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Abstract. This article presents some results on the determination of the vibration shape
function of a multiple cracked elastic beam element, which is modeled as an assembly of
intact sub-segments connected by massless rotational springs. Algorithms and computer
programs to analyze changes of natural mode shapes of multiple cracked beams have
been carried out. Numerical analysis of natural mode shapes of cracked simple support
beams using the obtained expression shows a good agreement in comparison with the
well-known analytical methods. The methodology approach and results presented in this
article are new and basic for building an efficient method to identify cracks in beam
structures using wavelet analysis of mode shapes.
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1. INTRODUCTION

Current researches on the identification of cracks or damages in a structure us-
ing non-destructive test method have been developed primarily based on the dynamic
characteristics of the structure such as natural frequency, mode shapes, response spec-
trum function [1–11]. These dynamic characteristics are normally determined by analyt-
ical method, semi-analytical method, finite element method (FEM), and dynamic stiff-
ness method (DSM). The analytical and semi-analytical methods are limited in a simple
beam [1, 5, 6] and not applicable for a complex structure such as multi-span continuous
beam or frame structure. Therefore, identification of dynamic characteristics of a structure
is mainly based on the FEM and the DSM:

- In the FEM, a multiple-cracked beam element has been modeled as an assembly of
intact sub-segments connected by massless rotational springs at the locations of cracks or
damages. Sato [7] has developed a combination of the transfer matrix method (TMM) and
the FEM for vibration analysis of a beam with abrupt changes of cross-section. Gounaris
and Dimarogonas [8] have conjugated the FEM with the idea of a compliance matrix to
develop a specific technique for vibration analysis of a cracked beam. Zheng and Kessis-
soglou [10] has used the overall additional flexibility matrix instead of the local additional
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flexibility matrix to obtain the total flexibility matrix of a cracked beam. FEM is an ap-
proximate method in comparison with the analytical method, especially with high natural
frequencies and mode shapes [2, 12].

- The DSM is used to overcome the above limitations of the FEM and extend the
advantages of the analytical method to a more complex structure other than beams [12].
In the DSM, a multiple-cracked beam element is also divided into intact sub-segments
and joined at crack locations [13]. Combining the DSM and the TMM with the references
of [2, 14], the authors have built straight 3D multiple cracked bar element under axial
compression, tension, bending and twisting. The authors have analyzed the change of
natural frequencies of structures depending of quantities, locations and depths of cracks
[2, 9]. The authors also determined the quantities, locations and depths of cracks in a
multiple-cracked beam based on natural frequencies measured from experiments [2, 15].
One advantage of the method is that the numbers of input parameters may be less than
the number of parameters found out on solving extreme value problem. However, mode
shapes corresponding to the measured natural frequencies have not been found yet. To
determine the mode shapes, it is necessary to find the shape functions for the multiple-
cracked beam with arbitrary depths and positions of cracks with an arbitrary coefficient
of damping. This issue is quite complex and has not been published.

This paper presents some results on the determination of shape functions of a mul-
tiple cracked elastic beam subjected to bending, which is modeled as intact sub-segments
joined together at the crack positions by rotation spring. Numerical analysis of the shape
function of the cracked simple support beams using the obtained expression shows a good
agreement in comparison with the well-known analytical methods. A computer program
for analyzing changes in mode shapes of a beam structure with multiple-cracked elements
is built. The proposed method and the obtained results are new and they are the basis for
determination of cracks in the structures using wavelet analysis of mode shapes.

2. SHAPE FUNCTION OF INTACT LATERAL BEAM

According to FEM as described in [16], the shape function of intact lateral beam
(Fig. 1) is the solution of static equilibrium differential equation without external forces
as follows

EIz

d4w

dx4
= 0 (1)
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Fig. 1. Modeling of intact lateral beam
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The boundary conditions are

w (0) = 1 ; w′ (0) = 0 ; w (L) = 0 ; w′ (L) = 0 (2-a)

w (0) = 0 ; w′ (0) = 1 ; w (L) = 0 ; w′ (L) = 0 (2-b)

w (0) = 0 ; w′ (0) = 0 ; w (L) = 1 ; w′ (L) = 0 (2-c)

w (0) = 0 ; w′ (0) = 0 ; w (L) = 0 ; w′ (L) = 1 (2-d)

The solutions of Eq. (1) with boundary conditions (2a-d) are the shape functions
N1 − N4, called Hermit functions

N1 (x) = 1 − 3
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)2
+ 2
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Let boundary values be u1; u2; u3; u4 at both end nodes, the transverse displacement
of beam at the section x is

w (x) = N1 (x)u1 + N2 (x)u2 + N3 (x)u3 + N4 (x)u4 (4)

According to DSM developed by Leung [12], shape functions of the intact beam are
solutions of the undamping free vibration equation

EIz

d4Φ(x, ω)

dx4
− ρAω2Φ(x, ω) = 0 (5)

Solutions of Eq. (5) with boundary conditions (2a-d) are shape functions N1 − N4

as follows
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Where λ =
4

√

ω2
ρAL4

EI
is the dynamic parameter; ω is the circular frequency (rad/s);

Fi(i = 1, ..., 6) are trigonometric functions

F1 = −λ(sinh λ − sinλ)/δ ; F2 = −λ(coshλ sinλ − sinhλ cosλ)/δ ;
F3 = −λ2(coshλ − cos λ)/δ; F4 = λ2(sinh λ sinλ)/δ ; F5 = λ3(sinh λ + sinλ)/δ ;
F6 = −λ3(coshλ sinλ + sinh λ cosλ)

/

δ ; δ = cosh λ cosλ − 1

When ω = 0 corresponding to the static problem, we receive the Hermit shape
functions (3) from the shape functions (6).

In the case of intact beam, the determination of shape functions is the first step to
obtain the dynamic stiffness matrix of beam subject to bending. In the case of multiple
cracked beam, it will be modeled by rotation spring in the position of the crack, the
determination of shape function is more complicated problem. In this case, it is necessary
to base on the dynamic stiffness matrix obtained by the TMM.
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3. DYNAMIC STIFFNESS MATRIX OF A MULTIPLE CRACKED BEAM

Let consider a beam of length L subjected to bending on surface 0xy, cross-section
area A = b×h, moment of inertia I and Young’s modulus E, mass density ρ. Free vibration
of the beam is described by the following equation [9]

d4Φ(x, ω)

dx4
− λ4Φ(x, ω) = 0 (7)

Where Φ(x, ω) denotes complex amplitude of vibration; λ = 4

√

ω2
ρA

ÊIz

(

1 −
iµ2

ω

)

;

i =
√
−1 is dynamic parameter; Ê = E (1 + iµ1ω) is complex modulus; µ1, µ2 are the

material and viscous damping coefficients, respectively; ω is circular frequency (rad/s).
When λ = 0 corresponding to ω = 0 it is a static deformation.

Suppose that the beam has cracks at positions xj with the depths of aj, j =
1, 2, . . . , n, where x0 = 0 < x1 < x2 < . . . < xn < xn+1 = L (Fig. 2). The cracks
are modeled as rotational springs with the stiffness kz

j calculated by converting formu-

las [17, 18].
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Fig. 2. Modeling of a multiple-cracked beam element

The general solution of Eq. (7) for the sub-segment j = 1, 2, . . . , n + 1 with x ∈
(xj−1, xj) has the form of

Φj(x) = K1(λx)Z+

j−1,1 +
K2(λx)

λ
Z+

j−1,2 +
K4(λx)

EIzλ3
Z+

j−1,3 −
K3(λx)

EIzλ2
Z+

j−1,4 ; x = x− xj−1 (8)

Where Ki(x) are Krylov functions and Z+
j−1,i are initial parameters of this sub-

segment

K1(x) =
cosh x + cos x

2
; K3(x) =

cosh x − cos x

2
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sinh x + sinx

2
; K4(x) =

sinh x − sin x

2
˘
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+

j−1,3, Z
+

j−1,4

¯T
=

“

Φ(xj−1 + 0);Φ′(xj−1 + 0); ÊIzΦ
′′′(xj−1 + 0); −ÊIzΦ

′′(xj−1 + 0)
”T

By using the combination of dynamic stiffness and transfer matrix methods, we
yield [9]

[P1 P2 P3 P4]
T = [Ke] . [u1 u2 u3 u4]

T (9)

The matrix [Ke]4×4 is called dynamic stiffness matrix for the multiple cracked beam.
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4. DETERMINATION OF SHAPE FUNCTIONS AND MODE SHAPES

OF MULTIPLE CRACKED BEAM ELEMENTS

4.1. Shape functions

Using the general solution (8) and Eq. (9), we can determine the free vibration shape
function of multiple cracked beam elements as following:

a) In order to find the shape function N1, we determine the nodal forces P1 and P2

based on Eq. (9) with the boundary condition (2-a)
(

P1

P2

)

=

(

k11 k12 k13 k14

k21 k22 k23 k24

)

(

1 0 0 0
)T

=

(

k11

k21

)

(10)

The initial parameters of first sub-segment (j = 1) are

Z+
0 =

{

Z+
1 (0) = 1; Z+

2 (0) = 0; Z+
3 (0) = k11; Z+

4 (0) = k21

}

(11)

Therefore, the shape function N1 for the first sub-segment is

N
(1)
1 = K1(λx) +

K4(λx)

ÊIzλ3
k11 −

K3(λx)

ÊIzλ2
k21 (12)

By using TMM, we get the shape function N1 for the next sub-segment [9]. In the
case of intact beam, the shape function has the formula

N1 = K1(λx) +
K̃1K̃2 − K̃3K̃4

K̃2
3 − K̃2K̃4

K4(λx)−
K̃2

2 − K̃1K̃3

K̃2
3 − K̃2K̃4

K3(λx)

where K̃i = Ki(λL). When damping coefficients are zero µ1 = µ2 = 0, one will get the
shape function N1 following the expression (6).

b) To find the shape function N2, we determine the nodal forces P1 and P2 based
on Eq. (9) with the boundary condition (2-b)

(
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)

=

(

k11 k12 k13 k14
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)

(

0 1 0 0
)T

=

(
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)

(13)

Also, the initial parameters of the first sub-segment (j = 1) are

Z+
0 =

{

Z+
1 (0) = 0; Z+

2 (0) = 1; Z+
3 (0) = k12; Z+

4 (0) = k22

}

(14)

Then the shape function N2 for the first sub-segment is

N
(1)
2 =

K2(λx)

λ
+

K4(λx)

ÊIzλ3
k12 −

K3(λx)

ÊIzλ2
k22 (15)

Similarly, we get the shape function N2 for the next sub-segment. In the case of
intact beam, the shape function has the formula

N2 =
K2(λx)

λ
+

K̃2
2 − K̃1K̃3

λ(K̃2
3 − K̃2K̃4)

K4(λx)−
K̃2K̃3 − K̃1K̃4

λ(K̃2
3 − K̃2K̃4)

K3(λx)

When damping coefficients are zero µ1 = µ2 = 0, one will get the shape function
N2 following the expression (6).
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c) To find the shape function N3, we determine the nodal forces P1 and P2 based
on Eq. (9) with the boundary condition (2-c)

(

P1

P2

)

=

(

k11 k12 k13 k14

k21 k22 k23 k24

)

(

0 0 1 0
)T

=

(

k13

k23

)

(16)

The initial parameters of the first sub-segment (j = 1) are

Z+
0 =

{

Z+
1 (0) = 0; Z+

2 (0) = 0; Z+
3 (0) = k13; Z+

4 (0) = k23

}

(17)

So, the shape function N3 for the first sub-segment is

N
(1)
3 =

K4(λx)

ÊIzλ3
k13 −

K3(λx)

ÊIzλ2
k23 (18)

Similarly, we get the shape function N3 for the next sub-segment. In case of the
intact beam, the shape function has the formula

N3 = −
K̃2

K̃2
3 − K̃2K̃4

K4(λx) +
K̃3

K̃2
3 − K̃2K̃4

K3(λx)

When damping coefficients are zero µ1 = µ2 = 0, one will get the shape function
N3 following the expression (6).

d) To find the shape function N4, we determine the nodal forces P1 and P2 based
on Eq. (14) with the boundary condition (2-d)

(

P1

P2

)

=

(

k11 k12 k13 k14

k21 k22 k23 k24

)

(

0 0 0 1
)T

=

(

k14
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)

(19)

The initial parameters of the first sub-segment (j = 1) are

Z+
0 =

{

Z+
1 (0) = 0; Z+

2 (0) = 0; Z+
3 (0) = k14; Z+

4 (0) = k24

}

(20)

The shape function N4 for the first sub-segment is

N
(1)
4 =

K4(λx)

ÊIzλ3
k14 −

K3(λx)

ÊIzλ2
k24 (21)

Similarly, we get the shape function N4 for the next sub-segment. In case of the
intact beam, the shape function has the formula

N4 =
K̃3

λ(K̃2
3 − K̃2K̃4)

K4(λx)−
K̃4

λ(K̃2
3 − K̃2K̃4)

K3(λx)

When damping coefficients are zero µ1 = µ2 = 0, one will get the shape function
N4 following expression (6).

4.2. Mode shapes

The dynamic stiffness matrices of structure K̂ (ω) are assembled similarly as FEM
from the dynamic stiffness matrices [Ke] of each beam elements. Thus, the problem of free
vibration of structures with the multiple-cracked bar elements leads to the determination
of natural frequencies and mode shapes from the following equation

K̂(ω)U = 0 (22)
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Where the natural frequencies ωj are determined from the equation:

det K̂ (ω) = 0 (23)

The nodal displacements U corresponding to the natural frequencies ωj will be
determined by equations (22). Having obtained the nodal displacements u1; u2; u3; u4, we
receive the mode shapes of the structure with the multiple-cracked beam elements from
the expression (4).

5. NUMERICAL RESULTS AND DISCUSSION

5.1. Simple support beam

Let us consider a simple support beam with the following parameters: beam length
L = 0.235 m; cross-section area A = b × h = 0.006 × 0.0254 m2; Young’s modulus E =
2.06 × 1011 N/m2, the Poisson coefficient ν = 0.35 and material mass density ρ = 7800
kg/m3 [19].
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Fig. 3. The comparison of the first two mode shapes of the simple support beam
with three cracks at positions x = 0.2L, 0.5L, 0.7L from the left node

Fig. 3a-b show two first mode shapes of the simple support beam with three cracks
at positions: x = 0.2L, 0.5L, 0.7L from the left node end of the beam with the same relative
crack depth of 50% calculated by the analytical method (line - - -, [19]) and the proposed
method (line —). These figures present a good agreement between the numerical results
obtained by the proposed method and the well-known analytical methods.

5.2. Multiple-span continuous beam

Let consider the multiple-span continuous beam with the following parameters: L1 =
0.8 m, L2 = 1.1 m, L3 = 0.6 m, cross-section area b×h = 0.04×0.02 m2, Young’s modulus
E = 2.1×1011 (N/m2), the Poisson coefficient ν = 0.3 and material mass density ρ = 7800
kg/m3 in Fig. 4.

Figs. 5, 6, 7 show the changes in the first three mode shapes (the differences between
the mode shapes obtained from cracked and uncracked beams) of the structure with one



320 Tran Van Lien, Trinh Anh Hao

b

h

L1=0.8m L2=1.1m L3=0.6m

Fig. 4. Multiple-span continuous cracked beam

crack, the depth of crack ranges from 10% to 60% and the positions of cracks are as
followings:

- At 0.2 m (Figs. 5a, 6a, 7a), 0.4 m (Figs. 5b, 6b, 7b), 0.6 m (Figs. 5c, 6c, 7c) from
the left node of the first span;

- At 0.2 m (Figs. 5d, 6d, 7d), 0.5 m (Figs. 5e, 6e, 7e), 0.8 m (Figs. 5f, 6f, 7f) from
the left node of the second span;

- At 0.1 m (Figs. 5g, 6g, 7g), 0.3 m (Figs. 5h, 6h, 7h), 0.5 m (Figs. 5i, 6i, 7i) from
the left node of the third span.
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Fig. 5. The comparison of first mode shapes of the multi-span continuous beam
with one crack and variable position

Fig. 8 shows the changes in the first three mode shapes of multiple cracked multiple-
span continuous beam when the number of cracks increases from 1 to 6 with an equidistance
0.15 m on the second span and with invariable crack depth of 30%.
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Fig. 6. The comparison of second mode shapes of the multi-span continuous
beam with one crack and variable position
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Fig. 7. The comparison of third mode shapes of the multi-span continuous beam
with one crack and variable position
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Fig. 8. The comparison of the first three mode shapes of multi-span continuous
beam with the number of cracks increases from 1 to 6 with equidistance 0.15 m

on the second span and with invariable crack depth of 30%

We have remarks:
a) At crack positions, the differences of the mode shape have bumpy line with the

peak on the same crack position, but it is not maximum value (Figs. 5g, 6c, 6d, 6g, 7c, 7e,
7f, 7g, 7i).

b) The differences of the mode shapes increase with the increase of the crack depth.
c) At the cracked span, the mode shapes change suddenly, but on the other uncracked

spans the mode shapes change smoothly, it is also relative to change large scale on adjacent
spans.

d) There are some positions in which the cracks do not influence the mode shapes,
for example: the crack at position of 0.2 m causes the change in the first two mode shapes
but does not cause the change in the third mode shape (Fig. 7a). Thus, these positions
of the cracks are called the invariable point of mode shape to discriminate between them
with the fixed position in which the mode shapes have a zero amplitude value.

e) When gradually increasing the number of cracks with equidistance, then the
change amplitude of the mode shape also increases but the magnitude are not necessarily
the largest (Fig. 8).

6. CONCLUSION

The article presents some results on the determination of vibration shape func-
tions of a multiple cracked elastic beam element, where the multiple cracked beam ele-
ment is modeled as an assembly of intact sub-segments connected by massless rotational
springs. Also, algorithms and computer programs are established for analyzing changes
in mode shapes of multiple cracked multi-span continuous beams. Numerical analysis of
mode shapes of the cracked simple support beams using the proposed method shows a
good agreement in comparison with the well-known analytical methods. The results re-
ceived are new, reliable and can be used as a basis for building an efficient method to
identify cracks in beam structure using wavelet analysis of mode shapes.
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