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SOLVING NONLINEAR STABILITY PROBLEM OF
IMPERFECT FUNCTIONALLY GRADED CIRCULAR

CYLINDRICAL SHELLS UNDER AXIAL
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Abstract. This paper presents an analytical approach to analyze the nonlinear stability
of thin closed circular cylindrical shells under axial compression with material proper-
ties varying smoothly along the thickness in the power and exponential distribution laws.
Equilibrium and compatibility equations are obtained by using Donnel shell theory taking
into account the geometrical nonlinearity in von Karman and initial geometrical imper-
fection. Equations to find the critical load and the load-deflection curve are established
by Galerkin’s method. Effects of buckling modes, of imperfection, of dimensional param-
eters and of volume fraction indexes to buckling loads and postbuckling load-deflection
curves of cylindrical shells are investigated. In case of perfect cylindrical shell, the present
results coincide with the ones of the paper [13] which were solved by Ritz energy method.

Key words: Cylindrical shells, non - linear stability, functionally graded materials,
imperfect.

1. INTRODUCTION

The structures made of functionally graded materials (FGMs) including cylindrical
shell structure play an important role in modern industries [1]. Therefore, the research on
strength and stability of FGM cylindrical shells are interested very much by scientists. In
2002, Shen [2] solved the postbuckling problem of axially - loaded FGM cylindrical shells in
the thermal environments by perturbation technique. By the same method, Shen and Noda
[3] analyzed the postbuckling of FGM cylindrical shells under combined axial and radial
mechanical loads in the thermal environments. Shahsiah and Eslami [4] based on improved
Donnell equations considered FG cylindrical shell themal instability. Wu et al. [5] studied
the thermoelastic stability of FG cylindrical shell with the geometrical linearity. Geomet-
rical nonlinear analysis of FG shells was considered by Zhao and Liew [6]. Investigation on
buckling of imperfect FG cylindrical shells subjected to axial compression also was pre-
sented by Huang and Han [7], but with the linear buckling shape (sin(mπx/L). sin(ny/R)).
Using the 2D higher - order deformation theory, Matsugana [8] solved the problem on free
vibration and stability of FG circular cylindrical shells. Shen et al. [9] given the results of
postbuckling problem of internal pressure loaded FGM cylindrical shell surrounded by an
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elastic medium according to the third order shear deformation theory. Research on non-
linear postbuckling of eccentrically stiffened FGM plates and shallow shells was reported
by Dao Huy Bich et al. [10]. Stability analysis of imperfect FGM cylindrical panels under
the mechanical and thermal load, taking into account the geometrical nonlinearity, there
were the results of Duc N. D., Tung H. V. [11] and Dao Van Dung, Le Kha Hoa [12].

In recent years (2009 - 2010) Huang and Han [13, 14, 15], by Ritz’s method, studied
nonlinear elastic buckling and postbuckling of perfect FGM cylindrical shells subjected to
axial compressive load, torsion load or radial load. They proposed analytical expression of
deflection including the linear buckling shape (sin(mπx/L). sin(ny/R)) and the nonlinear
buckling shape (sin2(mπx/L)). This is an interesting different point from the previous
papers in literature.

Following this idea, the present paper has developed the results of the paper [13]
considering the buckling and postbuckling of axially compressed initial imperfect FGM
cylindrical shells with geometrical nonlinearity. In addition, we assume that material prop-
erties such as E and ν change in two distribution laws: Exponential function and Power
function of z. Applying Galerkin’s method have been received the equations for finding
the critical buckling load and describing postbuckling load - deflection curve. The effects
of geometric parameters, buckling modes, the ratio of volume on buckling load and post-
buckling are considered. In case of the perfect cylindrical shell, the gained results return
to the ones of [13].

2. FGM CYLINDRICAL SHELLS AND FUNDAMENTAL EQUATIONS

2.1. FGM Cylindrical shells

Consider a FGM cylindrical thin circular shell with middle surface radius R, thick-
ness h and length L (Fig. 1) under axial compression. Assume that two butt - ends of

 

Fig. 1. FGM cylindrical shells

cylindrical shell are only deformed in their planes and they still are circular [16]. The
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FGM cylindrical shell is made from a mixture of ceramic and metal. We choose the cylin-
drical coordinate (x, θ, z); y = Rθ so that the origin O is located at the left end and on the
middle surface of shell. The coordinate axes x, y and z are respectively in the longitudinal,
circumferential and inward radial directions (−h/2 ≤ z ≤ h/2). The Young’s modulus and
Poisson’s ratio of material are assumed to be varied smoothly along the thickness of shell
with the power distribution law as [13]

E = E(z) = Em + (Ec − Em)
(

2z + h

2h

)k

≡ Em + Ecmrk,

ν = ν(z) = νm + (νc − νm)
(

2z + h

2h

)k1

≡ νm + νcmrk1 ,

Ecm = Ec − Em, r =
2z + h

2h
, νcm = νc − νm, k ≥ 0, k1 ≥ 0,

(1)

or with the exponential distribution law as [17, 18]

E = E(z) = Ece
−

1
2

 
ln

Ec

Em

! 
1−

2z

h

!
, ν = ν(z) = νce

−
1
2

 
ln

νc

νm

! 
1−

2z

h

!
(2)

The quantities Em, Ec and νm, νc are Young’s moduli and Poisson’s ratios corre-
sponding to metal (m) and ceramic (c).

2.2. Fundamental relations and governing equations

According to [7, 19], the nonlinear relationship between the strain components on
the middle surface of imperfect cylindrical shell with the a deflection in von Karman’s
sense is as follows

ε0
x = u,x +

1
2
w2

,x + w,xw∗
,x

ε0
y = v,y −

w

R
+

1
2
w2

,y + w,yw
∗
,y

γ0
xy = u,y + v,x + w,xw,y + w,xw∗

,y + w,yw
∗
,x

(3)

where u = u(x, y), v = v(x, y), w = (x, y) are the displacements along x, y and z axes
respectively. The quantity w∗ = w∗(x, y) is an initial imperfection of shell and assumed to
be much smaller than thickness h of shell.

The strain components across the shell thickness at a distance z from the mid -
plane are of the form

εx = ε0
x + zkx, εy = ε0

y + zky

γxy = γ0
xy + 2zkxy

kx = −w,xx, ky = −w,yy, kxy = −w,xy

(4)

The stress - strain relationship of cylindrical shell is defined by Hookian law, as

(σx, σy) =
E

1− ν2
[(εx, εy) + ν (εy, εx)] , σxy =

E

2 (1 + ν)
γxy. (5)
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The force and moment resultants are calculated by

{(Nx, Ny, Nxy) , (Mx,My,Mxy)} =

h/2∫
−h/2

{σx, σy, σxy} (1, z) dz. (6)

Substituting Eq. (4) into Eq. (5) and then into Eq. (6), we obtain
Nx

Ny

Nxy

Mx

My

Mxy

 =


A10 A20 0 A11 A21 0
A20 A10 0 A21 A11 0
0 0 A30 0 0 A31

A11 A21 0 A12 A22 0
A21 A11 0 A22 A12 0
0 0 A31 0 0 A32




ε0
x

ε0
y

γ0
xy

kx

ky

2kxy

 (7)

where the stiffness coefficients Aij (i = 1, 2, 3, j = 0, 1, 2) are calculated by the formu-
lae

A1j =

h/2∫
−h/2

E(z)
1− ν2(z)

zjdz, A2j =

h/2∫
−h/2

E(z)ν(z)
1− ν2(z)

zjdz,

A3j =

h/2∫
−h/2

E(z)
2 [1 + ν(z)]

zjdz =
1
2

(A1j −A2j).

(8)

If the material properties vary in the power law then the coefficients Aij are
determined by the analytical expressions in the Appendix. If the material properties vary
in the exponential law then the coefficients Aij are determined directly from the formulae
(8).

The equilibrium equations of imperfect cylindrical shell are derived from [7]

Nx,x + Nxy,y = 0, Nxy,x + Ny,y = 0 (9)

Mx,xx + 2Mxy,xy + My,yy +
Ny

R
+ Nx

(
w,xx + w∗

,xx

)
+

+2Nxy

(
w,xy + w∗

,xy

)
+ Ny

(
w,yy + w∗

,yy

)
= 0.

(10)

Assuming the quadratic terms of w∗ to be omitted, the geometrical compatibility
equation deduced from (3) and (4), is

ε0
x,yy + εy,xx − γ0

xy,xy =
1
R

w,xx + w2
,xy − w,xxw,yy+

+ 2w,xyw
∗
,xy − w,xxw∗

,yy − w,yyw
∗
,xx.

(11)

Introducing Airy’s stress function ϕ(x, y) so that

Nx = ϕ,yy, Ny = ϕ,xx, Nxy = −ϕ,xy. (12)

It is easy seen that the equations (9) are automatically satisfied.



Solving nonlinear stability problem of imperfect functionally graded circular cylindrical shells ... 143

The strain components reversely in terms of stress function and deflection are found
from Eqs. (7) and (12)

ε0
x = J0 (A10ϕ,yy −A20ϕ,xx + J1w,xx + J2w,yy) ,

ε0
y = J0 (A10ϕ,xx −A20ϕ,yy + J1w,yy + J2w,xx) ,

γ0
xy =

1
A30

(2A31w,xy − ϕ,xy) ,

(13)

where

J0 = 1/
(
A2

10 −A2
20

)
, J1 = A10A11 −A20A21, J2 = A10A21 −A20A11. (14)

Introducing Eq. (13) into Eq. (11) we get

∇4ϕ + C1∇4w − C2

[
w2

,xy
− w,xxw,yy −

1
R

w,xx + 2w,xyw
∗
,xy − w,xxw∗

,yy − w,yyw
∗
,xx

]
= 0

(15)
where

C1 = J2/A10, C2 = 1/(A10J0). (16)
To transform Eq. (10), firstly, substituting Eq. (13) into Eq. (7) for finding Mij and

then substituting again Mij into Eq. (10), we receive the second governing equation

C3∇4ϕ+
1
R

ϕ,xx+C4∇4w+ϕ,yy(w,xx+w∗
,xx)−2ϕ,xy(w,xy+w∗

,xy)+ϕ,xx(w,yy+w∗
,yy) = 0 (17)

where
C3 = J0J2, C4 = J0(A11J1 + A21J2)−A12. (18)

Two equations (15) and (17) are the governing equations used to investigate the
nonlinear stability of imperfect FGM cylindrical shells.

Remarks
If R → ∞, the equation (15) and (17) become the basic equations to analyze the

stability of imperfect FGM plates.
In case w∗ = 0, from (15) and (17) we obtain the governing equations for perfect

cylindrical shells in [13].

3. SOLUTION OF THE PROBLEM

Based on [13, 16], the deflection w and initial imperfection w∗ are chosen in the
forms

w = f(sinαx sinβy + F2 sin2 αx + F0),

w∗ = f∗(sinαx sinβy + F2 sin2 αx + F0),
(19)

in which α = mπ/L, β = n/R and m,n are the number of half waves along the x and the
number of waves along the y directions respectively. The first term of w (or w∗ ) in (19)
represents a linear buckling shape, and the second term - a nonlinear buckling shape, and
the third term - a radial displacement of points belonging to two butt - ends x = 0 and
x = L.
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As can be seen that the simply supported boundary condition w = 0, ∂2w/∂x2 = 0
at x = 0, x = L is fulfilled on the average sense as

2πR∫
0

L∫
0

∂w

∂x
dxdy = 0,

2πR∫
0

L∫
0

∂

∂x

(
∂2w

∂x2

)
dxdy = 0.

Substituting of Eq. (19) into Eq. (15) yields

∇4ϕ = B01 cos 2αx + B02 cos 2βy + B03 sinαx sinβy + B04 sin 3αx sinβy (20)

in which
B01 = (8C1α

4 − 2
R

C2α
2)fF2 +

1
2
C2α

2β2
[
f2 + 2ff∗

]
,

B02 =
1
2
C2α

2β2
[
f2 + 2ff∗

]
,

B03 =
[

1
R

C2α
2 − C1(α2 + β2)2

]
f − C2α

2β2F2

[
f2 + 2ff∗

]
,

B04 = C2α
2β2F2

[
f2 + 2ff∗

]
.

The general solution of this equation is given by
ϕ = B1 cos 2αx + B2 cos 2βy + B3 sinαx sinβy+

+ B4 sin 3αx sinβy − 1
2
σ0xhy2 − 1

2
σ0yhx2,

(21)

where σ0x and σ0y are the negative average longitudinal stress and circumferential stress
respectively, and

B1 =
B01

16α4
, B2 =

B02

16β4
, B3 =

B03

(α2 + β2)2
, B4 =

B04

(9α2 + β2)2
,

or
B1 = a1F2f + a2(f2 + 2ff∗), B2 = a3(f2 + 2ff∗),

B3 = a4F2(f2 + 2ff∗) + a5f, B4 = a6F2(f2 + 2ff∗),
in which

a1 =
1
8
(4C1 −

C2

Rα2
), a2 =

C2β
2

32α2
, a3 =

C2α
2

32β2
,

a4 = − C2α
2β2

(α2 + β2)2
, a5 =

C2α
2

R(α2 + β2)2
− C1, a6 =

C2α
2β2

(9α2 + β2)2
.

(22)

In order to establish a load - deflection curve, first of all introducing w,w∗ and ϕ
into the left side of Eq. (17) denoted by φ1 then applying Galerkin’s method

2πR∫
0

L∫
0

φ1dxdy = 0,

2πR∫
0

L∫
0

φ1sinαx sinβxdxdy = 0,

2πR∫
0

L∫
0

φ1 sin2 αxdxdy = 0 (23)

lead to
σ0y = 0. (24)
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{[
(α2 + β2)2C3 −

1
R

α2

]
[a4F2f(f + 2f∗) + a5f ] + C4f(α2 + β2)2

}
− (f + f∗)α2β2.

.

{
2 [a1F2f+(a2+a3)f(f+2f∗)] + F2 [(a6 − a4)F2f(f + 2f∗)− a5f ]− h(

σ0x

β2
+

σ0y

α2
)
}

=0
(25)

2
R

σ0yh =
{

(16α4C3 −
4
R

α2)a2f(f + 2f∗) + F2f

[
a1(16α4C3 −

4
R

α2)− 8α4C4

]}
+

+ (f + f∗)α2β2 {[(a6 − a4)F2f(f + 2f∗)− a5f ] − 2σ0xhF2/β2
}

.

(26)

In addition to three equations (24, 25, 26) the cylindrical shell must also satisfy the
circumferential closed condition [13, 16] as

2πR∫
0

L∫
0

v,ydxdy = 0.

Using Eqs. (3) and (13), this integral becomes

2πR∫
0

L∫
0

{
J0(A10ϕ,xx −A20ϕ,yy + J2w,xx + J1w,yy) +

w

R
− 1

2
w2

,y − w,yw
∗
,y

}
dxdy = 0.

After some calculations we get

σ0y =
1

A10h

[
2fF0 + fF2

2J0R
− β2

8J0
(f2 + 2ff∗) + A20σ0xh

]
. (27)

Because of condition (24), Eqs. (25), (26) and (27) lead to{[
(α2+β2)2C3−

1
R

α2

]
[a4F2f(f+2f∗) + a5f ] + C4f(α2 + β2)2

}
− (f + f∗)α2β2.

.

{
2 [a1F2f+(a2 + a3)f(f + 2f∗)]+F2 [(a6 − a4)F2f(f + 2f∗)− a5f ]−h

σ0x

β2

}
= 0.

(28)

{
(16α4C3 −

4
R

α2)a2f(f + 2f∗) + F2f

[
a1(16α4C3 −

4
R

α2)− 8α4C4

]}
+

+ (f + f∗)α2β2 {[(a6 − a4)F2f(f + 2f∗)− a5f ] − 2σ0xhF2/β2
}

= 0.

(29)

[
2fF0 + fF2

2J0R
− β2

8J0
(f2 + 2ff∗) + A20σ0xh

]
= 0. (30)

Two equations (28) and (29) are the governing equations used to find the critical
buckling load and analyse the postbuckling load - deflection curves for imperfect FGM
cylindrical shells under axial compression. The equation (30) is used to determine the
coefficient F0. The equations (28) and (29) will have a more convenient form if the following
nondimensional parameters are introduced

ξ1 =
f

h
, ξ2 =

fF2

h
, ξ0 =

fF0

h
, ξ∗ =

f∗
h
⇒ F2 =

ξ2

ξ1
. (31)
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Then Eq. (28) and Eq. (29) are rewritten in the form

σ0x =β2
∗

{
2

[
a∗

1
ξ2 + (a∗

2
+ a∗

3
)ξ1(ξ1 + 2ξ∗)

]
+

[
(a∗

6
− a∗

4
)ξ2(ξ2 + 2ξ∗

ξ2

ξ1
)− a∗

5
ξ2

]}
h2

R2

− 1
α2
∗(ξ1 + ξ∗)

{[(
α2
∗ + β2

∗
L2

R2

)2

C∗
3

h2

L2
− α2

∗
h

R

]
.
[
a∗

4
ξ2(ξ1 + 2ξ∗) + a∗

5
ξ1

]
+

+ C∗
4
ξ1

(
α2
∗ + β2

∗
L2

R2

)2
h2

L2

}
,

(32)

σ0x =
β2
∗ξ1

2ξ2

[
(a∗

6
− a∗

4
)ξ2(ξ1 + 2ξ∗)− a∗

5
ξ1

] h2

R2
+

ξ1

2ξ2(ξ1 + ξ∗)α2
∗
.

.

{(
16α4

∗C
∗
3

h2

L2
−4α2

∗
h

R

)
a∗

2
ξ1(ξ1+2ξ∗)+ ξ2a

∗
1

(
16α4

∗C
∗
3

h2

L2
−4α2

∗
h

R

)
−8α4

∗C
∗
4

h2

L2
ξ2

}
,

(33)

in which
A∗

10 = A10/h, A∗
20 = A20/h, A∗

30 = A30/h,

A∗
11 = A11/h2, A∗

21 = A21/h2, A∗
31 = A31/h2,

A∗
12 = A12/h3, A∗

22 = A22/h3, A∗
32 = A32/h3.

E∗
1 = E1/h, E∗

2 = E2/h2, E∗
3 = E3/h3, D∗ = D/h3.

J∗0 = J0h
2 = 1/

(
A∗2

10 −A∗2
20

)
, J∗1 = J1/h3 = (A∗

10A
∗
11 −A∗

20A
∗
21) ,

J∗2 = J2/h3 = (A∗
10A

∗
21 −A∗

20A
∗
11) .

C∗
1 = C1/h2 = J∗2/A∗

10, C∗
2 = C2/h = 1/ (A∗

10J
∗
0 ) ,

C∗
3 = C3/h = J∗0J∗2 , C∗

4 = C4/h3 = J∗0 (A∗
11J

∗
1 + A∗

21J
∗
2 )−A∗

12.

α∗ = αL = mπ, β∗ = βR = n.

a∗1 =
a1

h2
=

1
8

(
4C∗

1 −
C∗

2

α2
∗

h

R

L2

h2

)
, a∗2 =

a2

h
=

C∗
2β2

∗
32α2

∗
.
L2

R2
,

a∗3 =
a3

h
=

C∗
2α2

∗
32β2

∗
.
R2

L2
, a∗4 =

a4

h
= − C∗

2α2
∗β

2
∗

[α2
∗ + β2

∗(L/R)2]2
L2

R2
,

a∗5 =
a5

h2
=

C∗
2α2

∗

[α2
∗ + β2

∗(L/R)2]2
L2

Rh
− C∗

1 , a∗6 =
a6

h
=

C∗
2α2

∗β
2
∗

[9α2
∗ + β2

∗(L/R)2]2
L2

R2
.

4. PERFECT CYLINDRICAL SHELLS

In this case f∗ = 0, Eq. (28) is written as{[
(α2 + β2)2C3 −

1
R

α2

] [
a4F2f

2 + a5f
]
+ C4f(α2 + β2)2

}
−

− fα2β2

{
2

[
a1F2f + (a2 + a3)f2

]
+ F2

[
(a6 − a4)F2f

2 − a5f
]
− hσ0x

β2

}
= 0.
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Putting f2 = F2f and solving f2, we obtain

f2 = −
H01 + H04f

2
2 + H05f2 −

α2

2
hσ0x

H03
(34)

in which

H01 = −1
2

{[
(α2 + β2)2C3 −

1
R

α2

]
a5 + C4(α2 + β2)2

}
,

H03 = α2β2(a2 + a3), H04 =
α2β2

2
(a6 − a4),

H05 = −1
2

{[
(α2 + β2)2C3 −

1
R

α2

]
a4 + α2β2(a5 − 2a1)

}
.

(35)

For Eq. (29), also taking f∗ = 0, leads to

(8α4C3 −
2
R

α2)a2f
2 + F2f

[
a1(8α4C3 −

2
R

α2)− 4α4C4

]
+

+
α2β2

2
[
(a6 − a4)F2f

3 − a5f
2
]
− α2σ0xhF2f = 0.

One gets
σ0xh =

[
H06 + f2(H08 + H07/f2)

]
/α2 (36)

where

H06 = a1(8α4C3 −
2
R

α2)− 4α4C4, H07 = (8α4C3 −
2
R

α2)a2 −
α2β2

2
a5,

H08 =
α2β2

2
(a6 − a4).

(37)

Substituting f2 from Eq. (34) into Eq. (36) gives us

σ0x =
2

[H07 + (H08 − 2H03)f2]hα2
[H01H07 + (H01H08 + H05H07 −H03H06)f2+

+ (H04H07 + H05H08)f2
2 + H04H08f

3
2

]
.

(38)

This is the relation found in the paper [13]. The equation (38) is used to investigate
load - deflection curves. It is also used to find buckling critical loads from the condition
dσ0x/df2 = 0.

Now, consider the casecf2 = 0, i.e. the nonlinear buckling shape is ignored, Eq. (38)
becomes

σ0x =
2H01

hα2
. (39)

Minimizing this expression, leads to

σxcl =
C2

hR2

√
R2 (C1C3 − C4)

C2
− 1

Rh
(C2C3 + C1)−

C4 − C1C3

h

√
C2

R2 (C1C3 − C4)
.
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Substituting from (14) and (16)

C1 =
A10A21 −A20A11

A10
, C2 =

A2
10 −A2

20

A10
, C3 =

A10A21 −A20A11

A2
10 −A2

20

,

C4 =
1

A2
10 −A2

20

[A11 (A10A11 −A20A21) + A21 (A10A21 −A20A11)]−A12

into the above expression, after some calculations, the critical load of perfect FG cylindrical
shells with the linear buckling shape is obtained as follows

σxcl =
2

hRA10

[√(
A2

10 −A2
20

) (
A12A10 −A2

11

)
− (A10A21 −A20A11)

]
. (40)

This result coincides with the one of [13].
Thus, from general results (28) and (29) for imperfect FG cylindrical shells we can

return to the results published in the paper [13] for perfect FG cylindrical shells.

5. ISOTROPIC PERFECT CYLINDRICAL SHELL

In this case, we have C1 = C3 = 0, C2 = Eh, C4 = −Eh3/
[
12(1− ν2)

]
.

One gets

A10A21 −A20A11 = 0, A2
10 −A2

20 = A10Eh, A2
11
−A10A12 = −A10Eh3/

[
12(1− ν2)

]
.

Introdution of these coefficients into Eq. (40) gives us

σcl min =
Eh

R
√

3(1− ν2)
. (41)

This is the minimum value of axial compressive load found in [16] based on the
classical shell theory.

6. NUMERICAL CALCULATIONS AND DISCUSSIONS

Problem 1: Comparision with the results of Huang and Han [13].
Consider a FGM cylindrical shell is made from two materials Zirconia and Ti-6Al-4V

which take the values as follows [13].

Table 1. Temperature coefficients for the material properties of Zirconia and
Ti - 6Al - 4V

Material properties c0 c−1 c1 c2 c3

Zirconia
EC(Pa) 244.26596*109 0 -1.3707*10−3 1.21393*10−6 -3.681378*10−10

νC 0.2882 0 1.13345*10−4 0 0
Ti-6Al-4V

Em(Pa) 122.55676*109 0 -4.58535*10−4 0 0
νm 0.28838235 0 1.12136*10−4 0 0
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According to [13] the material properties depend on temperature T as the following

Pm(T ) = c0(c−1T
−1 + 1 + c1T + c2T

2 + c3T
3). (42)

In this paper, we consider T = 300K. For other temperature field, one can do that
by the same method based on the formula (42).
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Fig. 2. Effects of buckling mode (m = 1, n changing) on σ0x − f2 curves

With k = k1 = 1, T = 300K, R/h = 200, L/R = 1, f∗ = 0 according to the formula
(38) and programming Matlab software we receive results given in Fig. 2 and Fig. 3. These
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Fig. 3. Effects of buckling mode on σ0x − f2 curves

results describe the relationship σ0x − f2 when the buckling mode is changed. As can be
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observed, the smallest value σ0xcr = 79.0409MPa corresponds to (m,n) = (1, 6). This
result is in very good agreement with the one of Huang (σcr = 79.10MPa with buckling
mode (m,n) = (1, 6)) obtained by other method. This result also has affirmed the accuracy
of proposed method.

Problem 2: Effects of geometric parameters.
Based on the formula (38), with T = 300K, k = k1 = 1, f∗ = 0, consider two cases:
- The ratio R/h is varied from 200 to 1000, while R/L = 1.
- The ratio R/L takes values from 0.5 to 4, while R/h = 200.
Critical loads (MPa) are given in the Table 2 and Table 3, respectively.

Table 2. Effects of geometric parameter R/h to critical load

R/h
L/R = 1

Power law Exponential law
200 79.0409 (1,6)∗ 78.4455 (1,6)
300 53.0174 (1,6) 52.5480 (1,6)
400 40.3310 (1,7) 39.9932 (1,7)
500 33.5713 (1,7) 33.2663 (1,7)
600 27.3734 (2,11) 27.1678 (2,11)
700 23.0498 (2,11) 22.8651 (2,11)
800 19.7602 (2,12) 19.6114 (2,12)
900 17.3047 (2,12) 17.1678 (2,12)
1000 15.5465 (2,12) 15.4181 (2,12)

(∗ The numbers in the parenthesis denote the buckling modes (m,n)).
As shown in the Table 2, the more the value of ratio R/h is big, the more the value

of critical load is small. This result agrees with the real property of struture i.e. the shell
is thinner the value of critical load is smaller.

Table 3. Effects of geometrical parameter L/R to critical load

L/R
R/h = 200

Power law Exponential law
0.5 116.8459 (1,9) 116.0977 (1,9)
1 79.0409 (1,6) 78.4455 (1,6)

1.5 84.4439 (1,5) 83.7531 (1,5)
2 79.0409 (2,6) 78.4455 (2,6)
4 78.8411 (3,5) 78.1775 (3,5)

As can be seen from Table 3 when the ratio L/R increases from 0.5 to 1, the critical
load is decreases very much, whereas when L/R varies from 1 to 4, the critical load is
changed less. That means the nonlinear response of short cylindrical shell is very sensitive
to a variation of ratio L/R.

Table 2 and Table 3 also show that, in this example, when material properties of
shell obey the power and exponential laws, both their critical loads are nearly equal.
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Problem 3: Relation between critical load and buckling modes.
Consider the case k = k1 = 1, T = 300K, R/h = 200, L/R = 1, f∗ = 0. Couple

(m,n) receives the values of from 1 to 10 and based on the expression (38) we establish
the relationship table between the critical load σ0x(MPa) and buckling modes (m,n).

First of all, we find the relationship between critical load and buckling mode (m,n)
when material properties accord with the power laws. Using matlab software we received
σ0xcr = 79.0409 MPa corresponding to m = 1, n = 6. This result coincides with the results
received in the Problem 1.

By the same method, the numerical results concerning the relationship between
critical load and buckling mode when material properties are according to the exponential
law, are given by Table 4.

Table 4. Relationship between critical load and buckling mode (m,n) when the
material properties according to the exponential law

(m, n) n = 1 2 3 4 5 6 7 8 9 10
m = 1 3232.500 1812.600 632.8914 207.7360 94.6486 78.4455 95.7017 131.3731 182.8654 248.7592

2 901.5650 851.6488 698.8532 489.7799 313.9233 201.3150 141.6480 117.5431 116.0952 129.7078
3 489.2352 483.6904 462.1146 416.5820 353.1614 287.8135 233.3697 194.9493 172.4518 163.6833
4 407.4831 406.0168 399.9857 385.5725 361.1792 329.5046 296.1243 266.3040 243.2913 228.4006
5 439.1634 438.3880 435.1254 426.9829 412.2492 391.4036 367.1844 343.1002 322.0465 305.8588
6 527.9270 520.9976 496.5251 481.6082 459.2220 446.9971 435.0867 420.0367 402.6932 387.7014
7 549.5604 476.5911 449.4931 436.0079 427.2743 420.7412 415.6931 412.0529 409.9949 409.7943
8 679.8904 540.8819 480.0267 452.0387 437.6079 429.6960 425.5425 424.0116 424.6567 427.3523
9 868.0580 673.8740 567.7404 514.2321 486.0402 470.7716 462.8584 459.6660 459.8931 462.8902
10 1097.100 867.0790 712.3330 624.0947 573.9992 545.0943 528.6159 520.0056 516.8099 517.6652

From Table 4, we see that in both cases the buckling load is the smallest one when
(m,n) = (1, 6). This result also is very near to the result of Problem 1.

Problem 4: Comparison between critical loads of nonlinear buckling shape and
linear shape.

In this part, numerical critical load results of two buckling shapes are presented by
using Eq. (38) and Eq. (40) with the parameters T = 300K, k = k1 = 1, f∗ = 0 (see Table
5).

Table 5. Critical load (MPa) of two buckling shapes

R/h

L/R = 1
Power law

Nonlinear buckling shape calculated by Eq. (38) Linear buckling shape calculated by Eq. (40)

200 79.0409 (1,6) 410.3914 (1,6)

300 53.0174 (1,6) 273.5943 (1,6)

400 40.3310 (1,7) 205.1957 (1,7)

500 33.5713 (1,7) 164.1566 (1,7)

600 27.3734 (2,11) 136.7971 (2,11)

700 23.0498 (2,11) 117.2547 (2,11)

800 19.7602 (2,12) 102.5979 (2,12)

900 17.3047 (2,12) 91.1981 (2,12)

1000 15.5465 (2,12) 82.0783 (2,12)
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As shown in Table 5, the critical load with nonlinear buckling shape is smaller than
the one with linear buckling shape.

Problem 5: Effects of imperfection.
Now we use Eqs. (32) and (33) to plot curves describing σ0x − ξ2 relationship for

imperfect cylindrical shells.
In each figure below (Figs. 4, 5, 6, 7, 8), two graphs are given: Graph in Fig.(a) with

the small subdivided scale on the axis of abscissae ξ2 to indicate clearly the starting point
of the σ0x − ξ2 curve at the origin O, while in Fig.(b) with the larger scale of abscissae to
indicate extremum type buckling of imperfect FGM shells.
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Fig. 4. Curve describeing the relationship σ0x − ξ2 of imperfect FG cylindrical shells
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Fig. 5. Curves describeing the relationship σ0x − ξ2 of perfect and imperfect FG
cylindrical shells (m = 1, n = 6, k = k1 = 1, T = 300K, R/h = 200, L/R = 1)

The Fig. 4 and Fig. 5 show, for imperfect cylindrical shells, when an axial compres-
sive load starts different to zero then immediately is appeared a buckling (i.e. a deflection



Solving nonlinear stability problem of imperfect functionally graded circular cylindrical shells ... 153

0 0.05 0.1 0.15 0.2 0.25 0.3
0

100

200

300

400

500

600

700

800

900
 (M

P
a)

 

 
perfect
imperfect

 

2  

(1): k = k1 = 0 
(2): k = k1 = 1 
(3): k = k1 = 5 

(1) 

(2) 

(3) 

(1) 

(2) 

(3) 

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

100

200

300

400

500

600

700

800

900

 (M
P

a)

 

 
perfect
imperfect

 

2  

(1): k = k1 = 0 
(2): k = k1 = 1 
(3): k = k1 = 5 

 
(1) 

(2) 

(3) 

 
(1) 

(2) 

(3) 

(b)

Fig. 6. Effects of volume fraction indexes (m = 1, n = 6, ξ∗ = 0.1, T = 300K,
R/h = 200, L/R = 1)
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Fig. 7. Effect of imperfection (m = 1, n = 6, k = k1 = 1, T = 300K, R/h = 200,
L/R = 1)

is different to zero), while with perfect cylindrical shells only is appeared a buckling when
compressive load reaches a certain critical value. Furthermore, during the first stage, the
σ0x − ξ2 curve is close to the axis of ordinates σ0x, the buckling occurs slowly until the
load reaches an upper critical value. In the second stage, although a load decreases but a
buckling still occurs. At these both stages the critical load of imperfect FG cylindrical shell
is smaller than the critical load of the perfect FG shell. To the third stage, when ξ2 exceeds
a special value, an inverse trend occurs. This similar phenomenon is also reflected in the
paper [11] when the authors studied the nonlinear stability of imperfect FGM cylindrical
panels.

The effects of volume fraction indexes k and k1 on σ0x− ξ2 curves are illustrated in
Fig. 6. Graph is plotted with k = k1 = 0, 1, 5 for perfect and imperfect cylindrical shells.
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Fig. 8. Effects of the ratio R/h (m = 1, n = 6, k = k1 = 1, T = 300K, ξ∗ = 0.1,
L/R = 1)

As can be observed in both cases, the more the indixes k = k1 increase the more the
σ0x − ξ2 curve is lowered.

The effects of imperfection on σ0x − ξ2 curves are given in Fig. 7. The graph is
plotted with ξ∗ = 0, ξ∗ = 0.001, ξ∗ = 0.01, ξ∗ = 0.1, ξ∗ = 0.25, ξ∗ = 0.5, ξ∗ = 1. It is easy
to see the more the imperfection ξ∗ is large the more the σ0x − ξ2 curve is sloped i.e. the
shells become more unstable.

The effect of geometric ratio R/h on σ0x − ξ2 curve of perfect and imperfect shells
are reflected in Fig. 8. As can be seen, the critical load bearing capacity of shells decreases
when the R/h ratio increases.

7. CONCLUSIONS

In this paper the results obtained by Huang and Han in [13] have been developed for
imperfect functionally graded cylindrical shells using Galerkin’s method. The expanded
results return to the ones of [13] in the case of perfect cylindrical shells. The power and
exponential laws for material property variation are utilized to find expression of critical
loads for imperfect and perfect cylindrical shells and postbuckling load - deflection curves.
Effects of buckling modes of fraction volume indexes, initial imperfection and geometric
parameters on the critical loads and postbuckling load - deflection curves are presented.
Comparisons between the linear and nonlinear buckling shape are given.
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APPENDIX
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