Vietnam Journal

Volume 35 Number 3

ISSN 0866-7136
VN INDEX 12.666

PARAMETER OPTIMIZATION OF TUNED MASS DAMPER FOR THREE-DEGREE-OF-FREEDOM VIBRATION SYSTEMS

Nguyen Van Khang ${ }^{1, *}$, Trieu Quoc Loc ${ }^{2}$, Nguyen Anh Tuan ${ }^{2}$
${ }^{1}$ Hanoi University of Science and Technology, Vietnam
${ }^{2}$ National Institute of Labour Protection, Vietnam
*E-mail: khang.nguyenvan2@hust.edu.vn

Abstract

There are problems in mechanical, structural and aerospace engineering that can be formulated as Nonlinear Programming. In this paper, the problem of parameters optimization of tuned mass damper for three-degree-of-freedom vibration systems is investigated using sequential quadratic programming method. The objective is to minimize the extreme vibration amplitude of vibration models. It is shown that the constrained formulation, that includes lower and upper bounds on the updating parameters in the form of inequality constraints, is important for obtaining a correct updated model.

Keywords: Vibration, tuned mass damper, optimal design, nonlinear programming.

1. INTRODUCTION

Optimal design of multibody systems is characterized by a specific kind of optimization problem. Generally, an optimization problem is formulated to determine the design variable values that will minimize an objective function subject to constraints. Additionally, for many engineering applications, multibody analysis routine are used to calculate the kinematic and dynamic behavior of the mechanical design. As a result, most objective function and constraint values follow from the numerical analysis.

Use of the tuned mass damper (TMD) as an independent means of vibration control is especially important, particularly in the case where it is almost the only or main means of vibration protection [1-6]. A tuned mass damper, also known as an active mass damper (AMD) or harmonic absorber, is a device mounted in structures to reduce the amplitude of vibrations. Its application can prevent discomfort, damage, or outright structural failure. It is frequently used in power transmission, automobiles, machine and buildings.

In this paper we consider a problem of parameter optimization of tuned mass damper for three-degree-of-freedom vibration systems using sequential quadratic programming method [7-12].

2. REVIEW OF SEQUENTIAL QUADRATIC PROGRAMMING METHOD

The sequential quadratic programming, or called SQP, is an efficient and powerful algorithm to solve nonlinear programming problems. The method has a theoretical basis that is related to (1) the solution of a set of nonlinear equations using Newton's method, and (2) the derivation of simultaneous nonlinear equations using Kuhn-Tücker conditions to the Lagrangian of the constrained optimization problem. In this section we review some basic concepts of SQP method [7-10] for understanding the parameter optimization of the TMD installed in vibration systems.

Consider a nonlinear optimization problem with equality constraints:
Find \mathbf{x} which minimizes $f(\mathbf{x})$
subject to

$$
\begin{equation*}
h_{k}(\mathbf{x})=0, k=1,2, \ldots, p \tag{1}
\end{equation*}
$$

The Lagrange function $L(\mathbf{x}, \boldsymbol{\lambda})$, for this problem is

$$
\begin{equation*}
L(\mathbf{x}, \boldsymbol{\lambda})=f(\mathbf{x})+\sum_{k=1}^{p} \lambda_{k} h_{k}(\mathbf{x})=f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x}) \tag{2}
\end{equation*}
$$

where λ_{k} is the Lagrange multiplier for the equality constraint h_{k}. The Kuhn-Tücker necessary conditions can be stated as

$$
\begin{align*}
& \nabla_{x} L=\mathbf{0} \Rightarrow \nabla f(\mathbf{x})+\sum_{k=1}^{p} \lambda_{k} \nabla h_{k}=\mathbf{0} \quad \text { or } \quad \nabla f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x})=\mathbf{0} \tag{3}\\
& \nabla_{\lambda} L=\mathbf{0} \quad \Rightarrow \quad h_{k}(\mathbf{x})=0, k=1,2, \ldots, p \quad \text { or } \quad \mathbf{h}(\mathbf{x})=\mathbf{0} \tag{4}
\end{align*}
$$

Eqs. (3) and (4) represent a set of $n+p$ nonlinear equations with $n+p$ unknowns $\left(\mathbf{x}_{i}, i=1,2, \ldots, n\right.$ and $\left.\lambda_{k}, k=1,2, \ldots, p\right)$. These nonlinear equations can be solved using Newton's method. For convenience, we rewrite Eqs. (3) and (4) as

$$
\begin{equation*}
\mathbf{b}(\mathbf{y})=\mathbf{0} \tag{5}
\end{equation*}
$$

where

$$
\mathbf{b}=\left\{\begin{array}{c}
\nabla L \tag{6}\\
\mathbf{h}
\end{array}\right\}_{(n+p) \times 1}, \quad \mathbf{y}=\left\{\begin{array}{c}
\mathbf{x} \\
\boldsymbol{\lambda}
\end{array}\right\}_{(n+p) \times 1}, \quad 0=\left\{\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right\}_{(n+p) \times 1} .
$$

According to Newton's method, the solution of Eqs. (5) can be found iteratively as

$$
\left[\begin{array}{cc}
\nabla_{x}^{2} L\left(\mathbf{y}_{i}\right) & \mathbf{J}_{h}^{T}\left(\mathbf{x}_{i}\right) \tag{7}\\
\mathbf{J}_{h}\left(\mathbf{x}_{i}\right) & \mathbf{0}
\end{array}\right]\left\{\begin{array}{c}
\Delta \mathbf{x}_{i} \\
\Delta \boldsymbol{\lambda}_{i}
\end{array}\right\}=-\left\{\begin{array}{c}
\nabla_{x} L\left(\mathbf{y}_{i}\right) \\
\mathbf{h}\left(\mathbf{x}_{i}\right)
\end{array}\right\}
$$

and

$$
\begin{equation*}
\mathbf{x}_{i+1}=\mathbf{x}_{i}+\Delta \mathbf{x}_{i}, \quad \boldsymbol{\lambda}_{i+1}=\boldsymbol{\lambda}_{i}+\Delta \boldsymbol{\lambda}_{i} . \tag{8}
\end{equation*}
$$

The first set of equations in (7) can be written separately as

$$
\begin{equation*}
\nabla_{x}^{2} L\left(\mathbf{y}_{i}\right) \Delta \mathbf{x}_{i}+\mathbf{J}_{h}^{T}\left(\mathbf{x}_{i}\right) \Delta \boldsymbol{\lambda}_{i}=-\nabla_{x} L\left(\mathbf{y}_{i}\right) \tag{9}
\end{equation*}
$$

Using Eq. (8) for $\Delta \boldsymbol{\lambda}_{i}$ and Eq. (3) for $\nabla_{x} L\left(\mathbf{y}_{i}\right)$, Eq. (9) can be expessed as

$$
\begin{equation*}
\nabla_{x}^{2} L\left(\mathbf{y}_{i}\right) \Delta \mathbf{x}_{i}+\mathbf{J}_{h}^{T}\left(\boldsymbol{\lambda}_{i+1}-\boldsymbol{\lambda}_{i}\right)=-\nabla f\left(\mathbf{x}_{i}\right)-\mathbf{J}_{h}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\lambda}_{i} \tag{10}
\end{equation*}
$$

which can be simplified to obtain

$$
\begin{equation*}
\nabla_{x}^{2} L\left(\mathbf{y}_{i}\right) \Delta \mathbf{x}_{i}+\mathbf{J}_{h}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\lambda}_{i+1}=-\nabla f\left(\mathbf{x}_{i}\right) . \tag{11}
\end{equation*}
$$

Eq. (11) and the second set of equations in (7) can now be combined as

$$
\left[\begin{array}{cc}
\nabla_{x}^{2} L\left(\mathbf{y}_{i}\right) & \mathbf{J}_{h}^{T}\left(\mathbf{x}_{i}\right) \tag{12}\\
\mathbf{J}_{h}\left(\mathbf{x}_{i}\right) & \mathbf{0}
\end{array}\right]_{j}\left\{\begin{array}{c}
\Delta \mathbf{x}_{i} \\
\boldsymbol{\lambda}_{i+1}
\end{array}\right\}=-\left\{\begin{array}{c}
\nabla f\left(\mathbf{x}_{i}\right) \\
\mathbf{h}\left(\mathbf{x}_{i}\right)
\end{array}\right\} .
$$

Eqs. (12) can be solved to find the change in the design vector $\Delta \mathbf{x}_{i}$ and the new values of the Lagrange multipliers, $\boldsymbol{\lambda}_{i+1}$. The iterative process indicated by Eq. (12) can be continued until convergence is achieved.

Now consider the following quadratic programming problem:
Find $\mathbf{d}=\Delta \mathbf{x}$ that minimizes the quadratic objective function

$$
\begin{equation*}
Q(\mathbf{d})=\nabla_{x} f\left(\mathbf{x}_{i}\right)^{T} \mathbf{d}+\frac{1}{2} \mathbf{d}^{T} \nabla_{x}^{2} L\left(\mathbf{x}_{i}, \boldsymbol{\lambda}_{i}\right) \mathbf{d} \tag{13}
\end{equation*}
$$

subject to the linear equality constraints

$$
\begin{equation*}
h_{k}\left(\mathbf{x}_{i}\right)+\nabla h_{k}^{T}\left(\mathbf{x}_{i}\right) \mathbf{d}=0, \quad k=1,2, \ldots, p \Rightarrow \mathbf{h}\left(\mathbf{x}_{i}\right)+\mathbf{J}_{h}\left(\mathbf{x}_{i}\right) \mathbf{d}=0 \tag{14}
\end{equation*}
$$

The Lagange function \tilde{L}, corresponding to the problem of Eqs. (13) and (14) is given by

$$
\begin{equation*}
\tilde{L}(\mathbf{d}, \boldsymbol{\lambda})=\nabla_{x} f\left(\mathbf{x}_{i}\right)^{T} \mathbf{d}+\frac{1}{2} \mathbf{d}^{T} \nabla_{x}^{2} L\left(\mathbf{x}_{i}, \boldsymbol{\lambda}_{i}\right) \mathbf{d}+\boldsymbol{\lambda}^{T}\left[\mathbf{h}\left(\mathbf{x}_{i}\right)+\mathbf{J}_{h}\left(\mathbf{x}_{i}\right) \mathbf{d}\right] . \tag{15}
\end{equation*}
$$

The Kuhn - Tücker necessary conditions can be stated as

$$
\begin{gather*}
\nabla_{x} f\left(\mathbf{x}_{i}\right)+\nabla_{x}^{2} L\left(\mathbf{x}_{i}, \boldsymbol{\lambda}_{i}\right) \mathbf{d}+\mathbf{J}_{h}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\lambda}=\mathbf{0} \tag{16}\\
\mathbf{h}\left(\mathbf{x}_{i}\right)+\mathbf{J}_{h}\left(\mathbf{x}_{i}\right) \mathbf{d}=\mathbf{0} . \tag{17}
\end{gather*}
$$

The Eqs. (16) and (17) can be combined in the following matrix form as

$$
\left[\begin{array}{cc}
\nabla_{x}^{2} L\left(\mathbf{y}_{i}\right) & \mathbf{J}_{h}^{T}\left(\mathbf{x}_{i}\right) \tag{18}\\
\mathbf{J}_{h}\left(\mathbf{x}_{i}\right) & \mathbf{0}
\end{array}\right]_{j}\left\{\begin{array}{c}
\mathbf{d}_{i} \\
\boldsymbol{\lambda}_{i}
\end{array}\right\}=-\left\{\begin{array}{c}
\nabla f\left(\mathbf{x}_{i}\right) \\
\mathbf{h}\left(\mathbf{x}_{i}\right)
\end{array}\right\} .
$$

Eq. (18) can be identified to be same as Eq. (12) in matrix form. This shows that the orginal problem of Eq. (1) can be solved iteratively by solving the quadratic programming problem defined by Eq. (13).

In fact, when inequality constraints are added to the original problem, the quadratic programming problem of Eqs. (13) and (14) becomes

Find \mathbf{x} which minimizes

$$
\begin{equation*}
Q(\mathbf{d})=\left(\nabla f\left(\mathbf{x}_{i}\right)\right)^{T} \mathbf{d}+\frac{1}{2} \mathbf{d}^{T} \nabla_{x}^{2} L\left(\mathbf{x}_{i}, \boldsymbol{\lambda}_{i}, \boldsymbol{\mu}_{i}\right) \mathbf{d} \tag{19}
\end{equation*}
$$

subject to

$$
\begin{gather*}
h_{k}\left(\mathbf{x}_{i}\right)+\left(\nabla h_{k}\left(\mathbf{x}_{i}\right)\right)^{T} \mathbf{d}=0, k=1,2, \ldots, p \tag{20}\\
g_{j}\left(\mathbf{x}_{i}\right)+\left(\nabla g_{j}\left(\mathbf{x}_{i}\right)\right)^{T} \mathbf{d} \leq 0, j=1,2, \ldots, m \tag{21}
\end{gather*}
$$

with the Lagrange function given by

$$
\begin{equation*}
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})=f(\mathbf{x})+\sum_{k=1}^{p} \lambda_{k} h_{k}(\mathbf{x})+\sum_{j=1}^{m} \mu_{j} g_{j}(\mathbf{x})=f(\mathbf{x})+\boldsymbol{\lambda}^{T} \mathbf{h}(\mathbf{x})+\boldsymbol{\mu}^{T} \mathbf{g}(\mathbf{x}) \tag{22}
\end{equation*}
$$

Since the minimum of the augmented Lagrange function is involved, the sequential quadratic programming method is also known as the projected Lagrangian method.

3. CALCULATING OPTIMAL PARAMETERS OF TMD FOR THE THREE-DEGREE-OF-FREEDOM VIBRATION SYSTEMS

In this section we study the influence of installed position of TMD on the behaviour of three-degree-of-freedom vibration systems using the sequential quadratic programming algorithm.

3.1. Vibration equation of system with the excited harmonic force at the mass m_{1}

Consider a damped linear vibration system of three-degree-of-freedom as shown in Fig. 1a. The vibrating system has three masses m_{1}, m_{2}, m_{3}; stiffness coefficients, respectively, k_{1}, k_{2}, k_{3} and viscous coefficients, respectively, c_{1}, c_{2}, c_{3}; the mass m_{1} is excited by harmonic force $F(t)=F_{0} \cos (\Omega t)$. The motion equations of the system have the following form

$$
\begin{align*}
& m_{1} \ddot{y}_{1}+\left(c_{1}+c_{2}\right) \dot{y}_{1}-c_{2} \dot{y}_{2}+\left(k_{1}+k_{2}\right) y_{1}-k_{2} y_{2}=F_{0} \cos (\Omega t) \\
& m_{2} \ddot{y}_{2}-c_{2} \dot{y}_{1}+\left(c_{2}+c_{3}\right) \dot{y}_{2}-c_{3} \dot{y}_{3}-k_{2} y_{1}+\left(k_{2}+k_{3}\right) y_{2}-k_{3} y_{3}=0 . \tag{23}\\
& m_{3} \ddot{y}_{3}-c_{3} \dot{y}_{2}+c_{3} \dot{y}_{3}-k_{3} y_{2}+k_{3} y_{3}=0
\end{align*}
$$

Fig. 1. The system of three-degree-of-freedom under excited force at m_{1}
a) Primary system without TMD;
b) System with TMD at m_{1}
c) System with TMD at m_{2};
d) System with TMD at m_{3}

The steady-state response of the system has the form

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{a} \cos (\Omega t)+\mathbf{b} \sin (\Omega t) \tag{24}
\end{equation*}
$$

with

$$
\mathbf{y}(t)=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t)
\end{array}\right] ; \mathbf{a}_{0}=\left[\begin{array}{l}
a_{01} \\
a_{02} \\
a_{03}
\end{array}\right] ; \mathbf{b}_{0}=\left[\begin{array}{l}
b_{01} \\
b_{02} \\
b_{03}
\end{array}\right] .
$$

From Eq. (23) and Eq. (24), comparing coefficients of $\cos (\Omega t)$ and $\sin (\Omega t)$, we get the system of linear algebraic equations for unknown elements of vectors \mathbf{a} and \mathbf{b}

$$
\begin{align*}
& \left(k_{1}+k_{2}-m_{1} \Omega^{2}\right) a_{01}+\left(c_{1}+c_{2}\right) \Omega b_{01}-k_{2} a_{02}-c_{2} \Omega b_{02}=F_{0} \\
& -\left(c_{1}+c_{2}\right) \Omega a_{01}+\left(k_{1}+k_{2}-m_{1} \Omega^{2}\right) b_{01}+c_{2} \Omega a_{02}-k_{2} b_{02}=0 \\
& -k_{2} a_{01}-c_{2} \Omega b_{01}+\left(k_{2}+k_{3}-m_{2} \Omega^{2}\right) a_{02}+\left(c_{2}+c_{3}\right) \Omega b_{02}-k_{3} a_{03}-c_{3} \Omega b_{03}=0 \\
& c_{2} \Omega a_{01}-k_{2} b_{01}-\left(c_{2}+c_{3}\right) \Omega a_{02}+\left(k_{2}+k_{3}-m_{2} \Omega^{2}\right) b_{02}+c_{3} \Omega a_{03}-k_{3} b_{03}=0 \tag{25}\\
& -k_{3} a_{02}-c_{3} \Omega b_{02}+\left(k_{3}-m_{3} \Omega^{2}\right) a_{03}+c_{3} \Omega b_{03}=0 \\
& c_{3} \Omega a_{02}-k_{3} b_{02}-c_{3} \Omega a_{03}+\left(k_{3}-m_{3} \Omega^{2}\right) b_{03}=0
\end{align*}
$$

By solving the system of Eqs. (25), we receive the values of elements $a_{0 i}, b_{0 i}$ $(i=1,2,3)$ of vectors \mathbf{a}_{0} and \mathbf{b}_{0}. For numeric calculation, the values of the coefficients are given as

$$
\begin{gathered}
m_{1}=m_{2}=m_{3}=100 \mathrm{~kg}, k_{1}=k_{2}=k_{3}=10^{5} \mathrm{~N} / \mathrm{m}, c_{1}=c_{2}=c_{3}=1000 \mathrm{Ns} / \mathrm{m}, \\
\Omega=47 \mathrm{rad} / \mathrm{s}, \quad F(t)=10 \cos (47 t)
\end{gathered}
$$

3.2. Installation positions of TMD

a) System installed TMD in m_{1}

As the first variant to quench vibrations of the system, we installed TMD with mass $m_{t c}$, spring stiffness $k_{t c}$ and viscous resistance $c_{t c}$ on mass m_{1} (Fig. 1b). The equation of the system oscillations

$$
\begin{align*}
& m_{1} \ddot{y}_{1}+\left(c_{1}+c_{2}+c_{t c}\right) \dot{y}_{1}-c_{2} \dot{y}_{2}-c_{t c} \dot{y}_{t c}+\left(k_{1}+k_{2}+k_{t c}\right) y_{1}-k_{2} y_{2}-k_{t c} y_{t c}=F_{0} \cos (\Omega t) \\
& m_{2} \dot{y}_{2}-c_{2} \dot{y}_{1}+\left(c_{2}+c_{3}\right) \dot{y}_{2}-c_{3} \dot{y}_{3}-k_{2} y_{1}+\left(k_{2}+k_{3}\right) y_{2}-k_{3} y_{3}=0 \tag{26}\\
& m_{3} \ddot{y}_{3}-c_{3} \dot{y}_{2}+c_{3} \dot{y}_{3}-k_{3} y_{2}+k_{3} y_{3}=0 \\
& m_{t c} \dot{y}_{t c}-c_{t c} \dot{y}_{1}+c_{t c} \dot{y}_{t c}-k_{t c} y_{1}+k_{t c} y_{t c}=0
\end{align*}
$$

The steady-state response of the system has the form

$$
\begin{equation*}
\mathbf{y}(t)=\mathbf{a} \cos (\Omega t)+\mathbf{b} \sin (\Omega t) \tag{27}
\end{equation*}
$$

where

$$
\mathbf{y}(t)=\left[\begin{array}{c}
y_{1}(t) \\
y_{2}(t) \\
y_{3}(t) \\
y_{t c}(t)
\end{array}\right] ; \mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
a_{t c}
\end{array}\right] ; \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
b_{t c}
\end{array}\right]
$$

From Eqs. (26)-(27), comparing coefficients of $\cos (\Omega t)$ and $\sin (\Omega t)$ we get the system of linear algebraic equations for unknown elements of vectors \mathbf{a} and \mathbf{b}

$$
\begin{align*}
& \left(k_{1}+k_{2}+k_{t c}-m_{1} \Omega^{2}\right) a_{1}+\left(c_{1}+c_{2}+c_{t c}\right) \Omega b_{1}-k_{2} a_{2}-c_{2} \Omega b_{2}-k_{t c} a_{t c}-c_{t c} \Omega b_{t c}=F_{0} \\
& -\left(c_{1}+c_{2}+c_{t c}\right) \Omega a_{1}+\left(k_{1}+k_{2}+k_{t c}-m_{1} \Omega^{2}\right) b_{1}+c_{2} \Omega a_{2}-k_{2} b_{2}+c_{t c} \Omega a_{t c}-k_{t c} b_{t c}=0 \\
& -k_{2} a_{1}-c_{2} \Omega b_{1}+\left(k_{2}+k_{3}-m_{2} \Omega^{2}\right) a_{2}+\left(c_{2}+c_{3}\right) \Omega b_{2}-k_{3} a_{3}-c_{3} \Omega b_{3}=0 \\
& c_{2} \Omega a_{1}-k_{2} b_{1}-\left(c_{2}+c_{3}\right) \Omega a_{2}+\left(k_{2}+k_{3}-m_{2} \Omega^{2}\right) b_{2}+c_{3} \Omega a_{3}-k_{3} b_{3}=0 \\
& -k_{3} a_{2}-c_{3} \Omega b_{2}+\left(k_{3}-m_{3} \Omega^{2}\right) a_{3}+c_{3} \Omega b_{3}=0 \tag{28}\\
& c_{3} \Omega a_{2}-k_{3} b_{2}-c_{3} \Omega a_{3}+\left(k_{3}-m_{3} \Omega^{2}\right) b_{3}=0 \\
& -k_{t c} a_{1}-c_{t c} \Omega b_{1}+\left(k_{t c}-m_{t c} \Omega^{2}\right) a_{t c}+c_{t c} \Omega b_{t c}=0 \\
& c_{t c} \Omega a_{1}-k_{t c} b_{1}-c_{t c} \Omega a_{t c}+\left(k_{t c}-m_{t c} \Omega^{2}\right) b_{t c}=0
\end{align*}
$$

Solving the system of Eqs. (28), we receive the elements $a_{i}, b_{i}(i=1,2,3)$ of vectors \mathbf{a} and \mathbf{b}.

For optimization problems, there is an optimization criterion (i.e. evaluation function) that has to be minimized or maximized. Here we must find the optimal values $m_{t c}$, $k_{t c}, c_{t c}$ of TMD in order to minimize the expression of vibration amplitude of m_{1}

$$
R_{1}=\sqrt{a_{1}^{2}+b_{1}^{2}}
$$

with boundary constraints

$$
5 \leq m_{t c}(\mathrm{~kg}) \leq 10 ; 1000 \leq k_{t c}(\mathrm{~N} / \mathrm{m}) \leq 100000 ; 5 \leq c_{t c}(\mathrm{Ns} / \mathrm{m}) \leq 1000 .
$$

Using the sequential quadratic programming algorithm in MAPLE software, we can quickly and conveniently calculate the optimal parameters for TMD

$$
R_{1}=0.00000451601155 \mathrm{~m} ; k_{t c}=22099.62597299 \mathrm{~N} / \mathrm{m} ; c_{t c}=5 \mathrm{Ns} / \mathrm{m} ; m_{t c}=10 \mathrm{~kg} .
$$

Some calculating results are provided in Tab. 1 and in Fig. 2.
Table 1. Effective vibration reduction system under excited force at m_{1} before and after installing TMD at m_{1}

Location	Vibration amplitude (m)		Efficient vibration damping (\%)	
	Without TMD	With TMD	increase	Reduced
m_{1}	0.0000653278	0.000004516		93.08
m_{2}	0.0000393333	0.000002719		93.08
m_{3}	0.0000335052	0.000002316		93.08

Fig. 2. Amplitude of three degrees of freedom system under excited force at m_{1} before and after installing TMD at m_{1}

b) System installed TMD in m_{2}

As second variant to quench vibrations of the system, we installed TMD with mass $m_{t c}$, spring stiffness, $k_{t c}$ and viscous resistance, $c_{t c}$ on mass m_{1} (see Fig. 1c). The vibration equations of the system have following form

$$
\begin{align*}
& m_{1} \ddot{y}_{1}+\left(c_{1}+c_{2}\right) \dot{y}_{1}-c_{2} \dot{y}_{2}+\left(k_{1}+k_{2}\right) y_{1}-k_{2} y_{2}=F_{0} \cos (\Omega t) \\
& m_{2} \ddot{y}_{2}-c_{2} \dot{y}_{1}+\left(c_{2}+c_{3}+c_{t c}\right) \dot{y}_{2}-c_{3} \dot{y}_{3}-c_{t c} \dot{y}_{t c}-k_{2} y_{1}+\left(k_{2}+k_{3}+k_{t c}\right) y_{2}-k_{3} y_{3}-k_{t c} y_{t c}=0 \\
& m_{3} \ddot{y}_{3}-c_{3} \dot{y}_{2}+c_{3} \dot{y}_{3}-k_{3} y_{2}+k_{3} y_{3}=0 \\
& m_{t c} \ddot{y}_{t c}-c_{t c} \dot{y}_{2}+c_{t c} \dot{y}_{t c}-k_{t c} y_{2}+k_{t c} y_{t c}=0 \tag{29}
\end{align*}
$$

From Eq. (27) and Eq. (29), comparing coefficients of $\cos (\Omega t)$ and $\sin (\Omega t)$ we get the system of linear algebraic equations for unknown elements of vectors \mathbf{a} and \mathbf{b}

$$
\begin{align*}
& \left(k_{1}+k_{2}-m_{1} \Omega^{2}\right) a_{1}+\left(c_{1}+c_{2}\right) \Omega b_{1}-k_{2} a_{2}-c_{2} \Omega b_{2}=F_{0} \\
& -\left(c_{1}+c_{2}\right) \Omega a_{1}+\left(k_{1}+k_{2}-m_{1} \Omega^{2}\right) b_{1}+c_{2} \Omega a_{2}-k_{2} b_{2}=0 \\
& -k_{2} a_{1}-c_{2} \Omega b_{1}+\left(k_{2}+k_{3}+k_{t c}-m_{2} \Omega^{2}\right) a_{2}+\left(c_{2}+c_{3}+c_{t c}\right) \Omega b_{2}-k_{3} a_{3}-c_{3} \Omega b_{3}-k_{t c} a_{t c}-c_{t c} \Omega b_{t c}=0 \\
& c_{2} \Omega a_{1}-k_{2} b_{1}-\left(c_{2}+c_{3}+c_{t c}\right) \Omega a_{2}+\left(k_{2}+k_{3}+k_{t c}-m_{2} \Omega^{2}\right) b_{2}+c_{3} \Omega a_{3}-k_{3} b_{3}+c_{t c} \Omega a_{t c}-k_{t c} b_{t c}=0 \\
& -k_{3} a_{2}-c_{3} \Omega b_{2}+\left(k_{3}-m_{3} \Omega^{2}\right) a_{3}+c_{3} \Omega b_{3}=0 \\
& c_{3} \Omega a_{2}-k_{3} b_{2}-c_{3} \Omega a_{3}+\left(k_{3}-m_{3} \Omega^{2}\right) b_{3}=0 \\
& -k_{t c} a_{2}-c_{t c} \Omega b_{2}+\left(k_{t c}-m_{t c} \Omega^{2}\right) a_{t c}+c_{t c} \Omega b_{t c}=0 \\
& c_{t c} \Omega a_{2}-k_{t c} b_{2}-c_{t c} \Omega a_{t c}+\left(k_{t c}-m_{t c} \Omega^{2}\right) b_{t c}=0 \tag{30}
\end{align*}
$$

Solving the system of Eqs. (30), we receive the elements $a_{i}, b_{i}(i=1,2,3)$ of vectors \mathbf{a} and \mathbf{b}. Thus, to minimize the vibration amplitude of m_{2} we must find optimal values $m_{t c}, k_{t c}, c_{t c}$ of TMD to minimize the expression $R_{2}=\sqrt{a_{2}^{2}+b_{2}^{2}}$ with boundary constraints

$$
5 \leq m_{t c}(\mathrm{~kg}) \leq 10 ; 1000 \leq k_{t c}(\mathrm{~N} / \mathrm{m}) \leq 100000 ; 5 \leq c_{t c}(\mathrm{Ns} / \mathrm{m}) \leq 1000 .
$$

Using SQP, we find the optimal parameters for TMD

$$
R_{2}=0.00000485578798 \mathrm{~m} ; k_{t c}=22099.07992772 \mathrm{~N} / \mathrm{m} ; c_{t c}=5 \mathrm{Ns} / \mathrm{m} ; m_{t c}=10 \mathrm{~kg} .
$$

Some calculating results are shown in Tab. 2 and in Fig. 3.
Table 2. Effective vibration reduction system under excited force at m_{1} before and after installing TMD at m_{2}

Location	Vibration amplitude (m)		Efficient vibration damping (\%)	
	Without TMD	With TMD	increase	reduced
m_{1}	0.0000653278	0.0000992695	51.95	
m_{2}	0.0000393333	0.0000048558		87.65
m_{3}	0.0000335052	0.0000041363		87.65

Fig. 3. Vibration amplitude of system under excited force at m_{1} before and after installing TMD at m_{2}
c) System installed TMD in m_{3}

As third variant to quench vibrations of the system, we installed TMD with mass $m_{t c}$, spring stiffness, $k_{t c}$ and viscous resistance, $c_{t c}$ on mass m_{3} (see Fig. 1d).

The equation of the system oscillations

$$
\begin{align*}
& m_{1} \ddot{y}_{1}+\left(c_{1}+c_{2}\right) \dot{y}_{1}-c_{2} \dot{y}_{2}+\left(k_{1}+k_{2}\right) y_{1}-k_{2} y_{2}=F_{0} \cos \Omega t \\
& m_{2} \ddot{y}_{2}-c_{2} \dot{y}_{1}+\left(c_{2}+c_{3}\right) \dot{y}_{2}-c_{3} \dot{y}_{3}-k_{2} y_{1}+\left(k_{2}+k_{3}\right) y_{2}-k_{3} y_{3}=0 \tag{31}\\
& m_{3} \ddot{y}_{3}-c_{3} \dot{y}_{2}+\left(c_{3}+c_{t c}\right) \dot{y}_{3}-c_{t c} \dot{y}_{t c}-k_{3} y_{2}+\left(k_{3}+k_{t c}\right) y_{3}-k_{t c} y_{t c}=0 \\
& m_{t c} \ddot{y}_{t c}-c_{t c} \dot{y}_{3}+c_{t c} \dot{y}_{t c}-k_{t c} y_{3}+k_{t c} y_{t c}=0
\end{align*} .
$$

From Eq. (27) and Eq. (31), comparing coefficients of $\cos (\Omega t)$ and $\sin (\Omega t)$ we get the system of linear algebraic equations for unknown elements of vectors \mathbf{a} and \mathbf{b}

$$
\begin{align*}
& \left(k_{1}+k_{2}-m_{1} \Omega^{2}\right) a_{1}+\left(c_{1}+c_{2}\right) \Omega b_{1}-k_{2} a_{2}-c_{2} \Omega b_{2}=F_{0} \\
& -\left(c_{1}+c_{2}\right) \Omega a_{1}+\left(k_{1}+k_{2}-m_{1} \Omega^{2}\right) b_{1}+c_{2} \Omega a_{2}-k_{2} b_{2}=0 \\
& -k_{2} a_{1}-c_{2} \Omega b_{1}+\left(k_{2}+k_{3}-m_{2} \Omega^{2}\right) a_{2}+\left(c_{2}+c_{3}\right) \Omega b_{2}-k_{3} a_{3}-c_{3} \Omega b_{3}=0 \\
& c_{2} \Omega a_{1}-k_{2} b_{1}-\left(c_{2}+c_{3}\right) \Omega a_{2}+\left(k_{2}+k_{3}-m_{2} \Omega^{2}\right) b_{2}+c_{3} \Omega a_{3}-k_{3} b_{3}=0 \\
& -k_{3} a_{2}-c_{3} \Omega b_{2}+\left(k_{3}+k_{t c}-m_{3} \Omega^{2}\right) a_{3}+\left(c_{3}+c_{t c}\right) \Omega b_{3}-k_{t c} a_{t c}-c_{t c} \Omega b_{t c}=0 \tag{32}\\
& c_{3} \Omega a_{2}-k_{3} b_{2}-\left(c_{3}+c_{t c}\right) \Omega a_{3}+\left(k_{3}+k_{t c}-m_{3} \Omega^{2}\right) b_{3}+c_{t c} \Omega a_{t c}-k_{t c} b_{t c}=0 \\
& -k_{t c} a_{3}-c_{t c} \Omega b_{3}+\left(k_{t c}-m_{t c} \Omega^{2}\right) a_{t c}+c_{t c} \Omega b_{t c}=0 \\
& c_{t c} \Omega a_{3}-k_{t c} b_{3}-c_{t c} \Omega a_{t c}+\left(k_{t c}-m_{t c} \Omega^{2}\right) b_{t c}=0
\end{align*}
$$

Solving the system of Eqs. (32), and identify the elements $a_{i}, b_{i}(i=1,2,3)$ of vectors \mathbf{a} and \mathbf{b}. Thus, to minimize the vibration amplitude of m_{3} we must find optimal values $m_{t c}, k_{t c}, c_{t c}$ of TMD to minimize the expression $R_{3}=\sqrt{a_{3}^{2}+b_{3}^{2}}$ with boundary constraints

$$
5 \leq m_{t c}(\mathrm{~kg}) \leq 10 ; 1000 \leq k_{t c}(\mathrm{~N} / \mathrm{m}) \leq 100000 ; 5 \leq c_{t c}(\mathrm{Ns} / \mathrm{m}) \leq 1000
$$

Using SQP, we find the optimal parameters for TMD
$R_{3}=0.00000266217877 \mathrm{~m} ; k_{t c}=22106.994965140063 \mathrm{~N} / \mathrm{m} ; c_{t c}=5 \mathrm{Ns} / \mathrm{m} ; m_{t c}=10 \mathrm{~kg}$.
Some calculating results are shown in Tab. 3 and in Fig. 4.

Table 3. Effective vibration reduction system under excited force at m_{1} before and after installing TMD at m_{3}

Location	Vibration amplitude (m)		Efficient vibration damping (\%)	
	Without TMD	With TMD	increase	reduced
m_{1}	0.0000653278	0.0000471		27.88
m_{2}	0.0000393333	0.0000514	30.64	
m_{3}	0.0000335052	0.00000266		92.05

Fig. 4. Vibration amplitude of system under excited force at m_{1} before and after installing TMD at m_{3}

From the simulation results in Figs 1-4 we have the following observations: When the TMD is installed on mass m_{1}, the vibration amplitudes of masses m_{1}, m_{2}, m_{3} are significantly reduced. When the TMD is installed on mass m_{2}, the vibration amplitude of masses m_{2} and m_{3} are significantly reduced, and the vibration amplitudes of mass m_{1} decreased very little. When the TMD is installed on the mass m_{3}, the vibration amplitude of mass m_{3} significantly reduced, and the vibration amplitudes of masses m_{1}, m_{2} decreased very little.

4. CONCLUSION

In this paper, the sequential quadratic programming (SQP) method is used to calculating parameter optimization of the tuned mass damper (TMD) for three-degree-offreedom vibration systems. The following concluding remarks have been reached:

- If the TMD is attached to the vibration source (excited force or kinematical excitement), the effect of vibration reduction will be achieved globally.
- If the TMD is attached to the place far away from the vibration source, the effect of vibration reduction will be achieved in the upper masses from the position of TMD.
- The SQP method can be used in solving complex constrained optimization problems for multibody systems.

ACKNOWLEDGEMENT

This paper was completed with the financial support by The Vietnam National Foundation for Science and Technology Development (NAFOSTED).

REFERENCES

[1] Cyril M. Harris, Allan G. Piersol, Harris' shock and vibration handbook (fifth edition), McGraw-Hill (2002).
[2] M. Geradin, D. Rixen, Mechanical vibrations, John Wiley \& Sons, Chichester and Masson, Paris (1994).
[3] Nguyen Van Khang, Engineering vibration (in Vietnamese), Science and Technical Publishing House, Hanoi (2005).
[4] B.G. Korenev, L.M. Reznikov, Dynamic vibration absorbes, John Wiley \& Sons, Chichester (1993).
[5] Nguyen Dong Anh, La Duc Viet, Reduced vibration by energy dissipation devices (in Vietnamese), Natural Sciences and Technology Publishing House, Hanoi (2007).
[6] Nguyen Huy The, The dynamic absorbes (in Vietnamese), Master of Science Thesis, Hanoi University of Science and Technology (2005).
[7] Singresu S. Rao, Engineering optimization theory and practice (fourth edition), John Wiley \& Sons, Inc (2009).
[8] M. Asghar Bhatti, Practical optimization methods with mathematica applications, Springer (2000).
[9] Jorge Nocedal, Stephen J. Wright, Numerical optimization (second edition), Springer (2006).
[10] R. Fletcher, Practical methods of optimization, John Wiley \& Sons, Chichester (1987).
[11] D. Bestle, Analyse und optimierung von mehrkörpersystemen, Springer-Verlag, Berlin (1994).
[12] Nguyen Nhat Le, The basic problem of optimization and optimal control (in Vietnamese), Science and Technical Publishing House, Hanoi (2009).

Received February 22, 2012

VIETNAM ACADEMY OF SCIENCE AND TECHNOLOGY
 VIETNAM JOURNAL OF MECHANICS VOLUME 35, N. 3, 2013

CONTENTS

Pages

1. N. T. Khiem, L. K. Toan, N. T. L. Khue, Change in mode shape nodes of multiple cracked bar: I. The theoretical study.
2. Nguyen Viet Khoa, Monitoring a sudden crack of beam-like bridge during earthquake excitation.
3. Nguyen Trung Kien, Nguyen Van Luat, Pham Duc Chinh, Estimating effective conductivity of unidirectional transversely isotropic composites.
4. Nguyen Van Khang, Trieu Quoc Loc, Nguyen Anh Tuan, Parameter optimization of tuned mass damper for three-degree-of-freedom vibration systems.
5. Tran Vinh Loc, Thai Hoang Chien, Nguyen Xuan Hung, On two-field nurbsbased isogeometric formulation for incompressible media problems.
6. Tat Thang Nguyen, Hiroshige Kikura, Ngoc Hai Duong, Hideki Murakawa, Nobuyoshi Tsuzuki, Measurements of single-phase and two-phase flows in a vertical pipe using ultrasonic pulse Doppler method and ultrasonic timedomain cross-correlation method.
