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CONTINUOUS ELEMENT FOR VIBRATION ANALYSIS

OF THICK SHELLS OF REVOLUTION
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Abstract. This paper presents a new numerical method: Continous Element Method
(CEM) for vibration analysis of thick shells of revolution taking into account the shear
deflection effects. Natural frequencies and harmonic responses of cylindrical and conical
shells subjected to different boundary conditions obtained with this kind of formulation
are in close agreement with finite element solutions. The main advantage is the reduction
of the size of the model thus allows the high precision in the results for a large frequency
range.
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1. INTRODUCTION

The Dynamic Stiffness Method is a highly effcient way to analyse harmonic re-
sponses of structures made up of many simple elements. This method, also known as the
Continuous Element Method (CEM), is particularly well-suited to pylon and beam lat-
tice structures. It is based on the so-called dynamic stiffness matrix, denoted hereafter
K(ω), which gives exact relations between forces and displacements at the ends of a struc-
tural element [1]. The exactness of the relation can only be understood with regard to
a given elastodynamic theory. In the case of straight beam assemblies, exact solutions of
the equations of motion according to Euler - Bernoulli assumptions or the Rayleigh and
Timoshenko theories have been widely used to derive the dynamic stiffness matrices [1],
[8]-[11]. During the 1980s, several computer codes were developed based on this method.
The calculation of the dynamic stiffness matrix for curved beams is based on an integration
of the equations of motion whose associated eigenproblems has been solved beforehand
[12, 13]. Using a very similar approach, an axisymmetric cylindrical shell element with no
shear effects has been developed as well [4].

The next stage was the development of plate elements. For this kind of elements, the
solution of the equations of motion is theoretically unattainable. Nevertheless, a dynamic
stiffness matrix has been built from series expansion [13].

This paper is a direct continuation and a significant advantage of the above men-
tioned research. Its main object is to present a procedure to obtain the dynamic stiffness
matrix of an axisymmetric shell which takes into account both the rotatory inertia and
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shear deformations effects. The method is based on a series expansion of the displacement
of the cross-section’s middle line and an integration of the dynamic transfer matrix.

2. STRONG FORMULATION

Consider one axisymmetric surface with OZ called right axis of revolution. The most
common of this type of surface are of course the cylinder and the cone. The geometry of
the axisymmetric shell is shown in Fig. 1.

Fig. 1. Geometry of an axisymmetric shell

Fig. 2 describes the displacements, rotations, forces and moments in the normal
facet of the axisymmetric shell. They are named: uϕ, uθ, u3, βϕ, βθ, Nϕϕ, Nθϕ, Nθθ, Nϕθ,
Qϕ3, Qθ3, Mϕϕ , Mθθ, Mϕθ, Mθϕ [3].

Fig. 2. Axisymmetric shell element
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The deformation-displacements relations and the relations between internal efforts,
moments and displacements are written by [3]:
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with: D =
Eh

1 − υ2
, K =

Eh3

12(1− υ2)
, K ′: shear correction factor, h: thickness of the shell,

υ: Poisson’s ratio; E: Young modulus. The dynamic equilibrium relationships are written
by [2]:
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3. EXPRESSION OF THE SOLUTION

As part of the dynamic study of an axisymmetric shell in harmonic vibrations,
the temporal terms are separated from spatial terms: u(s, θ, t) = u(s, θ)eiωt, f(s, θ, t) =
f(s, θ)eiωt where u(s, θ) is generalized displacements and f(s, θ) is generalized forces. This
leads to a system of partial differential equations [7], involving only the fields uϕ, uθ, u3,
βϕ, βθ, Nϕϕ, Nϕθ, Qϕ3, Mϕϕ, Mϕθ. Other fields: Nθθ, Nθϕ, Qθ3, Mθθ and Mθϕ are deduced
by earlier behavioral relationships (1).
{ym(s, ω)} = {uϕ, uθ, u3, βϕ, βθ, Qϕ3, Nϕϕ, Nϕθ, Mϕϕ, Mϕθ} is the vector of state solution.

3.1. Symmetrical vibration, anti-symmetrical vibration

The solution is expressed by the form of development in Fourier series. It is necessary
to consider the symmetrical forms of solutions and anti-symmetrical forms with respect
to the variable θ. For symmetric vibration, the symmetrical variables are defined by:
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It is simple to build the solutions for anti-symmetrical vibrations by swapping
sin(mθ) and cos(mθ). The special characteristic of axisymmetric shells is the decoupling
of solutions of the problem (4), that means the final solution will be obtained by superim-
posing the solutions of each of m modes. To reduce the system, it is more convenient to use
the distance s measured along the meridian of the shell than using the angular coordinate

ϕ. Note that:
1
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∂

∂ϕ
=

∂

∂s
.

The derivatives of state solution with respect to the curvilinear abscissa s are cal-
culated from (1) and (2):
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The system (3) is written in the matrix form:

d {ym(s, ω)}
ds

= [Am(s, ω)] {ym(s, ω)} , (4)

This equation will be used to build a dynamic stiffness matrix [Km(ω)] which con-
nects the state variables defined by boundary conditions in the abscissa s = 0 and in the
abscissa s = L.

3.2. Dynamic transfer matrix

The matrix [Tm(s → s′, ω)] is called dynamic transfer matrix. It computes the state
solution vector (ym(s′, ω)) in s′ from the state solution vector (ym(s, ω)) in s: [Tm(s, ω)] =
[Tm(0 → s, ω)].

So: {ym(s, ω)} = [Tm(s, ω)]{ym(0, ω)},
Therefore, equation (4) will be simplified as follows:

d [Tm(s, ω)]

ds
= [Am(s, ω)] [Tm(s, ω)] , (5)

To determine the dynamic transfer matrix [Tm(s, ω)], the first order equation (5)
must be solved. Here, the necessary boundary conditions for the resolution are expressed
by: [Tm(0, ω)] = [I ].

3.3. Expression of dynamic transfer matrix for axisymmetric shells

The solution of equation (5) is

[Tm(s, ω)] = e

S
R

0

Am(l,ω)dl
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The dynamic transfer matrix [Tm(ω)] connects the state vector at s = 0 to the state
vector at s = L (L is the length of shell). Thus, one has

[Tm(ω)] = e
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where: λim(ω) are eigenvalues of
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3.4. Expression of dynamic transfer matrix for typical shells

In case of cylindrical shell, the dynamic transfer matrix is computed by
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For the conical shell, the dynamic transfer matrix is written:
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4. DYNAMIC STIFFNESS MATRIX [Km(ω)]

4.1. Definition of the dynamic stiffness matrix

It links the displacement vector {Um(0), Um(L)}T at the ends of a shell of revolution
to the vectors of external force {Fmext(0), Fmext(L)}T at the ends of a shell of revolution.
[Km(ω)] depends on the pulsation ω:

{

{Fmext(0)}
{Fmext(L)}

}

= [Km(ω)]

{

{Um(0)}
{Um(L)}

}

.

4.2. Expression of the dynamic stiffness matrix [Km(ω)]

The dynamic transfer matrix [Tm(ω)] is decomposed in 4 blocks:

[Tm(ω)] =

[

T11(ω) T12(ω)
T21(ω) T22(ω)

]

(9)

and the state vectors at s = 0 and s = L are: {Fm(0)} = {−Fmext(0)}, {Fm(L)} =
{−Fmext(L)}.
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Thus, [Km(ω)] is expressed by:

[Km(ω)] =
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]

, (10)

5. NUMERICAL RESULTS

5.1. Continuous element for circular cylindrical shells

In this case, R = ∞; Rθ = a, (3) becomes:
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The continuous element for cylindrical shells is constructed using these equations.
The numerical calculation is performed with: E = 2x1010 N/m2, ρ = 7800 kg/m3,

ν = 0.3, K ′ = 2/3.
a. Frequencies of a clamped-clamped cylindrical shell

Table 1. Comparison of reduced pulse Ψ = ωR

√

(1 − υ2)ρ

E
for an isotropic

clamped-clamped cylindrical shell (m = 1, n = 1, ν = 0.3, H/L = 0.1)

H/L = 0.1

H/R Finite Elements 3D (Loy & Lam) [6] Loy & Lam [6] Continuous Element
0.2 0.6684 0.69319 0.6502

0.4 0.3502 0.36463 0.3419
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Table 2. Comparison of reduced pulse Ψ = ωR

√

(1 − υ2)ρ

E
for an isotropic

clamped-clamped cylindrical shell (m = 1, n = 1, ν = 0.3, H/L = 0.2)

H/L = 0.2
H/R Finite Elements 3D (Loy & Lam) [6] Loy & Lam [6] Continuous Element

0.2 1.3583 1.39567 1.3328
0.4 0.7739 0.79219 0.7692

Table 3. Comparison of reduced pulse Ψ = ωR

√

(1 − υ2)ρ

E
for an isotropic

clamped-clamped cylindrical shell (m = 1, n = 1, ν = 0.3, H/L = 0.4)

H/L = 0.4
H/R Finite Elements 3D (Loy & Lam) [6] Loy & Lam [6] Continuous Element

0.2 3.4464 3.27162 3.4402
0.4 1.7186 1.74212 1.6981

First, CEM formulation is compared to a Finite Element 3D model and to an-
other analytical model developped by Lam [6] (Table 1, Table 2, Talbe 3) for an isotropic
clamped-clamped cylindrical shell with different values of H/L (0.1, 0.2, 0.4).

Table 4. Comparison of reduced pulse Ω =
ωH

π

√

ρ

G
for an isotropic free - free

cylindrical shell (m = 1, n = 1, ν = 0.3, H/L = 0.2)

H/R
0.1 0.2

Finite Elements 3D (Loy & Lam) [6] 0.07724 0.14860
Loy & Lam [6] 0.07618 0.10704

Continuous Element 0.07541 0.10273

Then, reduced pulse of an isotropic free-free cylindrical shell is also investigated in
Table 4. Results obtained by these comparisons are excelents which validate our CEM
model.

b. Frequencies of a clamped-free cylindrical shell

The properties of the cylindrical shell are: R = 0.3 m, L = 0.4 m, h = 0.002 m,
E = 2.1x1011 N/m2, ρ = 7800 kg/m3, ν = 0.3.

The Finite Element model used is a shell model with inclusion of transverse shear
which consists of 180 x 6 mesh elements (Fig.3) meanwhile only one element is sufficient
for the calculation by the Continous Element method.

Table 5. presents the comparison of natural frequencies (in hertz) of the clamped-
free cylindical shell by using 3 methods: our formulation, results of CEM by Le Sourne
[4] and thoses obtained by Finite Element Method (Ansys). The obtained results are
very satisfactory. These answers are very close because the same formulation (taking into
account the transverse shear) is used. The advantage of the method of continuous elements
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L

R

Fig. 3. Mesh by Continuous Element (Left) and by Finite Element (Right) model

Table 5. Comparison of natural frequencies (in hertz) of the clamped-free cylindi-
cal shell

Mode Continuous Element Le Sourne [4] Finite Element
1 234.64 234.25 234.87

3 241.58 241.97 242.02
5 289.14 288.10 289.29

7 289.68 289.97 290.52
9 362.68 362.79 364.14

11 427.06 425.39 427.19
13 452.57 452.18 454.97

15 556.24 554.94 559.89
17 602.81 585.50* 604.61
19 624.19 615.50 626.71

21 627.88 602.70* 629.35
23 672.38 669.80* 677.77

25 682.60 681.52 686.15
27 700.69 698.26 700.80

is the reduced computation time, a minimum storage of data and a mesh much easier since
reduced to a single element. Several terms of m are enough for obtaining a solution with
high precision. Differences appear between the two models beyond 2000 Hz. By increasing
the fineness of the mesh, the responses obtained by the Finite Element method converge
to that obtained by our formulation, it is noted also that the results of Finite Element
model will degrade quickly when going up in frequencies.

5.2. Continuous element for circular conical shells

Here: Rϕ = 0, Rθ = x tanα, Rθ sinϕ = x sinα, Rϕdϕ = dx, (3) is written as:

du3m
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K ′Gh
Qx3m − βxm,

dβθm

∂x
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2
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1
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Response curve of a clamped-free cylindrical shell
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Fig. 4. Comparison of frequency response of a clamped-free cylindrical shell ob-
tained by finite element and continuous elements methods
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dMxθ

∂x
= −2

x
Mxθm − 1

x sinα

[

−mυMxxm + K(1 − υ2)

( −m2

x sinα
βθm − m

x
βxm

)]

−K ′Gh

(

− m

x sinα
u3m − 1

x tanα
uθm + βθm

)

+
ρh3ω2

12
βθm,

duxm

∂x
=

1

D
Nxxm − υ

(

m

x sinα
uθm +

1

x
uxm +

1

x tanα
u3m

)

,

dβxm

∂x
=

1

K
Mxxm − υ

(

m

x sinα
βθm +

1

x
βxm

)

, (12)

a. Frequencies of a clamped-clamped conical shell

Consider a free conical shell with the following characteristics:

R1 = 0.4m, L = 0.1m, h = 0.002m, α = 30o, E = 2.1x1011N/m2, ρ = 7800kg/m3, ν = 0.3.

The Finite Element model used is a shell model with inclusion of transverse shear
which consists of 180 x 6 and 210 x 6 mesh elements (Fig. 5) meanwhile only one element
is sufficient for the the Continous Element model.

L

R1

a

Fig. 5. Mesh by Continuous Element (Left) and Finite Element (Right) method

Table 6. Comparison of reduced pulse λ of a free conical shell by various approaches

Mode Continous Element Le Sourne Finite Element

1 9.57 9.8 9.5850

3 26.71 27.2 26.980

5 27.69 27.8 27.801

7 51.43 51.8 51.653

9 83.35 83.6 83.500

11 89.80 91.6 89.832

13 122.09 122.0 122.51

15 162.10 164.3 162.20

17 168.07 167.0 168.69

19 221.05 221.5 222.07

21 231.76 234.6 231.97

23 281.11 281.5 282.68

25 299.86 302.0 300.28

27 348.18 348.1 350.56

29 369.34 370.0 370.01

31 422.30 422.3 425.77

33 442.07 442.5 443.14

35 503.52 502.8 508.36
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Table 6. shows results computed by different methods: our formulation, those of Le
Sourne [4] and Finite Element model. CEM model is closer to Finite Element model when
the meshing is increased

b. Frequencies of a free-free conical shell

The calculation is done with the following data: E = 2x1010 N/m2, ρ = 7800 kg/m3,

ν = 0.3, K ′ = 2/3. The reduced pulse is calculated by: λ = ω

(

R − Ltgα

2

)

sin α

√

ρ (1− υ)

E

Table 7. Comparison of the angular frequencies of conical shells by different methods

Mindlin theory Classical theory
α h/R L/R Continuous Formulation Formulation Formulation Formulation

Element of Naghdi of Love of Naghdi of Love√
λCE

√
λMindlin

√
λMindlin

√
λClassical

√
λClassical

5˚ .05 .25 25.069 26.188 26.233 27.736 27.785
5˚ .05 .375 14.558 15.261 15.296 15.548 15.584

5˚ .05 .50 11.651 12.282 12.370 12.363 12.388
10˚ .15 .30 19.502 19.792 19.862 26.224 26.340

10˚ .15 .50 9.363 9.393 9.454 10.045 10.479
10˚ .15 1.0 4.293 5.286 5.314 5.329 5.360

15˚ .20 .375 10.271 10.572 10.630 14.171 14.273
15˚ .20 1.0 3.420 3.450 3.478 3.509 3.541

20˚ .10 .375 5.002 5.012 5.031 5.429 5.451
20˚ .10 .50 3.437 3.453 3.469 3.563 3.580

Response curve of free conical shell
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Fig. 6. Response curve of free conical shell
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The results are compared to those of Garnet and Kempner [5] who summarized some
results based on different theories (Table 7). In general, values obtained by the method of
continuous element are lower than those of other theories. Another observation is that the
influence of the transverse deformation and rotary inertia becomes important when the
conical is shortened. In general, there are no remarkable differences between our results
and those of the literature.

6. CONCLUSIONS

A simple method to deal with the construction of the dynamic stiffness matrix of
axisymmetric shells is presented. This method has been successfully used to develop a
circular-basis cylindrical shell and a circular-basis conical shell continuous elements that
take into account the rotatory inertia and shear deflection effects. Results are given in the
case of cylindrical and conical shells for which it has been shown that the models that
neglect the shear deformation and rotatory inertia are not suitable. Natural frequencies
and the harmonic response obtained with this kind of formulation are in close agreement
with finite element solutions. The main advantage is the reduction of the size of the model
thus allows the high precision in the results for a large frequency range. The next research
concerns the introduction of coupling effects with fluid or other kinds of structural ele-
ments such as laminated composite plates or shells.
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