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Abstract. The aim of this paper is to examine the impact of the choice of plasticity
theory-inspired model in the prediction of the shape of phase transformation domains.
In this field a comparison is made between Huber-Von Mises based model and an an-
other integrating the non-symmetry between tension and compression. The yield surface
of phase transformation initiation for an homogeneous body under proportional biaxial
loading is discussed. A transport of these surfaces in the space of the "effective transfor-
mation strain of martensite tensor" is given.
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1. INTRODUCTION

The thermomechanical behavior of shape memory alloys SMA can be considered as
surprizing towards elasto-plastic classical materials. Two mechanisms can be involved in
its loading response i.e. (i) a phase transformation between a mother phase called austen-
ite (generally cubic) and a product phase called martensite (orthorhombic, monoclinic,
tetragonal. . . ) (ii) a reorientation process of the martensite platelets. The phase transfor-
mation induced by stress action is called "pseudo-elasticity" and the reorientation from
self accommodating martensite variants to stress induced ones is said "pseudo-plasticity".
Apparently on loading, for instance, the tensile curve σ ↔ ε are the sames than the ones
for elastoplastic materials but not the mechanisms involved.

The differentiation comes on unloading. For SMA pseudo-elasticity, the behavior
is reversible mechanically and irreversible for elasto-plastic (presence of residual plastic
strain at stress free state).

The comparison on unloading between pseudo-plastic and elasto-plastic material is
the presence of caoutchoutic effect for SMA and linear decrease for the classical material.

Concerning the SMA thermomechanical modeling in the litterature, it is out of
question to cite all the works concerning the subject (around 2000 references). But there
is three different scales of investigation (microscopic, mesoscopic and macroscopic). At
microscale, with the crystallographical theory of martensite called CTM [2, 3], a special
attention is devoted to the nature of the microstructure i.e. an exact interface between
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austenite and a single variant of martensite or a twinned martensite in front of austenite.
The micro-macro models [12] combine micromechanical data (martensite variants, habit
plane. . . and thermodynamical tools). Hence, starting from local constitutive equations,
an efficient homogeneization technique permits to obtain the macro-quantities with the
classical concept of Representative Volume Element RVE. In the macro-models, all the
quantities are defined at the macroscale i.e. the stress tensor, the strain tensors (total
one, phase transformation, elastic. . . ). These ones are often called "models with internal
variables". The physical choice of the internal variables (for example the volume fraction
of martensite. . . ) permits to make the distinction between those models and also their
kinetic equations.

Without entering too much in the details a recent review concerning the modeling
of SMA polycrystals can be found in [7].

Here, we focussed our interest on some "plasticity theory-inspired SMA models", cf.
for example [1, 19] and specially on [15] and also [6] investigations.

As in the plasticity theory, an important tool is the determination of the yield
surfaces.

Some Huber-Von Mises models called J2 ones can be chosen where the obvious
non-symmetry between tension and compression is neglected (see for instance [11]).

But as the non-symmetry between tension and compression is experimentaly ob-
served and measured ([18] on copper based alloys and [10] on Ni Ti), one has to take into
account this important data in the modeling. In this aim, [15] have built a tridimensional
model integrating this experimental information.

For example, the phase transformation yield surfaces (or reorientation ones) are no
more, for a biaxial loading, circles in the stress deviatoric but new convex surfaces.

Bicompression and tension(compression)-internal pressure tests on a CuAlBe poly-
crystal permits to [5] to determine the shape of these new surfaces.

But a question arises, what is the impact of the 3D model choice (integrating or not
the non-symmetry between tension and compression) on the phase transformation yield
surfaces shape prediction for a proportional loading on an homogeneous SMAs sample?

In the present paper, one would make a comparison of the predictions delivered by
the two types of 3D thermomechanical model.

2. DETERMINATION OF THE YIELD SURFACE OF PHASE
TRANSFORMATION FOR AN HOMOGENEOUS SMA BODY

At first, the SMA are considered as pressure-insensitive alloys. It means that the
phase transformation between austenite and martensite is accompanied with no volume
change. As pointed out by [15], the dependence of the yield criterion on the first invariant
of the stress tensor σ(I1 ≡ trσ) is negligible.

Only the second and third invariants of the stress deviator are involved. As for the
plasticity initiation, in the tensor σ, the material is only sensitive to the stress deviator
Sσ ≡ devσ.

The present analysis is restricted to materials with isotropic elastic behavior.
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Let us consider the second order symmetric stress tensor σ and the deviatoric tensor
Sσ defined by :

Sσ ≡ σ − 1
3
trσ1 (1)

In a classical way, the Huber-Von Mises equivalent stress σ is defined by :

σ = κ |Sσ| , κ =

√
3
2
, |Sσ| = |Sσ : Sσ|

1/2 (2)

The yield surface equation of phase transformation initiation (Austenite A→Marten-
site M) reads

F (σ) = σf(xσ) = b(T −Ms) = σc (3)
where f > 0, is a smooth function (its second derivative is continuous) defined in the
interval Ix (to be defined later). In fact, f is introduced to take into account the non-
symmetry between tension and compression called "stress differential effect" by [16]. In
[13, 14] is referred as "the shape function".

σc is considered as the yield stress for phase transformation initiation.
Ms : the martensitic start temperature with stress free state.
b : the slope of the yield stress dependance with temperature.
xσ can have three different definitions

xσ =


The Lode invariant yσ : yσ ≡ 4 det(Nσ) ∈ Jyσ [−1, 1]

(
Nσ =

κ2Sσ

σ

)
The Lode angle θθ : θθ =

1
3
arc cos yσ ∈ Jθσ =

[
0,

π

3

]
ρσ ≡ cos

(
1
3
arc cos yσ

)
∈ Iρσ ≡

[
1
2
, 1

] (4)

where ρσ constitutes the greatest eigenvalue of Nσ.
If one introduces the g function with the following definition

g(ρσ) = −ρσ
df

dρσ
+ f(ρσ) (5)

[9] demonstrates the convexity conditions of the yield function F as g(ρσ) ≥ 0
dg

dρσ
≤ 0

(6)

for all ρσ ∈ Iρσ .
With some calculations, one can find the conditions given in terms of the Lode

invariant yσ by [16]
f(yσ)

9
− yσf

′
(yσ) + (1− y2

σ)f
′′
(yσ) ≥ 0, ∀yσ ∈ [−1, 1] (7)

And also the conditions in terms of the Lode angle θσ given by [4]

f2
∗ (θσ) + 2f

′
∗(θσ)− f

′′
∗ (θσ)f(θσ) ≥ 0, ∀θσ ∈

[
0,

π

3

]
(8)

with f∗ = f−1(θσ).
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By duality and transport, one can built the yield surface in the space of "the ef-
fective transformation strain of martensite" εm [17]. This concept of εm constitutes the
average transformation strain of the different variants averaged over a representative vol-
ume containing multiple grains, after material has formed on allowable microstructure.

By definition, the total strain tensor ε can be written as :

ε = εe + εmz, z ∈ [0, 1],

where z constitutes the volume fraction of martensite inside the mother phase (austenite)
and εe the elastic deformation.

For proportional loadings, the experiments show that the phase transformation
strain rate is normal to the yield surface F (σ) [5] (Fig. 1).

Fig. 1. Experimental phase transformation onset stress under biaxial proportional
loading and modeling. Experimental proof of the normality rule (Cu Al Be (no1):
� tube for tension-compression internal pressure Cu Al Be (no2), • cube for bi-
compression

Thus, one can assume that εm(σ) admits a potential (Fσ) > 0 which means

εm = γF
′
(σ) (9)

The calculations of [9] show that
εm

γ
= f(xσ)Nσ + a(x)f

′
(xσ)N⊥

σ (10)

where
N⊥

σ = (1− ρ2
σ)eRσ

1 + ρσeRσ
2 (11)

and γ is the maximum shear phase transformation strain.
eRσ
1 and eRσ

2 are two elementary deviatoric associated tensors to σ by

eRσ
1 = Rσe1R

T
σ and eRσ

2 = Rσe2R
T
σ (12)
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where Rσ is the rotation matrix transforming σ in its diagonal form.

e1 =


−1
2

0 0

0
−1
2

0
0 0 0

 ; e2 =


√

3
2

0 0

0
−
√

3
2

0
0 0 0

 ;

a(x) =
dx

dρ

(
1− |ρ(x)|2

)1/2
=


3(1− x2)1/2 if x = yσ

−1 if x = θσ

(1− x2)1/2 if x = ρσ

(13)

and

εm

γ
=


f(yσ)Nσ + 3f

′
(yσ)(2N2

σ − yσNσ − 1) for x = yσ

f(θσ)Nσ − f
′
(θσ)N⊥

σ for x = θσ

f(ρσ)Nσ + (1− ρσ)1/2f
′
(ρσ)N⊥

σ for x = ρσ

(14)

Under the hypothesis providing the univocal correspondance between σ and εm, one can
write the equation of the phase transformation surface as ([6])

H(εm) = εmh(xε) = γ (15)

where
εm = κ |εm| (16)

and

h(xε) =
κ−2

δf (xσ)
, (17)

with

δf (xσ) =
(
|f(xσ)|2 + |a(xσ)|2

∣∣∣f ′
(xσ)

∣∣∣2)1/2

. (18)

As applications, we consider two experimental series concerning Cu - Al - Be and
NiTi alloys, whose yield values are given (in Mpa) in Table 1 and Table 2.

Table 1

I 1 2 3 4 5 6 7 8 9 10 11

σ1 87.14 91.43 105.71 45.71 0 −45.71 −105.71 −100 −65.71 0 51.43

σ2 0 42.86 102.86 100 80 60 0 −48.57 −91.43 −100 −48.57

Table 2

I 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σzz 400 390 310 220 0 −210 −370 −520 −530 −520 −430 −200 30 250 370

σzθ 0 150 240 340 440 420 330 220 0 −150 −340 −400 −370 −300 −150
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Concerning the Cu - Al - Be alloy, the yield points are obtained by bi - compression
tests on cubes and tension (compression) - internal pressure on tubes (see [5])

Cu - Al - Be : σi =

σ1 0 0
0 σ2 0
0 0 0

 , 1 ≤ i ≤ n = 11.

The stress numerical values are given in MPA.
As for the Ni - Ti alloy, the tension (compression) - torsion tests on tubes as per-

formed by [8] give the following yield values :

NiTi : σi =

0 0 0
0 0 σzθ

0 σzθ σzz

 , 1 ≤ i ≤ n = 15.

We will use the shape function f which has been introduced in [5], namely

f(yσ) = cos
(

1
3

arccos(1− a(1− yσ))
)

. (19)

One shows that F is convex ([9]) if and only if

0 ≤ a ≤ 1. (20)

The Fig. 1 exhibits the yield surface in the stress space and the Fig. 2 its dual in
the εm space for CuAlBe alloy.

Fig. 2. Yield surface in the phase transformation strain dual space εm

The Fig. 3 shows the yield surface in the stress space and the Fig. 4 its dual in the
εm space for Ni - Ti alloys.
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Fig. 3. Experimental phase transformation onset stress under
tension(compression)-torsion biaxial proportional loading and modeling (NiTi,
experimental points, - modeling)

Fig. 4. Yield surface in the phase transformation strain dual space εm
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The yield stress measurements on the two alloys show that a model integrating the
assymetry between tension and compression is totally necessary.

For copper based alloys and surely NiTi, on loading the phase transformation is not
complete and the detection of associated yield points not sure.

As the detection of the yield values for the reverse phase transformation (M → A)
are also very delicate, the analysis on unloading is not made.

3. CONCLUSION

A thermomechanical modeling of shape memory alloys is performed here for tri -
dimensional loadings (cf. also [15]). This description includes the "stress differential effect"
by integrating the assymetry between tension and compression in its prediction.

Some basic applications are discussed. For the description of the yield surface de-
termination in the 2D situations, one moves classicaly from the circles for J2 model, to
convex surfaces for (J2, J3) models. A surface transport can be made between the space
of "effective transformation strain of martensite" εm and the space of stress ([6]) and vice
- versa.
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