 3. Variation  of  the  center  deflection  as  a  function  of time for a (00/900/00) square 

laminated composite plate subjected to various dynamic loadings 

4.2.3 A circular four-layer plate [45
0
/-45

0
/-45

0
/45

0
] 

Finally, to increase lively for numerical examples and obtain the desired effect, we consider a 

[450/-450/-450/450] circular plate with fully clamped (CCCC) boundary condition as shown Fig. 6a. 

Material parameter III is used. The plate is also subjected to a conventional blast load as given in 

Section 4.2.2. The circular plate has the radius to thickness ratio is 10 (R/h = 10). A rational quadratic 

basis is enough to model exactly the circular geometry. Coarse mesh and control net of the plate with 

respect to quadratic and cubic elements are illustrated in Fig. 7. Time step for transient analysis is 

chosen  t = 0.4ms. The plate is meshed with 13x13 NURBS cubic elements as shown Fig. 6b. Fig. 8 

illustrates the profile of displacements versus time at the center of the circular plate subjected to 
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respect to quadratic and cubic elements are illustrated in Fig. 7. Time step for transient analysis is 
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(d) Explosive blast loading

Fig. 3. Variation of the center deflection as a function of time for a (00/900/00) square laminated
composite plate subjected to various dynamic loadings

Second, a fully simply supported three-layer square laminated plate sorted as
[00/900/00] is also considered. Material II is used. The length and thickness of the plates
are assumed to be a = 5h and h = 0.1524 m, respectively. As above example, the plate is
also subjected to sinusoidally distributed transverse load (with q0 = 68.9476 MPa). The
displacement at the center of plate is also studied. Khdeir and Reddy [21] originally inves-
tigated this benchmark solution. Fig. 4 shows variation of the displacement at the center
of plate as a function under various dynamic loadings. The present solutions based on IGA
and TSDT are compared with exact solution of Khdeir and Reddy [21] using HSDT. As
observed in Fig. 4, the profiles are relatively accurate, the error estimate is very small and
approvable when comparing with exact solution.
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(d) Explosive blast loading

Fig. 4. Central deflection versus time for a [00/900/00] square laminated plate
subjected to various dynamic loadings

4.2.2. A four-layer square plate [300/− 300/− 300/300]

A fully clamped four-layer angle-ply square laminated plate with symmetrically
stacking sequences [300/− 300/− 300/300] is considered. Material III is used. The length
to thickness ratio of the plate is assumed to be a/h = 50. The plate is also subjected to
a transverse load which is uniformly distributed over the plate and is called conventional
blast loading [7].

q(x, y, t) = q0(1− t

t2
)e−α1t/t2 , (30)

in which q0 = 68.9476 KPa, t2 = 0.004 s, α1 = 1.98.
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Fig. 5. The time history of the center deflection of the [300/− 300/− 300/300]
fully clamped laminated plate

The time history of the deflection at the center of the four-layer fully clamped
(CCCC) laminated plate is investigated, as shown in Fig. 5. The results are compared
with the solutions of Wang et al. [7]. From Fig. 5, the present results match well with the
reference solutions.

4.2.3. A circular four-layer plate [450/− 450/− 450/450]

Finally, to increase lively for numerical examples and obtain the desired effect, we
consider a [450/ − 450/ − 450/450] circular plate with fully clamped (CCCC) boundary
condition as shown Fig. 6a. Material parameter III is used. The plate is also subjected to
a conventional blast load as given in Section 4.2.2. The circular plate has the radius to
thickness ratio is 10 (R/h = 10). A rational quadratic basis is enough to model exactly
the circular geometry. Coarse mesh and control net of the plate with respect to quadratic
and cubic elements are illustrated in Fig. 7. Time step for transient analysis is chosen
∆t = 0.4 ms. The plate is meshed with 13× 13 NURBS cubic elements as shown Fig. 6b.
Fig. 8 illustrates the profile of displacements versus time at the center of the circular plate
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Fig. 6. The circular plate: (a) geometry and (b) mesh based on 13x13 cubic elements. 

 

                 
Fig. 7. Coarse mesh and control points of a circular plate with various degrees: a) p=2 and b) p=3. 
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Fig. 6. The circular plate: (a) geometry and (b) mesh based on 13× 13 cubic elements
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subjected to conventional blast load. Obtained results are compared with solutions from
ANSYS 13 which using SHELL 181 elements. It can be seen that the present solutions are
in good agreement with the solutions from ANSYS software.
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11 
 

 

 

 

Fig. 6. The circular plate: (a) geometry and (b) mesh based on 13x13 cubic elements. 

 

                 
Fig. 7. Coarse mesh and control points of a circular plate with various degrees: a) p=2 and b) p=3. 

 

5. CONCLUSIONS 

 

Isogeometric analysis combined with TSDT to analyze the transient of laminated composite plates 

is first studied. The displacement field is generally defined and is derived from CPT. The Newmark 

time-integration algorithm was chosen to approximate the ordinary differential equations in time. We 

have successfully extended an application of the NURBS-based isogeometric finite element approach 

to transient analysis for laminated composite plates as this work. IGA is the effectively numerical 

method. It has expressed well its role in solving the problems with just few elements especially curved 

geometry as circle. The calculation of these problems has been done very fast.  It not only helps to 

save costs but also increases the accuracy of solutions. The numerical results agreed well with those 

of available references and exact solution, and hence illustrated the accuracy and effectiveness of the 

present method. 

 
Fig. 8. The deflection at the center of the [450/-450/-450/450] circular laminated plate subjected to a 

conventional blast load. 
Fig. 8. The deflection at the center of the [450/− 450/− 450/450] circular

laminated plate subjected to a conventional blast load

5. CONCLUSIONS

Isogeometric analysis combined with TSDT to analyze the transient of laminated
composite plates is first studied. The displacement field is generally defined and is de-
rived from CPT. The Newmark time-integration algorithm was chosen to approximate the
ordinary differential equations in time. We have successfully extended an application of
the NURBS-based isogeometric finite element approach to analyze dynamic response for
laminated composite plates as this work. IGA is the effectively numerical method. It has
expressed well its role in solving the problems with just few elements especially curved
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geometry as circle. The calculation of these problems has been done very fast. It not only
helps to save costs but also increases the accuracy of solutions. The numerical results
agreed well with those of available references and exact solution, and hence illustrated the
accuracy and effectiveness of the present method.
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