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Abstract. In this paper, we present a method, which is based on hybrid automata and
Real-Time Unified Modeling Language (UML) to analyze and design the control parts of
mechatronic systems with input or output events and signals in order to effectively gather
their structure and behaviour. We introduce step-by-step analysis and design activities
of a controlled mechatronic system such as the specification of its hybrid automaton and
realization hypotheses, the identification of object collaborations of this system, the iden-
tification of main control capsules, their ports and communication protocols, with their
static and dynamic links. These activities are conducted by specializing the iterative life
cycle of system development. Then, we indicate important hypotheses, which allow all
the identified capsules of this system to make their evolutions. We apply this method to
develop an Electro-Hydraulic Governor (EHG) system, which allows the frequency of an
electro-hydraulic station to be stabilized.
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1. INTRODUCTION

A mechatronic system consists by definition of a mechanical part that has to perform
certain motions and an electronic part (in many cases an embedded computer system)
that adds intelligence to the system [15]. In most cases, this system takes into account
models with discrete events and continuous behaviour models; they are called Hybrid
Dynamic Systems (HDS) [7], [17]. These behaviour models are distributed on different
operating modes, which are associated with processes related to the interactivity with
users such as the designer, supervisor, maintainer etc. In addition, controlled mechatronic
systems always do not have the same behaviour because this one is associated with validity
hypotheses to check at any moment; the security requirement forces to envisage events and
behaviours different than the nominal behaviour. The behaviour of such systems is thus
complex. In this paper, we consider a controlled mechatronic system, which is the HDS
and, so can be modelled by hybrid automata.

The mechatronic design deals with the integrated and optimal design of a mechanical
system and its embedded control system. To carry out from the analysis to the design in
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our method, the iterative development life cycle [12], [18] which has been interpreted
and depicted in various ways, is chosen to be an unified process of system development.
This model is specified by using object-oriented design principles, which are being largely
spread and appreciated in the industrial control. In addition, we choose the Real-Time
UML (Unified Modeling Language) version [1], [3] based on the capsule concept that we
adapted by specializing a set of capsules in precise behaviours in order to describe precisely
the intercommunication type between objects of the developed HDS.

This paper is depicted by the following sections:
Section 2 presents the hybrid automaton definition, its specification and realization

hypotheses of a HDS, and introduces the main notations of Real-Time UML for describing
the analysis and design model of this system;

Section 3 indicates the specialization of a cycle of the iterative life cycle for devel-
oping a HDS. In this section, we present the analysis of a HDS with the identified hybrid
automaton on different object collaboration. We also present the design of this system with
the global communication between the identified main capsules, evolution hypotheses of
capsules;

Section 4 introduces the strategies and tools, which can be used to implement and
test analysis and design models.

Finally, we apply this method to develop an Electro-Hydraulic Governor (EHG)
system, which allows the frequency of an electro-hydraulic station to be stabilized.

2. REALIZATION HYPOTHESES OF A HYBRID AUTOMATON AND

REAL-TIME UML FOR MODELING THE HDS

2.1. Overview of hybrid automata

A hybrid automaton [2], [6] is defined by data of H = (Q, X, Σ, A, Inv, F, q0, x0)
where: - Q is a set of states describing operational modes of the system, called situations,
q0 is the initial situation.

- X presents the continuous state space of the automaton, X ⊂ <n, x0 is the initial
value of this space.

- Σ is a finite set of events.
- A is a set of transitions being defined by (q, Guard, σ, Jump, q′) and represented

by an arc between situations, where:
+ q ∈ Q, q′ ∈ Q.
+ Guard is a subset of the state space in which the continuous state must be, so

that the transition can be crossed.
+ Jump represents the continuous state transformation during the change of situa-

tion; it is generally expressed by a state value function, whose result is affected like initial
value of the continuous state in the new situation.

+ σ ∈ Σ introduces the event being associated to the transition; this association
does not imply to give an input or output direction to the event.

- Inv is an application, which associates a subset of the state space to each situation.
It is called the invariant of the situation, in which the continuous state must remain, when
the situation is q, the continuous state must verifies x ∈ inv(q).
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- F is defined for each situation; the evolution of continuous state is occurred when
the situation is active; this evolution of continuous state is generally expressed by a dif-
ferential equation. It will be named continuous fluid F.

2.2. Realization hypotheses

To describe a HDS with the hybrid automaton’s formalism, we introduce the fol-
lowing constraints [7], [9]:

- Events σ ∈ Σ are considered in term of inputs/outputs and internal/external.
- X contains input/output signals.
- The global continuous evolution F coming from an extended functional diagram,

which has been defined in [7], [10].
We apply the following rules, so that the invariant and guard control can generate

internal events [9]:
- If xq /∈ inv(q) and Guard(a) = True, a ∈ A, then there is a generated internal

event; the system changes its situation from q to q′ described in the set of situations of
the system, with the initial value Jumpq′ identified from the concrete continuous fluid Fq′ ;
this evolution is realized by the application state machine.

- If xq ∈ inv(q) and Guard(a) = True, a ∈ A, then the system remains in its actual
situation q.

- If xq ∈ inv(q) and Guard(a) = False, a ∈ A, then the system remains in its actual
situation q.

- If xq /∈ inv(q) and Guard(a) = False, a ∈ A, then there is a generated internal
event; the system changes into the state q”, which is called the irreversible default state.

2.3. Using the "capsules, ports, protocols" notations of Real-Time UML

A capsule [1] is represented as a class, stereotyped "capsule" [14]. Capsules have
much of the same properties as classes; for example, they can have operations and at-
tributes. However, they also have several specialized properties such as public ports, private
operations, message passing for modeling their transmission relationships and behaviours.

Fig. 1. Capsules, ports and protocols
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The protocol is a set of messages exchanged between two objects conforms to some
communication pattern called a protocol.

Ports are objects whose purpose is to send and to receive messages to and from
capsule instances. They are owned by the capsule instance in the sense that they are
created along with their capsule and destroyed when the capsule is destroyed.

An example of capsules, sub-capsules, ports and protocols is presented in the Fig.
1 by using the class diagram.

3. ANALYSIS AND DESIGN MODEL OF A HDS

Our approach is based on the iterative life cycle of system development (Fig. 2)
which permits us to lead main development phases of system such as the analysis, design,
implementation and test, and create an executable prototype [7], [18].

Fig. 2. Iterative development life cycle

The iterative development is a technique that is used to deliver the functionality
of a system in a successive series of releases of increasing completeness. Each release is
developed in a specific, fixed time period called an iteration. Each iteration is focused on
defining, analyzing, designing, building, and testing a set of requirements. The earliest
iterations address the greatest risks. Each iteration includes integration and testing and
produces an executable release. In this paper, we concentrate on the analysis and design
phase of a HDS, so that we would specialize it in the next sub-sections in order to obtain
an optimal design model.

3.1. Analyzing the HDS

From the approach described in [16], we propose here 5 object collaborations: the
continuous part, discrete part, Instantaneous Global Continuous Behaviour (IGCB) to
develop a HDS. They are defined and used according to a virtual mechanism of components
such as the object, class or class hierarchy [12].

- The discrete part’s collaboration contains the set of situations Q and set of tran-
sitions A of the hybrid automaton. Each situation makes an association with a concrete
IGCB.

- The continuous part’s collaboration contains entity classes coming from boxes of
the extended functional diagram [7] to store and process the transformational activities of
the developed HDS. We can build an abstract entity class so that these entity classes can
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inherit it in order to simplify models by avoiding the information duplication. We will also
find common attributes between entity classes to re-use them by applying heritage prop-
erties. At this moment, we limit ourselves to continuous elements which can be elements:
power amplification, inertia, delay, vibration and regulator.

- The IGCB’s collaboration consists of entity classes, which present instantaneous
global continuous behaviours (continuous fluids F in the hybrid automaton of a developed
HDS). Each fluid is connected to a concrete situation qi. There is only one concrete IGCB
at time given, i.e., there is only one entity class activated at one given moment in this
collaboration. We can also build an abstract entity class in this collaboration so that these
entity classes can inherit it.

- The internal interface’s collaboration generates internal events of the developed
HDS so that the discrete part’s collaboration can treat these generated events. This collab-
oration is an intermediary between the continuous part’s collaboration and discrete part’s
collaboration. It is used to check invariants, controls (q, Guard, σ, Jump, q′) of the hybrid
automaton and generates if necessary internal events allowing the evolution.

- The external interface’s collaboration is an intermediary between the developed
system and intervening systems. It receives or sends episodic events, periodic signals be-
tween the developed system and intervening systems. It makes it possible to display control
results, parameter settings etc. by using the MVC (Model - View - Controller) pattern [5].

The detailed structures and behaviors of these collaborations have been shown
in [7].

3.2. Designing the HDS

We find that the direct transformation of object collaborations to the implemen-
tation environment must be supplemented to carry out a general control system. For
example, collaborations of the control system are not well adapted to visualize, model in-
terconnection types between the objects or sub-systems. In the design phase, we transform
object collaborations identified above into capsules to carry out a HDS completely and to
re-use generic capsules in different applications.

Stages to build the main capsule collaboration are the following ones:
- Identifying capsules and sub-capsules from main classes in object collaborations

identified above.
- Each identified object collaboration needs at least a capsule such as the global

HDS’s capsule, continuous part’s capsule, discrete part’s capsule, internal interface’s cap-
sule, IGCB’s capsule and external interface’s capsule.

- Classes, which lead the exchange of messages in the object collaboration, will
become capsules.

- Identifying classes in a capsule collaboration: all the entity classes become classes
in the capsule collaboration.

- Identifying ports and the protocols general object collaborations with associations
and messages.

- Identifying sequence diagrams and generic state machines of these capsules; these
diagrams and state machines make it possible to model and carry out the interconnection
between these capsules.
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3.2.1. Global interconnection structure

We propose 5 main capsules, which take part in the realization of the hybrid au-
tomaton of a HDS: the continuous part’s capsule, discrete part’s capsule, internal inter-
face’s capsule, external interface’s capsule and Instantaneous Global Continuous Behaviour
(IGCB’s capsule). The connection for communicating between main capsules, which is car-
ried out by their ports and protocols, is introduced by the capsule structure diagram (Fig.
3).

Fig. 3. Capsule structure diagram of a HDS

3.2.2. Detailing behaviours of identified main capsules

Hypotheses that we propose for executing the identified set of main capsules of a
hybrid automaton are the following ones:

- If the end of the discrete part’s evolution is located before or just of the sampling
date (∆T ) of the IGCB’s capsule, then the current IGCB continuous model will pass to
the new IGCB model corresponding to this evolution.

- If the end of the discrete part’s evolution is located after of the sampling date
(∆T ), then the IGCB current is not commutated.

- If an event appears during the evolution of the application state machine, then
this event is memorized and treated later on.

- External and internal events have the same process by the discrete part’s capsule.
- During the sampling period of the IGCB’s capsule, the continue part’s capsule,

internal interface’s capsule and discrete part’s capsule make their own evolutions to possi-
bly commutate to a new IGCB’s operational mode, the IGCB continuous model remains
in its current mode for this period.
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- So during the period of the IGCB’s capsule, the current IGCB continuous model
has detected two or several states appeared, then at just end of this period, the IGCB’s
capsule synchronizes all these states with the null timing duration; the current IGCB
continuous model passes to a new operational mode, which corresponds to the last state
appeared during this period.

Let us take a simple example for explaining these hypotheses. The Fig. 4 presents
a hybrid automaton example, where: Fi, is the continuous fluid i; Ee1, Ee2, Ee3...., are
external events.

Fig. 4. A hybrid automaton example

We transform this hybrid automaton into another hybrid automaton (Fig. 5), which
contains the internal event generated in the internal interface’s capsule and will be the
application state machine.

Fig. 5. Transformed hybrid automaton with the internal event Eei

When xq /∈ inv(q4) and Guard_4_5 = True; where: qi, is the situation i; this
evolution is realized by the application state machine. The concurrent timing diagram
introduces evolutions of this hybrid automaton (Fig. 6) where:

- Ee1, Ee2, Ee3...., are external events.
- Ei1, Ei2...., are internal events.
- q1, q2, ...., introduce situations of the hybrid automaton.
- ec1, ec2, ...., ecn, present evolutions of continuous elements in the continuous part’s

capsule.
- ∆T , is a sampling period of the IGCB’s capsule.
To explain in detail the dynamic behaviours of main capsules, we use the example

given above. The Fig. 7 presents the evolution in one concrete period (2∆T − 3∆T ) be-
tween main capsules of the hybrid automat given above. In this figure, all the messages,
which exchange between the main capsules, are synchronous; the interval between two ad-
jacent timeout messages indicates the sampling period of the IGCB’s capsule. The external
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Fig. 6. Concurrent timing diagram of the global evolution of main capsules

interface’s capsule receives period signals coming from external continuous components.
It gives the "ContinuousElement" message to the IGCB’s capsule so that the IGCB’s
capsule can call all continuous elements, which correspond to the concrete IGCB: IGCB2.
During the call of the IGCB’s capsule, the external interface’s capsule receives an event
Ee3 coming from actors [3] of the developed system, and gives this event to the discrete
part’s capsule. Then, the discrete part’s capsule memorizes and will treat this event. If the
IGCB’s capsule receives the "LastContinuousElement" message coming from the contin-
uous part’s capsule, then it gives the "ContinuousEvolution" message to the continuous
part’s capsule so that the internal interface’s capsule can receive all updated variables.

The internal interface’s capsule verifies the invariant of the situation q3; in this case,
there is a generated internal event. Then, the internal interface’s capsule gives this event to
the discrete part’s capsule. The discrete part’s capsule memorizes and will treat this event.
In this period, the event Ee2 has been treated by the discrete part’s capsule. The IGCB’s
capsule identifies the concrete IGCB: IGCB3 and gives output signals to the external
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Fig. 7. Sequence diagram of the hybrid automaton given for a concrete evolution
period [2∆T − 3∆T ] in the Fig. 6

interface’s capsule. At the end of this sample period, the external interface’s capsule gives
the output event and control signals to the external environment of the developed system;
this system operates with its concrete IGCB: IGCB3.

All the detailed static structures and dynamic behaviours of these capsules, which
are described by using the state machines and sequence diagrams, can be found in [7],
[11].

In addition, the re-use is very important for developing the system; because it makes
it possible to reduce the time and development cost. We find different re-use view in the
development phase of this system such as:

- The re-use view based on the virtual mechanism of objects, classes, or class hier-
arch.

- The re-use view based on design components. For example, the generic state ma-
chine of identified main capsules, industrial constraints can be specialized to develop dif-
ferent industrial control applications.
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The specialization, which makes it possible to re-use design elements of a HDS, has
been specified in [7].

4. IMPLEMENTATION AND TEST OF THE DESIGN MODEL

4.1. Implementing a HDS

To carry out a HDS, we have to convert the design model identified above into plat-
form specific models by using the different specific technology or platforms such as .NET,
Java-J2EE, Ada, IEC64199 etc. . . in order to obtain its implementation model. If we are
only interested in the simulation of a HDS, we can use the "sub-system" paradigms, which
are supported by software tools such as: LabView-VI, MatLab-Simulink, OpenModelica,

etc. . . To realize a HDS, we can use industrial technology or platforms such as IEC61131
[13], [15] to realize the implementation model of this system.

4.2. Testing the analysis and design model

There are software tools such as HyTech, CheckMate, PHAver and HSolver [2] to
test the hybrid automaton. We can use them to verify generally dynamic behaviours of
a HDS. At this moment, it exist also formal tools such as Rational Real-Time Test [12]
for testing directly the capsule collaboration; this tool permits us to validate a set of
input sequences and defined object for ensuring the operation of the developed system.
Moreover, we can find B STERIA Object Workshop [4] and Rational Real-Time Architect

version 7.5.2 [12], which can be used to support formally re-use of design component.
They permit us to make the reverse-engineering of applications for checking requirements
of the developed systems.

5. APPLICATION

There are many regions in the world, which are far from a national electric sup-
plying networks, for example in Vietnam. We must then build small electric stations to
improve the life of residents of these regions. The quality of the small electric stations is
characterized by: the stability and precision of the frequency, tension stability, duration
of operation and power.

We applied our method described above to completely make the analysis and the
design for an EHG (Electro-Hydraulic Governor) system, which makes it possible to sta-
bilize the frequency an electro-hydraulic station having a power lower than 10.000 kW.
EHG contains external events such as connection or the disconnection by the electrical
consumption system and the internal events identified by the components such as the
limiter of the control part.

We have found an extended functional diagram (Fig. 8a) to carry out activities in
the state machine of EHG. The detailed features of EHG have been described in [7].

We produced all the static and dynamic structures of use cases, hybrid automata,
main capsules, sub-capsules, their ports and protocols to effectively implement this ap-
plication; one of the control performance simulation results is shown in Fig. 8b. All the
detailed results can be are found in [7], [11].
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(a) (b)

Fig. 8. Extended functional diagram of EHG (a), Control performance simulations
of an EGH for the concrete small and heavy loads (b)

6. CONCLUSION

We have developed a method, which makes it possible to make completely from
the analysis to the design of the control parts of mechatronic systems, which are Hybrid
Dynamic Systems (HDS) and can be modelled by hybrid automata. This method contains
following important points:

- Specifying the hybrid automaton and Real-time UML to capture structures and
behaviours of the developed HDS.

- Identifying main capsules for presenting the hybrid automaton of this system.
- Structuring main capsules, sub-capsules and their ports, protocols for introducing

a pattern of communication between capsules.
- Indicating the hypotheses to make the evolution for all main capsules of the de-

veloped HDS.
- The global sequence diagram presents the exchange of events and signals between

main capsules; the local sequence diagram introduces the exchange of messages between
sub-capsules.

In the future, we will develop our approach with different formalisms and archi-
tectures in order to deploy different industrial control applications communicating by
networks.
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