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Abstract. This paper investigates buckling of thick functionally graded plates with
initial geometrical imperfection under thermal loadings. The equilibrium, stability, and
compatibility equations of an imperfect functionally graded plate are derived using the
third order shear deformation theory. Material properties are assumed to be temperature-
independent and graded in the thickness direction according to a simple power law distri-
bution in terms of the thickness coordinate variable. By Galerkin method, the resulting
equations are solved to obtain closed-form solutions of critical buckling temperature dif-
ference. Two types of thermal loading, uniform temperature rise and nonlinear tempera-
ture change across the thickness are considered. Buckling analysis for a simply supported
rectangular imperfect functionally graded plate shows effects of geometry and material
parameters, shear deformation and imperfection on critical buckling temperature.

1. INTRODUCTION

By high performance heat resistant capacity, Functionally Graded Materials (FGMs)
have received much attention for structural applications in ultrahigh temperature environ-
ments and extremely large temperature gradient such as aircraft, space vehicles, nuclear
plants, and many other applications. By varying smoothly and continously of mechanical
properties from one surface to the other, FGMs eliminates interface problems and stress
concentrations. Javaheri and Eslami reported mechanical and thermal buckling of rectan-
gular functionally graded plates by using the classical theory [2, 3] and the third order
shear deformation theory [4, 5]. They used energy method to derive governing equations
that are analytically solved to obtain the closed-form solutions of critical loading. Lanhe
[6] used first order shear deformation theory to derive closed-form relations for buckling
temperature difference of simply supported moderately thick rectangular FGM plates.
Three-dimensional thermal buckling analysis of functionally graded composite plates, us-
ing finite element method, is reported by Na and Kim [7]. The research on thermoelastic
stability of FGM cylindrical shells is introduced by Eslami and his associates [9, 10] and
Lanhe et al. [11] according to analytical approach.

The initial geometrical imperfections are unavoidable and inherent in many real structures.
Therefore, many investigations are conducted on the stability of imperfect structures such
as works reported by Eslami and his co-workers [12-15], Murphy and Ferreira [16] for
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isotropic and orthotropic imperfect structures under mechanical and thermal loads. Re-
cently, Shariat and Eslami have extended their preceding works to investigate the stability
of FGM plates with initial imperfection by using classical [18] and first order [19] theories.
Yang et al. [20] have suggested a general form of imperfection function including local
and global imperfection modes and analyzed their sensitivity on postbuckling behavior of
higher order shear deformable FGM plates.

The present paper, mainly motivated by foregoing works [18, 19], investigates thermal
buckling of thick rectangular FGM plates with initial geometrical imperfections. Formula-
tion is based on the Reddy’s third order shear deformation theory. By Galerkin method,
the closed-form solutions of critical buckling temperature differences are derived. Buck-
ling analysis for a simply supported FGM plate subjected to two types of thermal loadings
shows effects of plate geometry and material parameters, shear deformation and imper-
fection on the critical buckling temperature.

2. FUNCTIONALLY GRADED PLATES

Consider a rectangular functionally graded plate of length a, width b, and thickness
h, referred to the rectangular Cartesian coordinates (x,y, z), where (x,y) plane coincides
with middle surface of the plate and z is the thickness coordinate (—h/2 < z < h/2).
By applying a simple power law distribution, the volume fractions of metal and ceramic,
Vi and V., are obtained as follows [3, 4, 6, 8, 18, 19]

k
%(Z):<2Z2Zh> V(z) =1 Vil2) 1)

where volume fraction index k is a nonnegative number that defines the material distri-
bution and can be chosen to optimize the structural respone.

We assume that the effective properties P s of functionally graded plate, such as the mod-
ulus of elasticity F, the coefficient of thermal expansion «, and the coefficient of thermal
conduction K, change in the thickness direction z and can be determined by the linear
rule of mixture as [3, 4, 5, 6]

Peff:Pc‘/c"i'Pme (2)

where P denotes a temperature-independent material property, and subscripts m and c
stand for the metal and ceramic constituents, respectively. From Egs. (1), (2), the effective
properties of FGM plate can be written as follows, while Poisson’s ratio v is assumed to
be constant for simplicity.

22+ h\*
[E(Z)v OZ(Z), K(Z)] = [Ema A, Km] + [Ecma em, Kcm] <7Z2—;; > 5 I/(Z) =V (3)
where
Eepn =E.— Ep, y Olem = Q¢ — QY 7Kcm:Kc_Km' (4)

3. GOVERNING EQUATIONS

In the present study, the Reddy’s third order shear deformation theory (TSDT) [21]
is used to obtain the equilibrium, stability, and compatibility equations as well as critical
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buckling loading relations. The strains across the plate thickness at a distance z from the
mid-plane are [4, 5]

€z o kO k2

Ey = 6(? +z ko(y] + 23 kgi (5)
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in which ¢; = 4/3h?, ¢,, €, are the normal strains, 7,, is the shear strain at the middle
surface of the plate, and 7., 7y, are the transverse shear deformations, also, (u, v, w) are
the mid-plane displacement components, and ¢, ¢, are the slope rotations in the (z, 2)

and (y, z) planes, respectively.
Hooke’s law for a plate is defined as

Oy = m[em + vey — (1+ v)aAT|
E
oy=T 3 [ey +rve, — (14 y)ozAT} (8)
| = o |
g g g = ——
zys Oxzy Oyz 2(1 i I/) Veys Yez, Vyz

The force and moment resultants of the plate are defined as

h/2
(NMMMPZ) :/ O'Z'(l,Z,Zs)dZ i =Z,Y, 1Y
—h/2
" (9)

(Qi, Ry) =/ 0j(1,2%)dz i=m,y; j=uw2, yz.
—h/2
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Substituting Egs. (3), (5), (6) and (8) into Egs. (9) gives the constitutive relations as [4, 5]
1

=12 [(Er, B, Eq)(e5 + vey) + (Ea, Es, Bs) (kg +
vky) + (Ey, Es, Er) (k3 + vk;) — (14 v)(®1, §a, 4)]

1
(Ny, My, P,) 1.2 [(E1, B, E4)(€2 + vey) + (Es, Bs, Es)(k‘g‘i'

(Na, My, Pr)

yk2)4—(EhrE5rE7ﬂk§—kuk§)——(1+—uﬂ¢n,¢2,¢4ﬂ

(10)
1
(Nay, Myy, Pry) = ) [(E1, Ea, E)v), + (B2, Es, E5)k), + (Ey, Es, E7)k2, |
1
(Qz, Rz) = m[(Elv E3)ve, + (B3, Es)ky.,]
1
Q. By) = gy [(Bv Bs. + (Bs, o)k |
where
h/2
(Ela E27 E37 E47 E57 E7) = / (17 Z, 252, zsv Z4, ZG)E(Z)dZ
s (11)
(P, Do, Dy) :/ (1,z,zz)E(z)a(z)AT(:E,y,z)dz
—h/2

Substituting Eqgs. (3) into Egs. (11) gives coefficients E;, (i = 1 — 7) (see Appendix).
The nonlinear equilibrium equations of a perfect functionally graded plate based on the
third order shear deformation theory are [4, 5, 20]

Neg + Noyy =0, Noyo + Nyy =0,
Qe + Quy — 3ci(Ryz+ Ry y) + c1(Prze + 2Py oy + Pyyy)
+ Npw gz + 2Ngyw 2y + Nyw 4y = 0 (12)
My + Myyy — Qu +3c1Ry — e1(Prg + Payy) =0
Moy z+ Myy —Qy+3c1Ry — c1(Prye + Pyy) =0

Assuming that the temperature varies with respect to the thickness direction only and
eliminating the variables u, v, ¢, ¢, from the last three equations, Egs. (12) may be
reduced to a set of three equations as

Neg+ Neyy =0, Nyyo+ Nyy =0,
A (EB/D — C) A%w + (1 B/D +1) FA*w + (1 — ¢;E/D) A(Nyw 4p (13)
+ 2Ny W 2y + Nyw yy) — F/D(Npw zp + 2NgyW 2y + Nyw ) = 0
where A = 02/02% + 0%/0y?, and

E\Fs — F? E\Es5 — FyE, E\E; — E?
A:72 7B:—27 0272
(1—1/ )E1 (1—1/ )E1 (1—1/ )E1 (14)
1
D=A-¢B ,E=B-¢C , F=_——(E; —6¢,E3+ 9c¢1Fs).

21 +v)
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For a slightly imperfect plate, let w*(z,y) denotes a known small imperfection. This pa-
rameter represents a small deviation of the plate middle plane from a flat shape. When
imperfection is considered, equilibrium Egs. (13) are modified as (see [18]).

Naaz + Neyy =0, Neya + Nyy =0,
¢t (EB/D — C) A*w + (1 B/D + 1) FA*w + (1 — ¢1E /D) A[Ny(
W + W) + 2Nay(Way + 07,) + Ny(wyy +uy)]  (19)

F * * *
D [Nm(w,m + w,m) + 2Nmy(w,ry + w,my) + Ny(w,yy + w,yy)] =0.

When only the first order shear deformation is taken into consideration, Eqs. (15) are
reduced to those reported by Shariat and Eslami [19]. Also, when the shear deformation
is ignored, Eqs. (15) are identical to results obtained by Shariat and Eslami [18].

The stability equation of the imperfect FGM plate may be derived by the adjacent equi-
librium criterion [1] as follows

Nzt + Noyry =0, Nyyro+ Nyry =0,
¢t (EB/D — C) A*wy + (1B/D + 1) FA*w; + [(1 — iE/D) A
— F/D] (Ngow1 2 + 2Ngyow1 2y + Nyowi4y) + [ (1 — 1 E/D) A
— F/D] [Na1(wo,00 + Wly) + 2Nay1 (wo,zy + why) + Nyt (wo gy + wly,)] =0

(16)

where subscript 1 refers to the stability state and the subscript 0 refers to the state of
equilibrium conditions. Also, N1, Ny1, and N1 represent the parts of increments of force
resultant that are linear in u;, v1 and wq, whereas Ny, Ny, and Ny are prebuckling
force resultants. Considering the first two of Eqs. (16), a stress function f may be defined as

N1 = fyy s Nyt = faz s Neyt = —fay (17)
Substituting Eqgs. (17) into Eqgs. (16) gives
¢t (EB/D — C) A*wy + (1B/D + 1) FA’wy + [(1 — c1E/D) A
— F/D] (Nyow1,2z + 2Ngyow1,ay + Nyow1,yy) + [ (1 — 1 E/D) A (18)
- F/D] [f,yy(wo,m + w*mm) - 2f,my(w0,my + w:kmy) + f,m(wO,yy + w:kyy)] = 0.

The above stability equation includes two dependent unknowns, w; and f. To obtain a
second equation relating these two unknowns, the compatibility equation may be used.
The membrance strain components 2, 621, ygyl which are linear in u1, v1, w; may be
written from Egs. (7) with considering imperfection as follows

€9 =uyp+ (wor + W)W 521 = v1y + (Woy + Wi wiy , (19)
Vogr = Uy + V1 + (wo e + wh)wiy + (woy + wh w4
Using Eqgs. (19), the geometrical compatibility equation is written as

6gl,yy +€21,mm _Wgyl,my = 2(w0,my +w:kmy)w17my_ (w(),m ‘|’w:km)w1,yy - (wovyy+w:kyy)w17mm‘ (20)
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9 expressed in terms of force resultants due to Eqs. (10), then

The membrance strains ¢;;
the results are substituted in Eq. (20) and with the aid of Eqs. (17) leads to compatibility

equation of an imperfect FGM plate as

1
E_lAzf - 2w1,my (wO,my + w:kmy) + W1,z (wo,yy + w:kyy) + w1 yy (wo,m + wfm) =0. (21)

Egs. (15), (18) and (21) are the basic equations used to obtain the critical buckling load
of an imperfect plate.

4. BUCKLING ANALYSIS

In this section, the closed-form relations of buckling loading of imperfect FGM
rectangular plate under two types of thermal loadings are presented. The plate is assumed
simply supported in bending and rigidly fixed in extension.

4.1. Uniform temperature rise

Environment temperature is assumed to be raised uniformly from initial value 7T; to
final one Ty and temperature difference AT = T —T; is considered as a constant. Solving
the membrance form of equilibrium equations, gives the prebuckling force resultants [3, 4,
6, 18, 19] as

P, P,
NmOZ_l_V ) NyOZ_l_V ) NmyOZO' (22)
The simply supported boundary conditions are defined as
u=v=w=0¢y, =P, =M, =0 z=0, a

u=v=w=¢, =P, =M,=0 y=20,0

(23)

Considering the boundary conditions, the imperfections of the plate are assumed as [18,

19]

mmrxr . nm
sinTy , myn=1,2 .. (24)
where the coefficient p varies between 0 and 1 and ph represents the imperfection size.
Also, m and n are number of haft waves in  and y directions, respectively.
The following approximate solution is seen to satisfy both the equilibrium equation (15)

and the boundary conditions (23)

w* = phsin

mnx . nmy
sin —=
b

where W,,,, is a constant coefficient. Substituting Eqgs. (22), (24), (25) into the third
equilibrium equation (15), the constant W,,,, is obtained as

[(1=15) Lo + ] bt
Winn = EB B P E P (26)
—2 (BB _()r2,, + [F (1B 4+1)— 2 (1—c15)}Lmn—ﬁ

wg = Wyp sin (25)

ol

Lyn = (mm/a)* + (nm/b)?. (27)
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Substituting Egs. (22), (25), (26) and Eq. (24) into Egs. (18) and (21) results in two
equations with two incremental variables w; and f, and with the consideration of the
boundary conditions (23), we assume the following approximate solutions

nwy

x . . nmy
sin 5 f = Fppsin

T
sin —= 28

d (28)

where E,,,, and F,,,, are constant coefficients. Substituting the approximate solutions (28)
into Egs. (18) and (21) and applying Galerkin procedure to system of resulting equations
yield the thermal parameter ®; from condition for nontrivial solutions. After that, the

value of buckling temperature difference AT is obtained using Eqgs. (11) as

w1 = By, sin

—= (4B EB ~ - \1/3
AT (1—v)n? F (é_% * 1) B} Ryn — (% N C) TR + 72 (Inn) / -
~ PB? F 2 _ 4B\ 2 (29)
h 5Bh + )7 R
where
- 1024E1m2n2u2BY (— /4B 1672 (EB — 2
Ton = =gt | (ﬁ“) By (f ‘C> R
mn

4F F
2(1- 22 ) P Ron+ =B}| (30
{< 3D>7T mn ] (30)
Rym = B*m? +n? | By=b/a, B,=b/h, E, = E|/h ,A= A/h?
B=B/k>,C=C/hk, D=D/h®, E=E/h , F=F/h,
P = Eom + (Emoem + Eemanm)/(k+ 1) + Egnoem/(2k + 1). (32)
The critical buckling temperature difference AT, is obtained for the values of m and
n that make the preceding expression AT a minimum. When minimization methods are
used, critical temperature difference is obtained for m =n = 1.

(- F (B +1) Bk - % (B - C) n2R3, +7* (Tn)

PB? F 4B
h ﬁB% + (1 — 3—5> 7T2R11

(31)

1/3

AT, = (33)

Remarks Equation (33) is used to determine the critical temperature difference of imper-
fect FGM plates under uniform temperature rise. This equation indicates that the critical
buckling temperature difference of an imperfect FGM plate is increased in comparison
with a perfect one by an imperfection term (711)1/ 3 which directly depends on the imper-
fection size u, material and geometrical properties. Specializing this equation gives some
limiting cases, as follows.

1. Setting = 0, Eq. (33) is reduced to equation

(1 - v)r2(B2 +1) F(D + 4B)B? — X(EB — TD)n2(B2 + 1)

AT,.= 3 _9
« PB? FB}+ (D - 3E)7%(B2 + 1)

(34)

This equation is used to determine the critical temperature change of perfect FGM plates
basing the third order shear deformation theory (TSDT). In case of the first order shear
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deformation theory (FSDT), Eq. (34) is reduced to equation

(- v)m? (E1E3 — E3)E (B; +1)
AT = P P2 2 - Fu — EOV22( B2 (35)
E1B; (1 —v?) +2(1 +v)(E1E3 — Ey)m?(B2 + 1)
where
Ey=E\/h, Ey=Ey)/h*, E3= Es/h’. (36)

Eq. (35) has been derived by Lanhe [6]. Also, when shear deformation is ignored, referred
to as case of the classical plate theory (CPT), Eq. (34) is reduced to result

1 7%(B2+1)(E\Es — By)
P (1+v)E B?
that obtained by Javaheri and Eslami [3].

2. When only the first order shear deformation is considered, Eq. (33) is derived to
equation

ATy, =

(37)

AT (1—v)r? (B2 + 1+ (I1)Y3)(E 1 E3 — E3)Ey (38)
1= — — —
v P EB2(1-12)+2(1 +v)(E\Es — Ey)n? (B2 + 1)
where
- 1024E{m?n2u2B* 4(1 + v)Ar?
7 = P By () 404 )2 o (39)
9ATAR, ., E,B?

Eq. (38) has been obtained by Shariat and Eslami [19]. Clearly, for perfect FGM plates
(u=0), Eq. (38) is identical to Eq. (35).

3. In case of classical plate theory in which shear deformation is not accounted for,
Eq. (33) is specialized to give

== =2
(E1E3 — Ey)7?

AT, = =
0 B PBX(1+v)

[B2+ 1+ (T9,)"/] (40)

where .
70 _ 1024E1m?n?u? B2
e 9ATAR, '
4. Putting k = 0, Eq. (33) is reduced to ATy, for a isotropic homogeneous imperfect
plate.

(41)

4.2. Nonlinear temperature change across the thickness

In this case, the temperature distribution through thickness is governed by the one-
dimensional Fourier equation of steady-state heat conduction as

% [K(z)z—i 0, T(z=h/2) =T, , T(z = —h/2) = Ty, (42)

where T, T, are temperatures at ceramic-rich and metal-rich surfaces, respectively. The
solution of Eq. (42) is obtained by means of polynomial series. Taking the first seven terms
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of series, solution for temperature distribution across the plate thickness becomes [3, 6, 18]
26 (—Tchm/Km)p

T 2_.p=0 E+1
T(z) = T + AT——=% (_ch; TRy (43)
p=0 pk+1

where r = (224 h)/2h and AT = T, —T,, is defined as the temperature difference between
ceramic-rich and metal-rich surfaces of the plate.

By following the same procedure as the preceding loading case, and assuming the metal
surface temperature as reference temperature, the critical buckling temperature difference
is obtained for m =n =1 as

— (4B 5 = — \1/3
(1= F (B +1) BiRy — 4 (22 - T0) n2R3, +7° (Tun)

AT, = — —= (44)
Hszz %B%—I—( —é—%) 7T2R11
6 (—Kcm/Km)p Epnoam EmoaecmtFEemam Eemoem
where I p=0 pk+1 [ pht2 T (p+1)k+2 T (p+2)k+2} A5
- 50 Ko/ Kn)? : (45)
p=0 pk+1

Remarks: Similar to case of uniform temperature rise, when only the first order defor-
mation is considered and when the shear deformation is ignored, Eq. (44) is reduced to
results presented by Shariat and Eslami in works [19] and [18], respectively. Also, by set-
ting p =0 or k = 0, Eq. (44) is reduced to ATy, for a perfect FGM plate or an isotropic
homogeneous thick imperfect plate, respectively, under nonlinear temperature gradient.
In general, by specializing Eq. (44) for thin and moderately thick plates with and without
imperfection, we obtain limiting expressions of critical buckling temperature change being
similar to Egs. (34)-(41) in the previous loading case where P is replaced by H. The detail
procedure of obtaining these limiting expressions is omitted for brevity.

5. RESULTS AND DISCUSSIONS

The thermal buckling loads of the rectangular imperfect FGM plate are obtained
in closed-form solutions for the assumed thermal loadings and are presented by Egs. (33)
and (44). These equations indicate that the critical buckling temperature change of an
imperfect FGM plate is increased in comparison with a perfect one. The increase in ATy,
is expressed by an imperfection term (711)1/ 3 which directly depends on the imperfection
size p. Also, investigation of Eq. (30) shows that the imperfection term is affected by the
material and geometrical properties of a FGM plate. The fact that the thermal buckling
load of a plate is increased by existence of geometrical imperfections is fully explained by
Murphy and Ferreira [16] for isotropic homogeneous plates, extended by Shariat and Es-
lami [18, 19] for thin and moderately thick FGM plates. The present study again confirms
this behavior for the thick FGM plates.
To illustrate the proposed approach, a rectangular imperfect functionally graded plate,
that composed of ceramic and metal materials, is considered. The combination of materials
consist of alumina (ceramic) and aluminum (metal) of which properties as follows [3, 6, 18, 19]

E.=380 GPa, a. = 7.4 x107%/°C , K, =10.4 W/mK.

46
E,, =70 GPa , a,, =23.107%/°C" , K,, =204 W/mK , v =0, 3. (46)
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The plate is assumed to be simply supported on all edges.

2 () aT_(0)
5000 : . : : : 10000 | . : ‘ :
E — TSDT 'y — TSDT
40001\ -~ CPT || 2000}, ---cPT | |
N bla=20, =01 q bla=2.0, 1=0.1

2000+ . 40000 %

10 15 20 25 30 35 40 10 15 20 25 30 35 40

bh bh
Fig. 1. AT, of FGM plate under uniform Fig. 2. AT,, of FGM plate under nonlinear
temperature rise vs. b/h temperature change vs. b/h
AT, (C)

12000

10000+

8000+

6000+

4000

2000+

0

Fig. 3. AT, of FGM plate under uniform Fig. 4. AT, of FGM plate under nonlinear
temperature rise vs. b/a temperature change vs. p

The variation of the critical buckling temperature difference AT, versus side-to-
thickness ratio b/h for FGM plates under two types of thermal loading are plotted in Figs.
1 and 2 for three various values of volume fraction index k. In these Figs., critical values are
calculated by the third order shear deformation theory (TSDT) and are compared with the
classical plate theory (CPT). As can be seen, AT, is reduced by increasing b/h and k as
expected. Also, the CPT overestimates ATy, than the TSDT, especially for thicker plates.

Fig. 3 shows variation trend of the AT, versus aspect ratio b/a for the FGM plates
under uniform temperature rise and by three various theories, the CPT, the FSDT, and the
TSDT. As can be observed, ATy, is considerably overpredicted when the shear deformation
is not taken into consideration. In addition, discrepancy between predictions of AT, is
increased when b/a ratio to be large.

Variation of AT, for FGM plate under nonlinear temperature gradient versus imperfection
size u is illustrated in Fig. 4. Obviously, AT, is monotonically increased with increasing
values of 1 as mentioned.
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6. CONCLUSION

The present study extends foregoing works about thermal buckling of thin and
moderately thick imperfect FGM plates to investigate buckling of thick imperfect FGM
plates under thermal loadings. By analytical approach, one-term approximate solutions
are chosen to satisfy governing equations and to derive closed-form relations of critical
buckling temperature difference AT, for a simply supported imperfect FGM plate. The
results show that AT, of an imperfect FGM plate is increased in comparison with that of
a perfect plate under thermal loads. The results also confirm that the AT, of FGM plates
is greatly effected by the geometry (b/a and b/h) and material (k) parameters. Finally, it
is recommended from the results that the higher order shear deformation theory should
be used to analyze stability of thick plates and plates with large b/a ratio for safe and
reliable design.
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ON DINH NHIET DAN HOI CUA TAM DAY BIEN DOI CHUC NANG
BAN DAU KHONG PHANG

Bai toan nay nghién citu on dinh ciia cac tam day lam ti vat lieu bién ddi chitc nang
khi chiu tai nhiét vd ké dén anh hudng ciia imperfect hinh ddng ban dau. Céac phuong
trinh can bing, 6n dinh v& tuong thich ciia tAm day bién dbi chiic ning véi imperfect duge
dan dat béi 1y thuyét bién dang trugt bac ba ctia Reddy. Cac tinh chat vat lieu duge gia
thiét doc lap véi nhiet do va bién doi theo huéng chidu day theo mot ham mii. Cac phuong
trinh nhan dugc sé duge giai theo phuong phap Galerkin dé thu dude céc biéu thiic hién
ctia nhiét do t6i han. Su phan tich én dinh cho mot tam chit nhat imperfect, tua ban trén
cac canh dudi tac dung ctia hai loai tai nhiét sé chi ra nhitng &nh huéng ctia nhitng tham
s6 hinh hoc va vat lieu, bién dang trugt va imperfect lén nhiét do téi han ctia tam

Appendix. Detail of coefficients E;

E.nh E.nh?k E.h3 1 1
Br=Enht T B = ko) E3:T+Ecmh3[4(k+1)_(k+2)(k+3)}
By — E.nh?t F 3 N 3

k+1 18 4(k+2) (k+3)(k+4)
B Enh®>  E..h° [i 1 N 3 B 12 }
T80 T k+1116 20k+2)  (k+2)k+3) (k+2)(k+4)(k+5)
B — E,h"  E,,h" [i B 6 N 30 B 15
448 E+1164 32(k+2) 16(k+2)(k+3) (kE+2)(k+3)(k+4)
N 90 B 360 }
(k+2)(k+3)(k+4)(k+5) (E+2)(k+3)(k+4)(k+6)(E+T)



