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Abstract. In this paper, an optimized homogenization method using uniaxial tensile tests
to estimate material parameters in the micromechanical model of a heat treated DC04
steel is introduced. The method is based on a representative element model for the macro-
scopically homogeneous material. A Taylor polycrystal model is applied at integration
points and simultaneously accounting for experimental electron backscatter diffraction
(EBSD) data. Computational macro stress-strain curves are compared to experimental
stress-strain curves to estimate the parameters of the DC04 steel at the different angles to
rolling direction (RD).
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1. INTRODUCTION

Most of metals used in industrial applications are polycrystalline materials. As
observed in experimental micrograph, they are the set of grains with identified grain
boundaries. Each grain is the aggregate of single crystals having approximately homoge-
nous orientation. In crystallography, the crystal structure or the arrangement of atoms
is considered as a cubic shape. As studied by [1] and [2], the anisotropic plasticity of
polycrystalline materials is mainly caused by non-uniform distributions of crystal ori-
entations. Therefore, the analysis of the crystallographic texture, i.e., preferred crystal
orientations, plays an important role when investigating the macroscopic material behav-
ior. The experimental EBSD technique, known as Scanning Electron Microscope (SEM)
based technique, has become a major tool in measuring crystal orientations from a poly-
crystal structure. One application is the use of crystal orientation data at every Gauss
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integration point in finite element simulations of crystal plasticity models. For this spe-
cial techniques, e.g. [3–6] are developed to determine a reduced number of individual
orientations based on experimental data.

Low carbon steels is currently of important interest since they are widely used in
automotive systems due to their formability and high corrosion resistance. In this paper,
a low carbon DC04 steel widely used in the automotive industry is investigated. The
paper aims to estimate microscopic material parameters in a large strain crystal plastic-
ity model used for a body-centered cubic (BCC) material of the DC04 steel. The esti-
mation is performed by using uniaxial tensile experiments and the crystal orientations
related to experimental EBSD data for the DC04 steel. Here the crystallographic EBSD
data obtained from the heat treated process on the DC04 steel is delivered by Institute for
Applied Materials-Materials and Biomechanics (IAM-WBM, Karlsruhe Institute of Tech-
nology). This texture data implying the development of a new microstructure and the
formation of a new crystallographic texture will be considered. The different numbers
of single crystal orientations extracted from the raw EBSD data are used for the homoge-
nization scheme implemented at Gauss integration points. Computational results using
the two-scale plasticity model are compared with experimental tensile tests in terms of
stress-strain curves to estimate the underlying material parameters. The paper is orga-
nized as follows. In Section 2, the constitutive equations of the finite elastoviscoplasticity
theory are described briefly. The constitutive equations are integrated over time by means
of the implicit Euler scheme. The experimental data of EBSD texture and tensile curves
are introduced in Section 3. In Section 4, computational tensile stress-strain curves of
tensile tests are compared with experimental results for different tensile directions in the
sheet plane to estimate the material parameters. The tensile test data are provided by In-
stitute of Forming Technology and Lightweight Construction (IUL, Technical University
of Dortmund). Finally, Section 5 gives conclusions.

2. CONSTITUTIVE EQUATIONS

2.1. Single crystal plasticity model
2.1.1. Elastic law

In this section, an elastoviscoplastic single crystal constitutive model in the large
strain crystal plasticity theory [7, 8] is briefly summarized. The constitutive law is imple-
mented in the commercial ABAQUS software using the subroutine UMAT, which allows
user-defined material constitutive laws to be incorporated in FE simulations. The model
is based upon the assumptions of small elastic strains and finite plastic strains and rota-
tions. Plastic deformation is assumed to be the result from distinct slip mechanisms on
specific crystallographic planes. The crystal elasticity properties are assumed not to be af-
fected by the slip mechanism. The deformation gradient is decomposed multiplicatively
into an elastic part Fe and a plastic part Fp

F = FeFp. (1)

The plastic deformation Fp is the plastic contribution from crystallographic slips.
The elastic deformation Fe accounts for the lattice distortion, which is inherently elastic.
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The Kirchhoff stress tensor in the elastic law using the elastic stiffness tensor C on the
single cubic crystal is given by

τ = FeC̃[Ee]FT
e . (2)

The stiffness tensor has three independent elastic constants [9]. Green’s strain tensor is
defined by

Ee = (Ce − I)/2, (3)
with I being the 2nd-order unit tensor and the right (elastic) Cauchy-Green tensor

Ce = FT
e Fe. (4)

2.1.2. Flow rule and hardening law
A rate-dependent flow rule specifies the time evolution of the plastic part Fp of F

ḞpF−1
p = ∑

α

γ̇αM̃α, γ̇α = γ̇0sgn(τα)
∣∣∣ τα

τC

∣∣∣m, (5)

where the exponent m quantifies the strain-rate sensitivity of the material, γ̇0 is a refer-
ence rate, and M̃α is the Schmid tensor. τC denotes the critical resolved shear stress. The
following rate-dependent Kocks-Mecking hardening model [4, 10]

τ̇C(τα, τC) = Θ0

(
1− τC

τC
V (τα, τC)

)
γ̇(τα, τC), (6)

is used, where the critical Voce stress is specified by

τC
V (τα, τC) = τC

V0

(
γ̇(τα, τC)

γ̇0

) 1
n

, (7)

with the asymptotic critical resolved shear stress τC
V0 and the initial hardening modulus

Θ0. The rate of the accumulated plastic slip is computed by

γ̇ = ∑
α

∣∣∣γ̇α(τα, τC)
∣∣∣ . (8)

The resolved shear stress is defined by

τα = T′e · M̃α, (9)

where
Te = CeS2PK

e , (10)
denotes the Mandel stress tensor. The second Piola-Kirchhoff in the undistorted state is
given by S2PK

e = JF−1
e τF−T

e . J = det(Fe) is the determinant of Fe. The Schmid tensors
are defined in terms of the slip direction d̃α and slip plane normal ñα in the undistorted
configuration

M̃α = d̃α ⊗ ñα. (11)
The initial conditions for the ordinary differential equation are Fe(0) = Q(t = 0) ∈ SO(3)
and the initial critical resolved shear stress τC(0) = τC

0 . The crystal orientation is given
by a proper orthogonal tensor Q(t) = gi(t)⊗ ei, where the vectors gi and ei denote the
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orthonormal lattice vectors and the fixed orthonormal basis, respectively. The initial ori-
entation of the single crystal Q(t = 0) = gi(0)⊗ ei is defined in terms of the orthonormal
lattice vectors gi(0) at the time t = 0. For body-centered cubic (BCC) slip sytems of DC04
steel, the attention is focused on a combination of {110} 〈111〉 and {112} 〈111〉 slip sys-
tem families [11]. There are two slip directions in each of the slip planes along the main
diagonals of the cube. In total, there are 24 slip systems [11, 12].

2.2. Taylor type polycrystal model
The crystallographic texture of polycrystalline materials is known to be of signif-

icant importance for the sheet metal forming behavior. Taylor type polycrystal models
known as numerically the most effective two-scale models take into account the crys-
tallographic texture at integration Gauss points. In general, Taylor models, e.g., [13–17]
assume that the deformation gradient field is homogeneous for all grains through the
microstructure of the polycrystal. The macroscopic deformation gradient is equal to the
volume average of the microscopic deformation gradient

F̄ =
1
V

∫
V

F dV , (12)

with respect to the reference configuration. The effective Kirchhoff stress tensor is com-
puted as the volume average of crystal stress with respect to the current configuration

τ̄ =
1
V

∫
V
τ dV =

M

∑
β

νβτβ, (13)

where M is the total number of grains in the discretized crystallographic texture, νβ is the
volume fraction of the grain β and τβ is the corresponding Kirchhoff stress tensor.

3. EXPERIMENTAL DATA

3.1. EBSD crystallographic texture data
3.1.1. EBSD technique

In recent years, EBSD technique [18] has become an important technique for the
quantitative characterization of different microstructural properties such as the grain
size, the grain boundary structure, and the orientation distribution. This technique al-
lows to obtain spatially resolved crystallographic information by a Scanning Electron
Microscope (SEM). For every point analyzed on a sample, the position, the phase and
the crystallographic orientation are stored. A specimen of DC04 steel is investigated in
the cold formed and heat treated state by using the EBSD technique to obtain a corre-
sponding database and simultaneously to identify a two-dimensional approximation of
the grain structure. The software package MTEX [19, 20], a Matlab toolbox developed
since 1997, is used for the quantitative analysis of experimental textures. The obtained
EBSD database is processed by MTEX to identify the grains and their boundaries. In or-
der to identify a grain from the EBSD measurement, it is necessary to determine its grain
boundary and the average orientation inside the grain. These identifications can be han-
dled by the open-source texture toolbox MTEX in terms of the misorientation over the
set of all measurement points inside a grain. The heat treated EBSD microstructure and
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the clustered heat treated EBSD microstructure are shown in Fig. 1. After the clustering
process in MTEX, grain boundaries are identified and the total number of the identified
grains are found to be 2554. An output database is shown in Tab. 1, including three Euler
angles of clustered grains and their corresponding pixels.

(a) Raw EBSD data set (b) Clustered EBSD data set

Fig. 1. Microstructural EBSD images of the heat treated DC04 steel

Table 1. The data set for identification of grains in the clustered heat
treated specimen of DC04 steel

Grain Euler1 Euler2 Euler3 Pixels

1 83.32 47.374 23.528 3

2 117.36 47.152 37.653 4

3 -92.53 38.297 82.924 1

4 25.048 127.55 158.2 1

5 -15.257 46.542 37.09 6
...

...
...

...
...

2550 0.74703 14.359 11.114 71

2551 -113.42 43.691 47.862 443

2552 -151.99 44.525 71.867 7

2553 -157.13 42.302 62.368 21

2554 -30.854 41.545 34.8 72

3.1.2. Low dimensional description of crystallographic texture
In this section, an effective method is introduced for the selection of representative

grain orientations based on discrete texture data. The reduced orientation distribution
has to reproduce the overall crystallographic texture of the investigated material in a sta-
tistical as well as mechanical sense. The crystal orientation distribution function (CODF)
represents the crystallographic texture in terms of a volume fraction description of crystal
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orientations. Mathematically, it represents the volume fraction of crystals with orienta-
tion Q ∈ SO(3), i.e.,

dV
V

= f (Q)dQ. (14)

For a random texture f (Q) ≡ 1 holds. The orientation of a single crystal in a poly-
crystalline structure can be uniquely determined by the specification of the rotation Q ∈
SO(3) which maps the sample fixed basis vectors ei onto the lattice vectors gi by gi = Qei.
The rotation Q is commonly parameterized by a triple of Euler angles φ1, Φ, φ2 in the
’zxz’-convention and is represented by a 3× 3 orthogonal matrix [2] given by

Qij =

 cosφ1 −sinφ1 0
sinφ1 cosφ1 0

0 0 1

 1 0 0
0 cosΦ −sinΦ
0 sinΦ cosΦ

 cosφ2 −sinφ2 0
sinφ2 cosφ2 0

0 0 1


=

 cosφ1cosφ2 − sinφ1cosΦsinφ2 −cosφ1sinφ2 − sinφ1cosΦcosφ2 sinΦsinφ1
sinφ1cosφ2 + cosφ1cosΦsinφ2 −sinφ1sinφ2 + cosφ1cosΦcosφ2 −sinΦcosφ1

sinΦsinφ2 sinΦcosφ2 cosΦ

 ,

(15)

where the infinitesimal volume element dQ =
1

8π2 sin(Φ)dφ1dφ2dΦ. In order to save
the time-consuming of numerical FE computations, the number of grains needs to be re-
duced but simultaneously has to represent the crystallographic texture data accurately.
Reduced crystallographic textures including only 200 grains, 400 grains and 650 grains
with the corresponding largest volume fractions are extracted and used for the numer-
ical homogenization. Considering the case of a cubic crystal symmetry, an orthotropic
orientation data set needs to be used. The orthotropic data can be obtained by rotating
counterclockwise the grain orientation data set 180 degrees in turn about the orthonor-
mal axes in the lattice system. The orthogonal rotations characterized by three orthogonal
matrices with respect to the orthonormal crystal lattice vectors {gi} (i = 1 . . . 3) are given
by

R1 (180◦) =

 1 0 0
0 −1 0
0 0 −1

 , (16)

R2 (180◦) =

 −1 0 0
0 1 0
0 0 −1

 , (17)

R3 (180◦) =

 −1 0 0
0 −1 0
0 0 1

 . (18)

Each multiplication of an orthogonal rotation matrix Ri (i = 1 . . . 3) and each grain orien-
tation Q, given by RiQ (i = 1 . . . 3), generates an additional grain orientation. This means
that the orthotropic orientation data set is four times larger than the initial set. Therefore,
the orthotropic orientation data sets of 2554 grains (the raw data), 200 grains, 400 grains
and 605 grains will consist of 10216 orientations, 800 orientations, 1600 orientations and
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2420 orientations, respectively. Here, two important characteristics for the graphical rep-
resentation of the texture data are to be evaluated. The first is the pole figure which is
used to plot a set of poles for corresponding grain orientations based on stereographic
projections in 3D space. The second is the aforementioned CODF. The {111}, {100} and
{110} pole figures and the CODF of the orthotropic orientation data sets (10216 orienta-
tions and 800 orientations) are shown in Figs. 2 and 3. In Fig. 3, the CODFs are deter-
mined based on the kernel distribution of von Mises Fisher in the MTEX algorithm . It
can be seen that the pole figures and the CODF of 10216 and 800 grains, respectively, are
approximately similar.

Fig. 2. Comparison between pole figures of 10216 grains (above) and 800 grains (below)

Fig. 3. Slices of CODF: 10216 grains (left) and 800 grains (right)
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Fig. 4. (a) Tensile specimen at different angles to RD [21] and experimental stress-strain curves
for different angles to RD - (b) 0◦, (c) 15◦, (d) 30◦, (e) 45◦, (f) 60◦, (g) 75◦, (h) 90◦.
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3.2. Tensile curves
The most widely used basic test of sheet metal forming is the uniaxial tensile test.

As illustrated in Fig. 4 (a), a specimen cut from a heat treated sheet metal of a DC04
steel at different angles to the rolling direction (RD) is used to carry out uniaxial ten-
sile tests. The uniaxial tensile experiment performed by Institute of Forming Technology
and Lightweight Construction (IUL, Technical University of Dortmund) is used to in-
vestigate the macroscopic stress-strain relation. Several data sets are identified for spec-
imens oriented at 0◦, 15◦, 30◦, 45◦, 60◦, 75◦ and 90◦ to the RD. The initial thickness of
the specimen varies in the range t0 = 1.16− 1.2 mm with a gauge length L0 = 80 mm
and the range w0 = 19.81− 19.92 mm. The tests were conducted at the constant veloc-
ity of 0.0025 s−1. These experiments contain information of the displacements and the
forces over time. The nominal stress is calculated by σ0 = F/A0, where F is the force
and A0 = t0w0 is the initial area of the cross section. The engineering strain is given
by ε = L(t)/L(0)− 1 = ∆L(t)/L(0). Figs. 4 (b-h) shows the nominal stress versus the
engineering strain for differently oriented specimens. It can be seen that there are three
tensile experiments performed at each fixed angle θ to RD. To make it simple, a mean
stress-strain curve is computed based on these three experimental curves in the range of
strain 0− 0.2.

4. ESTIMATION OF MATERIAL MICRO-PARAMETERS
BASED ON TENSILE SIMULATIONS

This section aims to identify the material parameters used in the micromechanical
model of DC04 steel based on uniaxial tensile tests. A FE model for modeling the tensile
tests is constructed by ABAQUS/CAE and the Taylor type polycrystal model is applied
at the integration points of finite elements. The mechanical constitutive law discussed in
Section 2 is implemented numerically by a user material behavior (UMAT subroutine).
The orthotropic orientation data sets (800 grains, 1600 grains and 2420 grains) of the heat
treated DC04 steel will be the input data used in the Taylor type polycrystal model as ini-
tial grain orientation distribution. In Fig. 5, the FE model representing a representative
element (8-node linear brick element type - C3D8) for the macroscopically homogeneous
material is shown. Stresses and strains are computed at 8 integration Gauss points within
the FE model. The length, the width and the area are 1 mm, 1 mm and 1 mm2, respec-
tively. The initial time increment is 10−6 s and the maximum time increment is 1 s. The
total time in the simulations is 200 s corresponding to the final displacement of ux = 0.2.
As a result, the applied strain rate is 10−3 s−1. Note that each rotation of the initial orienta-
tion data set about the normal direction e3 (ND) with angle θ corresponds to the oriented
specimen. The rotation matrix Θ representing the rotation about e3, can be expressed as
follows

Θ(θ) =

 cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (19)

Each tensile simulation for a fixed angle θ is performed for the orthotropic orienta-
tion set. The nominal stress is computed by σ0 = F/A0, where F is the sum of computed
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Fig. 5. FE-model of the uniaxial tensile test with one finite element.

forces at nodes along the tensile direction during deformation. In the following inves-
tigation, a set of material parameters are estimated by comparing simulation results to
experimental data. This estimation will be done based on stress-strain curves and the
least square fitting method. The elastic constants of DC04 steel used in tensile test simu-
lations are explained in Section 2.1. The other material parameters, i.e., the reference slip
rate γ̇0, the strain-rate sensitivity parameter m, the initial critical resolved shear stress τC

0 ,
the asymptotic critical resolved shear stress τC

V0, and the initial hardening modulus Θ0
are estimated based on the numerical stress-strain curves. Firstly, the values of the initial
and asymptotic critical resolved shear stresses are estimated via the Taylor factor M ∼= 3
between the microscopic shear stress and the macroscopic nominal stress

τC
0
∼=

σmacro
0
M

∣∣∣∣
θ=0◦

, τC
V0
∼=

σmacro
∞
M

∣∣∣∣
θ=0◦

, (20)

where the macroscopic nominal stresses σmacro
0 and σmacro

∞ can be estimated from the ex-
perimental tensile curves. Secondly, these two microscopic shear stresses and the hard-
ening modulus Θ0 are adjusted to fit to the experimental curves for all different angles
θ. The least square method is applied in order to determine the optimal parameters. The
error is defined by

E2 =

√
1
n

n

∑
i=1

d2
i =

√
1
n

n

∑
i=1

∣∣Pexp
i − Pnum

i

∣∣, (21)

where n is the number of data points and di is the distance between the experimental
data point Pexp

i and simulated data point Pnum
i with respect to the same strain. By using

this optimal set, the comparison between the experimental and numerical results using
the different orthotropic data sets for the oriented specimen at different angles to RD is
depicted in Figs. 6, 7 and 8. It can be seen that these numerical and experimental tensile
curves showed a good match when applying different numbers of grain orientations at
the integration points. The 200-orientation data set extracted from the raw data set is
sufficient to represent the crystallographic texture data accurately. Tab. 2 shows the set
of optimal material parameters identified based on the minimization of E2 for all tensile
directions simultaneously.
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Fig. 6. (a) Undeformed (shade color) and deformed (black color) configuration of the represen-
tative element at the end state of FE simulation and numerically determined stress-strain curves
using 800 grains in comparison to experimental data for different angles to RD - (b) 0◦, (c) 15◦, (d)
30◦, (e) 45◦, (f) 60◦, (g) 75◦, (h) 90◦
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Simulation − 30° to RD

(d)

0 0.05 0.1 0.15 0.2
0

50

100

150

200

250

300

350

400

Strain [−]

N
om

in
al

 s
tr

es
s 

[M
P

a]
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Fig. 7. (a) Undeformed (shade color) and deformed (black color) configuration of the represen-
tative element at the end state of FE simulation and numerically determined stress-strain curves
using 1600 grains in comparison to experimental data for different angles to RD - (b) 0◦, (c) 15◦,
(d) 30◦, (e) 45◦, (f) 60◦, (g) 75◦, (h) 90◦
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Fig. 8. (a) Undeformed (shade color) and deformed (black color) configuration of the represen-
tative element at the end state of FE simulation and numerically determined stress-strain curves
using 2420 grains in comparison to experimental data for different angles to RD - (b) 0◦, (c) 15◦,
(d) 30◦, (e) 45◦, (f) 60◦, (g) 75◦, (h) 90◦
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Table 2. Set of identified material parameters based on the experimental tensile tests

C1111[GPa] C1122[GPa] C1212[GPa]

231.5 135.0 116.0

Elastic constants of DC04 steel [22]

m[−] γ̇0[s−1] n[−] τC
0 [MPa] τC

V0[MPa] Θ0[MPa]

20 0.001 5 67 130 755

Material parameters in flow rule and hardening law

5. CONCLUSION

In this paper, a finite strain crystal plasticity model for BCC materials of DC04 steel
has been implemented in ABAQUS. A comparison of the crystal plasticity FE simulation
with the experimental tensile test for the stress-strain curves has been presented at dif-
ferent angles to RD. The macroscopic material behaviour in tensile tests has been used
to determine an optimal set of material parameters in the micromechanical model using
the reduced texture data of the heat treated DC04 steel. The different numbers of single
crystal orientations have been extracted from experimental EBSD data. The mechanical
constitutive equations of a large strain crystal plasticity model for the steel and BCC slip
mechanisms in the coupling of {110} + {112} 〈111〉 slip systems have been applied for
these simulations. The elastic constants for the DC04 steel were taken from literature.
The study illustrated how the crystallographic information could be incorporated into a
continuum mechanical modeling of a basic sheet metal forming test.
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