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Abstract. Three-point correlation bounds are constructed on effective conductivity of
unidirectional composites, which are isotropic in the transverse plane. The bounds con-
tain, in addition to the properties and volume proportions of the component materials,
three-point correlation parameters describing the micro-geometry of a composite, and
are tighter those obtained in [1]. The bounds, applied to some disordered and periodic
composites, keep inside the numerical homogenization results obtained by Fast Fourier
method.
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1. INTRODUCTION

Effective (thermal, electrical,...) conductivity of multicomponent materials depends
on their often complicated irregular micro-structure, hence is hard to be determined ex-
actly. Variational approach has been developed to construct upper and lower bounds in
the effective conductivity of composites [1-13]. The bounds contain the properties and
volume fractions of the components and possibly correlation information about the micro-
geometries of the composites. On the other side, numerical homogenization methods have
been developed to estimate effective properties of particular composites, mostly, the two-
component ones [11-14]. An effective method to deal with the homogenization problem is
the Fast-Fourier one [14-16]. Le and Pham [1] developed a variational approach to esti-
mate effective conductivity of transversely isotropic composites. In this work we modify
the approach of Pham [7] to derive bounds tighter than those obtained in [1]. The tight
bounds are applied to some random and periodic composites and presented together with
the Fast-Fourier homogenization results.
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2. TRANSVERSELY ISOTROPIC COMPOSITES AND BOUNDS

Consider transversely isotropic composites, whose phase boundaries are cylindrical
surfaces, with generators (in x3-direction) orthogonal to the plane of isotropy (x1, x2).
The composite is composed of transversely isotropic components sharing the common
plane of isotropy, with longitudinal conductivities C

‖
α, transverse conductivities C⊥

α , and
volume fraction vα (α = 1, . . . , n). The longitudinal effective conductivity Ceff

‖ has been
determined, irrespective of particular transverse micro-geometry, as

Ceff
‖ =

n∑
α=1

vαC‖
α (1)

However, for the transverse effective conductivity Ceff
⊥ , we have to rely on the min-

imum energy definition on the representation area element V in the transverse plane

Ceff
⊥ E0 ·E0 = inf

〈E〉=E0

∫
V

CE ·Edx (2)

where E is the thermal gradient field, E0 is a constant vector, 〈•〉 means the volume
average on V, 〈•〉 = 1

V

∫
V

•dx

C(x) =
n∑

α=1

CαIα(x) (3)

Iα(x) =
{

1 x ∈ Vα

0 x 6∈ Vα
(4)

and for simplicity of notations, we adopt Cα = C⊥
α . To find an upper bound on Ceff

⊥ from
(2), we substitute into them the trial gradient field

Ei = E0
i +

n∑
α=1

aαEα
j ϕα

,ij with i, j = 1, 2 (5)

satisfying restriction (for E to satisfy restriction 〈E〉 = E0)
n∑

α=1

vαaα = 0 (6)

and obtain
Ceff
⊥ E0 ·E0 ≤ WE (7)

where

WE =
∫
V

CE ·Edx =
(
E0 ·E0

)[
CV +

n∑
α=1

vαCα

(
aα +

1
4
a2

α

)
+

n∑
α,β,γ=1

Aαβ
γ aαaβCγ

]
(8)

where CV is Voigt arithmetic average:

CV =
n∑

α=1

vαCα (9)
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Aβγ
α =

∫
Vα

ϕβα
ij ϕγα

ij dx ϕβα
ij = ϕβ

,ij −
1
Vα

∫
Vα

ϕβ
,ijdx (10)

ϕα(x) = −
∫
Vα

1
2π

ln
1

|x− y|
dy; ∇2ϕα(x) = δαβ , x ∈ Vβ (11)

Convenient summation carried out on repeating Latin indices from 1 to 2, δαβ is the
Kronecker delta; Latin indices after the common designate differentiation with respective
Cartesian coordinates.

We minimize the expression (8) over the variables aα restricted by Eq. (6), with
inclusion of Lagrange multiplier to get (α = 1, . . . , n)

1
2
vαCα +

1
4
vαCαaα +

1
2

n∑
β,γ=1

Aαβ
γ Cγaβ − λvα = 0, (12)

Summing Eq. (12), multiplied by C−1
α , on α from 1 to n and taking into account

Eq. (6), one get
1
2

+
1
2

n∑
α,β,γ=1

C−1
α Aαβ

γ Cγaβ = λC−1
R (13)

where

C−1
R =

n∑
α=1

vαC−1
α (14)

Substituting λ from (13) into (12) leads to the equation

vc + Ac · a = 0 (15)

which has solution
a = −A−1

c · vc (16)

where we have introduced the vectors a,vc and matrix Ak in n-space

a = {a1, . . . , an}T ; vc =
{1

2
v1(C1 − CR), . . . ,

1
2
vn(Cn − CR)

}T
(17)

Ac = {Ac
αβ} α, β = 1, . . . , n

Ac
αβ =

1
4
vαCαδαβ +

1
2

n∑
γ=1

(
Aαβ

γ − vαCR

n∑
δ=1

C−1
δ Aδβ

γ

)
Cγ (18)

Eqs. (8), (12), (16) lead to

WE = E0 ·E0
(
Cv +

1
2

n∑
α=1

vαCαaα

)
= E0 ·E0

(
Cv − v

′
c ·A−1

c · vc

)
(19)

where

v
′
c =

{1
2
v1C1, . . . ,

1
2
vnCn

}T
(20)
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Thus (2) and (19) yield the upper bound on the effective transverse conductivity of
unidirectional n-component composites

Ceff
⊥ ≤ CU

A

(
{Cα}, {vα}, {Aβγ

α }
)

= Cv − v
′
c ·A−1

c · vc (21)

To construct the lower bound, we start from the dual minimum complementary
energy principle (

Ceff
⊥

)−1J0 · J0 = inf
〈J〉=J0

∫
V

C−1J · Jdx (22)

where the (thermal) flux J should satisfy the equilibrium equation

∇ · J = 0 and J0 = const

To find a lower bound on Ceff
⊥ from (2), we substitute into them the equilibrated

trial field

Ji = J0
i +

n∑
α=1

aαJ0
j

(
ϕα

,ij − δijIα

)
with i, j = 1,2 (23)

satisfying restriction (6), and obtain

(Ceff
⊥ )−1J0 · J0 ≤ WJ (24)

where

WJ =
∫
V

CJ · Jdx (25)

= J0 · J0
[
C−1

R −
n∑

α=1

vαC−1
α aα +

1
4

n∑
α=1

vαC−1
α a2

α +
1
2

n∑
α,β,γ=1

Aβα
γ aαaβC−1

γ

]
We minimize expression (25) restricted by (6), using Lagrange multiplier λ, to get

−1
2
vαC−1

α +
1
4
vαC−1

α aα +
1
2

n∑
β,γ=1

Aαβ
γ C−1

γ aβ − λvα = 0 (26)

Summing Eq. (26), multiplied by Cα, on α from 1 to n and taking into account Eq.
(6), one get

−1
2

+
1
2

n∑
α,β,γ=1

CαAαβ
γ C−1

γ aβ = λCV (27)

Substituting λ from (27) into (26) leads to the equation

vc + Ac · a = 0 (28)

which has solution
a = A−1

c · vc (29)
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where

a = {a1, . . . , an}T ; vc =
{1

2
v1(C−1

V − C−1
1 ), . . . ,

1
2
vn(C−1

V − C−1
n )

}T

Ac = {Ac
αβ} α, β = 1, . . . , n

Ac
αβ =

1
4
vαC−1

α δαβ +
1
2

n∑
γ=1

(
Aαβ

γ − vαC−1
V

n∑
δ=1

CδA
δβ
γ

)
C−1

γ (30)

Thus we have

WJ = J0 · J0
(
C−1

R − v
′
c ·A

−1
c · vc

)
(31)

where

v
′
c =

{
− 1

2
v1C

−1
1 , ...,−1

2
vnC−1

n

}T
(32)

Finally, (25) and (31) yield the lower bound

Ceff
⊥ ≥ CL

A

(
{Cα}, {vα}, {Aβγ

α }
)

= (C−1
R − v

′
c ·A

−1
c · vc)−1 (33)

The bounds (22), (33) contain the conductivities Cα, volume fraction vα of the
phases, and three-point correlation parameters Aβγ

α describing the micro structure of the
composite. The expressions are much simpler than those obtained in [13] because of mod-
ifications in the approach.

3. APPLICATIONS

Firstly, consider three phase doubly-coated circle model, where the disks made of
material-1 are embedded in the circular shells of material-2, the latter are embedded in
the circular shell of material-3, and all composite circles of all possible sizes but with the
same volume proportions of phases fill all the material space (Fig. 1). The three-point
correlation parameters Aβγ

α of the model have been determined [8, 12]

Fig. 1. Doubly-coated circles
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A11
2 = A22

2 = −A12
2 = −A21

2 =
1
2

v1v2

(v1 + v2)
; A11

3 =
1
2

v2
1v3

(v1 + v2)

A12
3 = A21

3 =
1
2

v1v2v3

(v1 + v2)
; A13

3 = A31
3 = −1

2
v1v3; A22

3 =
1
2

v2
2v3

(v1 + v2)

A23
3 = A32

3 = −1
2
v2v3; A33

3 =
1
2
v3(v1 + v2) (34)

and other Aβγ
α = 0. For numerical illustrations, we take

C1 = 1, C2 = 5, C3 = 20, v1 = 0.1 → 0.9, v2 = v3 =
1
2
(
1− v1

)

Fig. 2. Bounds and exact effective conductivity of doubly-coated circle model

The results of calculations are reported in Fig. 2. The upper bound (22) and lower
bound (33) converge to give unique value of the effective transverse conductivity Ceff

⊥
(shown as Exact in Fig. 2). Wiener bounds and Hashin-Shtrikman bounds [2] are also
given for comparisons. In the case C

‖
α = Cα

(
= C⊥

α

)
, α = 1, 2, 3, the effective longitudi-

nal conductivity of the unidirectional composite Ceff
‖ equal to the Wiener upper bound

according to (1).
For symetric cell materials (without distinct inclusion and matrix phase) [4, 9], we

have (α 6= β 6= γ 6= α)

Aβγ
α = vαvβvγ

(
2e1 −

1
2

)
; Aαα

α = vα(1− vα)
[
(1− 2vα)e1 +

vα

2

]
(35)

Aαβ
α = vαvβ

[
(2vα − 1)e1 −

vα

2

]
; Aββ

α = vαvβ

[
1
2
(1− vβ) + (2vβ − 1)e1

]
where

0 ≤ e1 ≤
1
2

(36)



Estimating effective conductivity of unidirectional transversely isotropic composites 209

The bounds for symetric cell materials read

max
0≤e1≤ 1

2

CU

(
{Cα}, {vα}, {Aβγ

α } ∈ (35)

)
≥ Ceff

⊥ ≥ min
0≤e1≤ 1

2

CL

(
{Cα}, {vα}, {Aβγ

α } ∈ (35)

)
(37)

Numerical results of the bounds for symetric cell materials in the particular case
(34) are given in Fig. 3. In Figs. 3-6 new bound means the presented one.

Fig. 3. Bounds for symmetric cell materials

Fig. 4. Some periodic and random two-phase models

(a) (b)

Fig. 5. (a) Square model; (b) Hexagonal model
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Fig. 6. Random model

Now consider some periodic and random two-phase models (Fig. 4), the correlation
parameter of which has been tabulated in [11].

Assume CI = 10 (inclusion), CM = 1 (matrix). The bounds for the square, hexago-
nal and random models at vI = 0.1 → 0.9 are projected in Figs. 5(a)-5(b)-6, respectively.

The results presented in Figs. 2-3-5-6 shows the performance of the new bounds.
One can see that the three-point correlation bounds (22), (33) are tighter than the second
order Hashin-Shtrikman bounds.

4. FAST FOURIER TRANSFORM AND HOMOGENIZATION

The Fast Fourier Transform (FFT) has been used to compute the effective properties
of periodic composites by G.Bonnet and J.C.Michel [15, 16]. Then, this method is also
used to calculate the permeability of the porous media [14]. In this section, we present the
Fast Fourier method for calculating the effective conductivity of periodic two-component
materials.

Due to the periodic property of the microstructures, one can consider a unit cell
as a representative volume element (RVE) which consisting of a matrix medium (M) and
inclusion (I). Both matrix and inclusions are assumed to be homogeneous and have the
behavior described by Fourier’s law

J(x) = C(x)E(x) (38)

where C(x) is the second order local conductivity tensor governed by (3) with E(x) being
the local temperature gradient

E(x) = −∇T (x) (39)
and J(x) being equilibrated thermal flux

∇ · J(x) = 0 (40)

Let the unit cell be subjected to the macroscopic temperature gradient E0, from
(38), one finds

Q = 〈J(x)〉V = CeffE0 (41)
in which Ceff is the effective thermal conductivity.
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The localization problem can be reduced to finding the V -periodic perturbation
terms eper and T per given by the expressions

E(x) = E0 + eper, T = E0 · x + T per

By introducing a reference medium with conductivity C0, the Eq. (40) becomes

∇ · J(x) = ∇ ·
[(

C0 + ∆C
)
E(x)

]
= 0 (42)

where
∆C(x) = C(x)− C0

Replacing E(x) by (39), the Eq. (42) can be rewritten in the equivalent form

−∇ ·
[
C0∇T per

]
+∇ · τ(x) = 0 (43)

where the "polarization tensor" τ(x) is defined by

τ(x) = ∆C(x)[E0 + eper(x)] (44)

Due to the V -periodicity, eper, T per and τ admit the Fourier series representations

F(x) =
∑

ξ

F̂(ξ)eiξ.x, F̂(ξ) =
〈
F(x)e−iξ.x

〉
in which F denotes eper, T per, τ and F̂ denotes their Fourier transform êper, T̂ per and τ̂ .

Substituting the Fourier representation of eper, T per, τ into Eq. (43) yields∑
ξ

(ξmC0
mjξj)T̂ per(ξ)eiξ·x +

∑
ξ

iξmτ̂m(ξ)eiξ·x = 0 (45)

Therefore, the field T̂ per and êper can be expressed as

T̂ per(ξ) = − iξ · τ̂(ξ)
ξ · C0ξ

(46)

êper(ξ) = −iξT̂ per(ξ) = −ξ · τ̂(ξ)
ξ · C0ξ

ξ (47)

Owing to the fact that Ê(ξ)− Ê0(ξ) = êper(ξ) with

Ê0(ξ) =
{

E0 for ξ = 0
0 for ξ 6= 0 (48)

we obtain
Ê(ξ) = Ê0(ξ)− Γ̂(ξ) : τ̂(ξ) (49)

where the Green operator Γ̂(ξ) is given by

Γ̂(ξ) =
ξ ⊗ ξ

ξ · C0ξ
(50)

The solution Ê(ξ) is obtained by the recurrence process{
Êi+1(ξ) = −Γ̂(ξ).

[
(C(ξ)− C0) ∗ Êi(ξ)

]
for ξ 6= 0

Êi+1(ξ) = E0 for ξ = 0
(51)

starting from the initial value Ê1 = E0.
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Note that ∀ξ 6= 0 one has Γ̂C0Êi(ξ) = Êi(ξ) (see [16]), the Eq. (51) can be rewritten
in the form {

Êi+1(ξ) = Êi(ξ)− Γ̂(ξ).
[
C(ξ) ∗ Êi(ξ)

]
for ξ 6= 0

Êi+1(ξ) = E0 for ξ = 0
(52)

The numerical algorithm is given as follows

Iteration i = 1 : E1(x) = E0

J1(x) = C(x).E1(x)
Iteration i : Ei(x) and Ji(x) are known

Ĵi(ξ) = F(Ji(x))
convergence test

Êi+1(ξ) = Êi(ξ)− Γ̂0(ξ).Ĵi(ξ)

Ei+1(x) = F−1(Êi+1(ξ))
Ji+1(x) = C(x).Ei+1(x)

The convergence of the iterative procedure is reached when

‖ Ĵi+1(ξ)− Ĵi(ξ) ‖
‖ Ĵi+1(ξ) ‖

< ε (53)

where ε is a prescribed value (10−3 in the present work).
The numerical results for the microstructures of Fig. 4 are presented in Figs. 5(a)-

5(b), which fall inside all the bounds.

5. CONCLUSION

Effective behaviour of transverse-isotropic unidirectional composites is studied.
Bounds on the effective transverse conductivity have been derived from minimum energy
principles with the help of generalized polarization trial fields, which contain optimizing
multi-parameters. The procedure improves over the previous bounds based on Hashin-
Shtrikman-one-parameter polarization trial fields. They give the bounds that yield tight
simple estimates for some periodic and random models, which are also simulated by FFT
method in this paper.
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