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Abstract. In this study, a simple size-dependent isogeometric approach for bending analysis of func-
tionally graded (FG) microplates using the modified strain gradient theory (MSGT), simple first-order
shear deformation theory (sFSDT) and isogeometric analysis is presented for the first time. The present
approach reduces one variable when comparing with the original first-order shear deformation theory
(FSDT) within five variables and only considers three material length scale parameters (MLSPs) to cap-
ture size effects. Effective material properties as Young’s modulus, Poisson’s ratio and density mass are
computed by a rule of mixture. Thanks to the principle of virtual work, the essential equations which
are solved by the isogeometric analysis method, are derived. Rectangular and circular FG microplates
with different boundary conditions, volume fraction and material length scale parameter are exampled
to evaluate the deflections of FG microplates.

Keywords: isogeometric analysis, functionally graded microplate, modified strain gradient theory, sim-
ple first-order shear deformation theory.

1. INTRODUCTION

In few years, thanks to the owner of the outstanding mechanical, physical and electronic properties,
microstructures in the form of beams, plates and shells have been widely used in several devices such as
micro/nano-electromechanical systems (MEMS/NEMS), biosensors, nano-wires, micro-actuators and
microscopes, etc. In addition, experimental observations show that the small scale effect exists in the
microstructures. Thus, to understand material behaviors at microscale level, the development of new
theoretical model is the utmost importance.

The classical continuum theories cannot accurately capture behaviors of microstructures due to
ignoring the material length scale parameter. To overcome those disadvantages, several continuum
theories with additional considering size effects such as: the nonlocal elasticity [1], modified nonlocal
elasticity [2], couple stress [3], modified couple stress [4], surface elasticity [5] and strain gradient [6]
have been extended and developed to analyze behaviors of microstructures. The stiffness-softening and
stiffness-hardening mechanisms can be shown when using the nonlocal elasticity theory and the strain
gradient elasticity theory, respectively. Among them, a theory proposed by Mindlin [7] is widely used
for microstructures due to considering all components of the higher-order deformation. However, for
engineering practices, it is too difficult to use because of containing five MLSPs. For that reason, the
modified strain gradient theory (MSGT) of Lam et al. [8] is a suitable choice due to reducing of two
MLSPs. The MSGT has been applied and developed in many studies for microbeams and microplates.
Generally, three primary groups consisting of analytical, semi analytical and numerical solutions have
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been applied into MSGT. The first and second solutions are suitable for the simple problems and can be
considered as the exact solution. And their results can be used to verify the accuracy of numerical solu-
tions. Wang et al. [9] introduced a size-dependent Kirchhoff model to analyze the static bending, stabil-
ity and free vibration behaviors of the isotropic rectangular microplates. Then, that model was extended
and developed for isotropic microplates [10], FG microplates [11] and multi-layer microplates [12]. The
size-dependent first-order shear deformation model was presented by Ansari et al. [13] to investigate
bending, buckling and free vibration behaviors of FG microplates. Zhang et al. [14,15] developed a size-
dependent refined higher-order shear deformation model for analysis of FG microplates. That model
combined with isogeometric analysis (IGA) was also reported by Thai et al. [16] and Farzam et al. [17]
for FG microplates under mechanical and thermal loads, respectively. In addition, a size-dependent
higher-order shear deformation model with five variables were presented in [18–20] for analyzing of
microplates. Besides, a size-dependent three-dimensional elasticity model was presented by Salehipour
and Shahsavar [21] to study free vibration behaviors of FG microplates.

In this study, a novel size-dependent isogeometric approach based on the MSGT, sFSDT and iso-
geometric analysis is presented to analyze the bending behavior of FG microplates. The present model
reduces one variable when comparing with original FSDT and is simple and free of shear locking. This
is novel topic and not studied and published in the literature so far. That is a great motivation for us
to perform this study. Numerical examples are studied to show advantages of the present model when
comparing to different referenced models for analysis of FG microplates.

2. BASIC EQUATIONS

2.1. Problem description

The functionally graded plate is made from a mixture of ceramic and metal, in which ceramic-
rich and metal-rich surfaces are distributed at the top (z = h/2) and bottom (z = −h/2), respectively.
Effective material properties are computed by the rule of mixture, in which the volume fraction of the
ceramic and metal phases are assumed continuous change through thickness as

Vc(z) =
(

1
2
+

z
h

)n
, z ∈

[
−h

2
,

h
2

]
, Vm = 1−Vc , (1)

where the symbols c, m and n are the ceramic, metal and power index, respectively. Effective material
properties based on the rule of mixture are defined by

Ee = EcVc(z) + EmVm(z), νe = νcVc(z) + νmVm(z), ρe = ρcVc(z) + ρmVm(z). (2)

2.2. Modified strain gradient elasticity theory

The virtual strain energy δU for an isotropic linearly elastic material according to the modified
strain gradient theory [8] is described by

δU =
∫
V

(
σijδεij + mijδχij + piδζi + τijkδηijk

)
dV, (3)

where ε, χ, ζ and η are the strain, symmetric rotation gradient, dilatation gradient and deviatoric stretch
gradient, respectively; σ is Cauchy stress; m, p and τ are high-order stresses corresponding with strain
gradient χ, ζ and η, respectively.

The components of strain and strain gradient are expressed as follows

εij =
1
2
(
ui,j + uj,i

)
, (4)

χij =
1
2
(
θi,j + θj,i

)
, θi =

1
2

eijkuk,j, (5)

ζ j = εmm,j, (6)

ηijk =
1
3

(
εij,k+ε jk,i+εik,j

)
− 1

15
(
δij (εmm,k+2εmk,m)+δik

(
εmm,j+2εmj,m

))
− 1

15

(
δjk (εmm,i+2εmi,m)

)
, (7)
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where ui and θi are components of displacement and rotation vectors, respectively. And δij and eijk are
the Kronecker’s delta and permutation tensor, respectively.

The Cauchy stress and high-order stress components are defined by

σij = λεkkδij + 2µεij, (8)

mij = 2µl2
1χij, (9)

pj = 2µl2
2ζ j, (10)

τijk = 2µl2
3ηijk, (11)

where λ and µ are Lame constants; l1, l2 and l3 are three length scale parameters.

2.3. Kinematics of FG microplate

Let us consider a plate of total thickness h. The mid-plane surface denoted by Ω is a function of x
and y coordinates and, the z-axis is taken normal to the plate. The displacement field of any points in
the plate according to the first-order shear deformation theory is described by

ū (x, y, z) = u (x, y) + zβx (x, y) ,

v̄ (x, y, z) = v (x, y) + zβy (x, y) ,

w̄ (x, y, z) = w (x, y) ,
(12)

where u, v, w, βx and βy are in-plane, transverse displacements and two rotation components in the y-z,
x-z planes, respectively.

To eliminate the shear locking phenomenon in FSDT, a hypothesis is introduced as follows

w = wb + ws, βx = −wb
,x , βy = −wb

,y. (13)

Inserting Eq. (13) into Eq. (12), the displacement fields of the FSDT which is called the simple first-
order shear deformation theory (sFSDT), are described by

ū = u− zwb
,x

v̄ = v− zwb
,y

w̄ = wb + ws

or ū =

 ū
v̄
w̄

 =


u
v

wb + ws

+ z


−wb

,x

−wb
,y

0

 = u1 + zu2. (14)

Inserting Eq. (14) into Eq. (4), strain components according to sFSDT are presented by

εxx = u,x − zwb
,xx, εyy = v,y − zwb

,yy, εzz = 0, εxy =
1
2

γxy =
1
2
(
u,y + v,x

)
− zwb

,xy,

εxz =
1
2

γxz =
1
2

ws
,x, εyz =

1
2

γyz =
1
2

ws
,y.

(15)

Bending and shear strains can be described as

ε =
{

εxx εyy γxy
}T

= ε1 + zε2 and γ =
{

γxz γyz
}T

= εs, (16)

where

ε1 =
{

u,x v,y u,y + v,x
}T , ε2 = −

{
wb

,xx wb
,yy 2wb

,xy

}T
, εs =

{
ws

,x ws
,y
}T . (17)

Similarly, the rotation vector is rewritten by inserting Eq. (14) into Eq. (5) by

θx =
1
2

(
2wb

,y + ws
,y

)
, θy =

1
2

(
−2wb

,x − ws
,x

)
, θz =

1
2
(
v,x − u,y

)
. (18)

Substituting Eq. (18) into Eq. (5), the rotation gradient components are described as

χxx =
1
2

(
2wb

,xy + ws
,xy

)
, χyy =

1
2

(
−2wb

,xy − ws
,xy

)
, χxy =

1
2

(
wb

,yy − wb
,xx +

1
2

(
ws

,yy − ws
,xx

))
,

χxz =
1
4
(
v,xx − u,xy

)
, χyz =

1
4
(
v,xy − u,yy

)
, χzz = 0.

(19)
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The rotation gradient components can be rewritten under a compact form by

χb =

χxx
χyy
χxy

 =


wb

,xy +
1
2

ws
,xy

−wb
,xy −

1
2

ws
,xy

1
2

(
wb

,yy − wb
,xx

)
+

1
4

(
ws

,yy − ws
,xx

)


, χs =

{
χxz
χyz

}
=

1
4

{
v,xx − u,xy
v,xy − u,yy

}
. (20)

Substituting the strains in Eq. (15) into Eq. (6), the dilatation tensor is expressed by

ζx = u,xx + v,xy− z
(

wb
,xxx + wb

,xyy

)
, ζy = v,yy + u,xy− z

(
wb

,yyy + wb
,xxy

)
, ζz = −

(
wb

,xx + wb
,yy

)
. (21)

The dilatation tensor can be rewritten under a compact form by

ζ =
{

ζx ζy ζz
}T

= ζ1 + zζ2, (22)

where

ζ1 =
{

u,xx + v,xy v,yy + u,xy −wb
,xx − wb

,yy

}T
, ζ2 = −

{
wb

,xxx + wb
,xyy wb

,yyy + wb
,xxy 0

}T
. (23)

Similarly, substituting the strains in Eq. (15) into Eq. (7), the deviatoric stretch gradient components
are defined as

ηxxx =
2
5

u,xx −
1
5

u,yy −
2
5

v,xy + z
(
−2

5
wb

,xxx +
3
5

wb
,xyy

)
,

ηyyy =
2
5

v,yy −
1
5

v,xx −
2
5

u,xy + z
(
−2

5
wb

,yyy +
3
5

wb
,xxy

)
,

ηyyx = ηyxy = ηxyy = − 3
15

u,xx +
4

15
u,yy +

8
15

v,xy + z
(

3
15

wb
,xxx −

12
15

wb
,xyy

)
,

ηxxy = ηxyx = ηyxx = − 3
15

v,yy +
4
15

v,xx +
8

15
u,xy + z

(
3

15
wb

,yyy −
12
15

wb
,xxy

)
,

ηzzx = ηzxz = ηxzz = −
3

15
u,xx −

1
15

u,yy −
2

15
v,xy + z

(
3

15
wb

,xxx +
3

15
wb

,xyy

)
,

ηzzy = ηzyz = ηyzz = −
3

15
v,yy −

1
15

v,xx −
2

15
u,xy + z

(
3

15
wb

,yyy +
3

15
wb

,xxy

)
,

ηzzz =
1
5

(
wb

,xx + wb
,yy

)
− 1

5

(
ws

,xx + ws
,yy

)
,

ηxxz = ηxzx = ηzxx = − 4
15

wb
,xx +

1
15

wb
,yy +

4
15

ws
,xx −

1
15

ws
,yy,

ηyyz = ηyzy = ηzyy = − 4
15

wb
,yy +

1
15

wb
,xx +

4
15

ws
,yy −

1
15

ws
,xx,

ηxyz = ηyzx = ηzxy = ηxzy = ηzyx = ηyxz = −
1
3

wb
,xy +

1
3

ws
,xy.

(24)

These components are also rewritten under compact forms by

η̄ =
{

ηxxx ηyyy ηyyx ηxxy ηzzx ηzzy
}T

= η̄1 + zη̄2, η̃ =
{

ηzzz ηxxz ηyyz ηxyz
}T , (25)

where

η̃ =



1
5

wb
,xx +

1
5

wb
,yy −

1
5

ws
,xx −

1
5

ws
,yy

− 4
15

wb
,xx +

1
15

wb
,yy +

4
15

ws
,xx −

1
15

ws
,yy

− 4
15

wb
,yy +

1
15

wb
,xx +

4
15

ws
,yy −

1
15

ws
,xx

−1
3

wb
,xy +

1
3

ws
,xy


,
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η̄1 =



2
5

u,xx −
1
5

u,yy −
2
5

v,xy

2
5

v,yy −
1
5

v,xx −
2
5

u,xy

− 3
15

u,xx +
4

15
u,yy +

8
15

v,xy

− 3
15

v,yy +
4

15
v,xx +

8
15

u,xy

− 3
15

u,xx −
1

15
u,yy −

2
15

v,xy

− 3
15

v,yy −
1

15
v,xx −

2
15

u,xy



, η̄2 =



−2
5

wb
,xxx +

3
5

wb
,xyy

−2
5

wb
,yyy +

3
5

wb
,xxy

3
15

wb
,xxx −

12
15

wb
,xyy

3
15

wb
,yyy −

12
15

wb
,xxy

3
15

wb
,xxx +

3
15

wb
,xyy

3
15

wb
,yyy +

3
15

wb
,xxy



. (26)

The classical and higher-order stress elastic constitutive relations are expressed as
σxx
σyy
ςxy
ςxz
ςyz

 =


Q11 Q12 0 0 0
Q21 Q22 0 0 0

0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44




εxx
εyy
γxy
γxz
γyz

 , (27)


mxx
myy
mxy
mxz
myz

 = 2Gl12


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




χxx
χyy
χxy
χxz
χyz

 , (28)

px
py
pz

 = 2Gl22

1 0 0
0 1 0
0 0 1

ζx
ζy
ζz

 , (29)



τxxx
τyyy
τyyx
τxxy
τzzx
τzzy


= 2Gl32


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1





ηxxx
ηyyy
ηyyx
ηxxy
ηzzx
ηzzy


,


τzzz
τxxz
τyyz
τxyz

 = 2Gl32


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




ηzzz
ηxxz
ηyyz
ηxyz

 , (30)

where

Q11 = Q22 =
Ee

1− ν2
e

, Q12 = Q21 =
νeEe

1− ν2
e

, Q66 =
Ee

2(1 + νe)
, Q55 = Q44 =

ksEe

2(1 + νe)
,

G =
Ee

2(1 + νe)
, ks =

5
6

,
(31)

in which Ee and νe are the effective Young modulus and Poisson’s ratio, respectively. The discrete
Galerkin weak form for the bending analysis of the FG microplate are described by

∫
Ω

h/2∫
−h/2

(
σxxδεxx + σyyδεyy + ςxyδγxy + ςxzδγxz + ςyzδγyz

)
dΩdz + . . .

+
∫
Ω

h/2∫
−h/2

(
mxxδχxx + myyδχyy + 2mxyδχxy + 2mxzδχxz + 2myzδχyz

)
dΩdz + . . .

+
∫
Ω

h/2∫
−h/2

(
τxxxδηxxx + τyyyδηyyy + 3τyyxδηyyx + 3τxxyδηxxy + 3τzzxδηzzx + 3τzzyδηzzy

)
dΩdz + . . .
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+
∫
Ω

h/2∫
−h/2

(
τzzzδηzzz + 3τxxzδηxxz + 3τyyzδηyyz + 6τxyzδηxyz

)
dΩdz + . . .

+
∫
Ω

h/2∫
−h/2

(
pxδζx + pyδζy + pzδζz

)
dΩdz =

∫
Ω

h/2∫
−h/2

δ
(

wb + ws
)

q0dΩdz.

(32)

Eq. (32) can split into two independent integrals following to middle surface and z-axis direction.
Substituting Eq. (27)–(30) into Eq. (32), the discrete Galerkin weak form can be rewritten as follows∫

Ω

δε̂TD̂ε̂dΩ +
∫
Ω

δ(εs)TDsεsdΩ +
∫
Ω

δ
(

χb
)T

Db
c Γb

c χbdΩ +
∫
Ω

δ(χs)TDs
cΓs

cχsdΩ + . . .

+
∫
Ω

δζ̂
T

D̂di
ζ̂dΩ +

∫
Ω

δ ˆ̄ηTD̂de
Γ̂

de ˆ̄ηdΩ +
∫
Ω

δη̃TDdevΓdevη̃dΩ =
∫
Ω

δ
(

wb + ws
)

q0dΩ,
(33)

where
ε̂ =

{
ε1 ε2}T , ζ̂ =

{
ζ1 ζ2}T

, ˆ̄η =
{

η̄1 η̄2
}T ,

D̂ =

[
Ab Bb

Bb Db

]
, D̂di

=

[
Adi Bdi

Bdi Ddi

]
, D̂de

=

[
Ade Bde

Bde Dde

]
, Γ̂

de
=

[
Γde 0
0 Γde

]
,

(34)

in which (
Ab, Bb, Db

)
=

h/2∫
−h/2

(
1, z, z2

) Q11 Q12 0
Q21 Q22 0

0 0 Q66

dz, Ds =

h/2∫
−h/2

[
Q44 0

0 Q55

]
dz,

Db
c =

h/2∫
−h/2

2Gl12I3×3dz, Ds
c =

h/2∫
−h/2

2Gl12I2×2dz,
(

Adi, Bdi, Ddi
)
=

h/2∫
−h/2

2Gl22
(

1, z, z2
)

I3×3dz,

Ddev =

h/2∫
−h/2

2Gl32I4×4dz,
(

Ade, Bde, Dde
)
=

h/2∫
−h/2

2Gl32
(

1, z, z2
)

I6×6dz,

Γb
c = diag (1, 1, 2) , Γs

c = diag (2, 2) , Γdev = diag (1, 3, 3, 6) , Γde = diag (1, 1, 3, 3, 3, 3) ,

(35)

in which I2×2, I3×3, I4×4, I6×6 are the identity matrices of size 2× 2, 3× 3, 4× 4 and 6× 6, respectively.

3. FG MICROPLATE FORMULATION USING NURBS BASIS FUNCTIONS

For a knot vector Ξ =
{

ξ1, ξ2, . . . , ξn+p+1
}

, B-spline basis functions can be recursively built by the
Cox-de Boor algorithm as follows

N̄i,0 (ξ) =

{
1 if ξi ≤ ξ < ξi+1
0 otherwise

}
(p= 0) , (36)

and

N̄i,p (ξ) =
ξ − ξi

ξi+p − ξi
N̄i,p−1 (ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
N̄i+1,p−1 (ξ) (p > 1) . (37)

Similarly, the two-dimensional B-splines basis functions are calculated by using the tensor product
of two knot vectors Ξ =

{
ξ1, ξ2, . . . , ξn+p+1

}
and H =

{
η1, η2, . . . , ηm+q+1

}
as

Ri,j (ξ, η) = N̄i,p (ξ) M̄j,q (η) . (38)

NURBS basic functions can be defined by a linear combination of B-spline basis functions and their
corresponding weights as follows

Ni,j (ξ, η) = NI (ξ) =
N̄i,p (ξ) M̄j,q (η)wi,j

n
∑
î

m
∑
j

N̄î,p (ξ) M̄ ĵ,q (η)wî, ĵ

. (39)
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The displacements using NURBS basis functions [22] can be expressed as

uh (x, y) =
m×n

∑
I=1


NI (x, y) 0 0 0

0 NI (x, y) 0 0
0 0 NI (x, y) 0
0 0 0 NI (x, y)

qI , (40)

where qI =
{

uI vI wb
I ws

I
}T

are degrees of freedom of control point I.
Substituting Eq. (40) into Eq. (17), the strain components can be rewritten as

ε̂ =
{

ε1 ε2}T
=

n

∑
I=1

{
B1

I B2
I
}TqI =

n

∑
I=1

B̂IqI and εs =
n

∑
I=1

Bs
IqI , (41)

in which,

B1
I =

NI,x 0 0 0
0 NI,y 0 0

NI,y NI,x 0 0

 , B2
I = −

0 0 NI,xx 0
0 0 NI,yy 0
0 0 2NI,xy 0

 , Bs
I =

[
0 0 0 NI,x
0 0 0 NI,y

]
. (42)

Similarly, the curvatures are obtained by substituting Eq. (40) into Eq. (20) as follows

χb =
n

∑
I=1

Bb
cIqI , χs =

n

∑
I=1

Bs
cIqI , (43)

in which,

Bb
cI =


0 0 NI,xy

1
2

NI,xy

0 0 −NI,xy −1
2

NI,xy

0 0
1
2
(

NI,yy − NI,xx
) 1

4
(

NI,yy − NI,xx
)

 , Bs
cI =

1
4

[
−NI,xy NI,xx 0 0
−NI,yy NI,xy 0 0

]
. (44)

Substituting Eq. (40) into Eq. (22), the dilatation components can be rewritten as

ζ̂ =
{

ζ1 ζ2}T
=

n

∑
I=1

{
Bζ1

I Bζ2

I

}T
qI =

n

∑
I=1

B̂ζ
I qI , (45)

where

Bζ1

I =

NI,xx NI,xy 0 0
NI,xy NI,yy 0 0

0 0 −NI,xx − NI,yy 0

 , Bζ2

I =

0 0 −NI,xxx − NI,xyy 0
0 0 −NI,yyy − NI,xxy 0
0 0 0 0

 . (46)

Substituting Eq. (40) into Eq. (25), the dilatation stretch gradient components can be rewritten as

ˆ̄η =
{

η̄1 η̄2
}T

=
n

∑
I=1

{
Bη̄1

I Bη̄2
I

}T
qI =

n

∑
I=1

B̂η̄
I qI , η̃ =

n

∑
I=1

Bη̃
I qI , (47)

where

Bη̄1
I =



2
5

NI,xx −
1
5

NI,yy −2
5

NI,xy 0 0

−2
5

NI,xy
2
5

NI,yy −
1
5

NI,xx 0 0

− 3
15

NI,xx +
4

15
NI,yy

8
15

NI,xy 0 0

8
15

NI,xy − 3
15

NI,yy +
4

15
NI,xx 0 0

− 3
15

NI,xx −
1

15
NI,yy − 2

15
NI,xy 0 0

− 2
15

NI,xy − 3
15

NI,yy −
1

15
NI,xx 0 0



,
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Bη̄2
I =



0 0 −2
5

NI,xxx +
3
5

NI,xyy 0

0 0 −2
5

NI,yyy +
3
5

NI,xxy 0

0 0
3

15
NI,xxx −

12
15

NI,xyy 0

0 0
3

15
NI,yyy −

12
15

NI,xxy 0

0 0
3

15
NI,xxx +

3
15

NI,xyy 0

0 0
3

15
NI,yyy +

3
15

NI,xxy 0



,

Bη̃
I =



0 0
1
5

NI,xx +
1
5

NI,yy −1
5

NI,xx −
1
5

NI,yy

0 0 − 4
15

NI,xx +
1

15
NI,yy

4
15

NI,xx −
1
15

NI,yy

0 0 − 4
15

NI,yy +
1

15
NI,xx

4
15

NI,yy −
1
15

NI,xx

0 0 −1
3

NI,xy
1
3

NI,xy


.

Substituting Eqs. (41), (43), (45) and (47) into Eq. (33), the weak form of the bending analysis of the
FG microplate is rewritten as

Kq = F, (48)

where K (K = Kε +Kχ +Kζ +Kη), M and F are the global stiffness matrix and force vector, respectively,
in which

Kε =
∫
Ω

B̂TD̂B̂dΩ +
∫
Ω

(Bs)TDsBsdΩ, Kχ =
∫
Ω

(
Bb

c

)T
Db

c Γb
cBb

cdΩ +
∫
Ω

(Bs
c)

TDs
cΓs

cBs
cdΩ,

Kζ =
∫
Ω

(
B̂ζ
)T

D̂diB̂ζdΩ, Kη =
∫
Ω

(
B̂η̄
)T

D̂de
Γ̂

deB̂η̄dΩ +
∫
Ω

(
Bη̃
)TDdevΓdevBη̃dΩ,

F =
∫
Ω

q0
{

0 0 NI NI
}TdΩ.

(49)

4. NUMERICAL EXAMPLES AND DISCUSSIONS

In this study, three length scale parameters which assumed to be equal through the thickness direc-
tion l1 = l2 = l3 = l = 15× 10−6 m, are taken the same as in [8]. The FG microplate is made from the
bottom metal surface (Aluminum-Al) to the top ceramic surface (alumina-Al2O3). The material prop-
erties for Al are Em = 70 GPa, vm = 0.3, ρm = 2702 kg/m3 and Al2O3 are Ec = 380 GPa, vc = 0.3,
ρc = 3800 kg/m3. Without loss of generality, to compare results, the cubic NURBS basis function of
17×17 element [22] is only used in the numerical examples.

4.1. FG square microplate

Firstly, we consider the simply supported and fully clamped FG rectangular microplates with the

length (a) and the weight (b) under sinusoidally distributed load (q0 = q̄0 sin
πx
a

sin
πy
b
). The deflection

of the FG microplate are computed by: ŵ =
10h3Ec

q̄0a4 w
(

a
2

,
b
2

)
, in which Ec are the Young’s modulus of

ceramic. Different values of the length-to-thickness ratio (a/h), power index (n), and material length
scale ratio (l/h) are studied to investigate the non-dimensional deflection of FG microplate. The central
non-dimensional deflection is tabulated in Tab. 1. For comparison purpose, referenced results reported
by Zhang et al. [15] using the analytical solution based on the refined plate theory (RPT) with 4 de-
grees of freedom (DOFs), Thai et al. [18] using the IGA based on the third-order shear deformation
theory (TSDT) with 5 DOFs and Thai et al. [16] using the IGA based on RPT are presented. It can be
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seen that an excellent agreement is achieved in the case of l/h = 0. In addition, obtained results are
slightly larger than referenced ones corresponding to the values of power index from 0 to 1, while an
opposite phenomenon is shown for different values of power index. For the case of l/h 6= 0, most of
obtained results are slightly larger than referenced ones. Especially, a slight difference of present results
and referenced ones is shown in the case of l/h = 1 because of using the sFSDT instead of HSDT as in
referenced solutions. In addition, the results of HSDT are smaller than the results of sFSDT due to con-
sidering the higher-order shear term in the MSGT. Besides, as observed from Tab. 1, the non-dimensional
deflection increases when increasing of the power index and the length-to-thickness ratio. While, the
non-dimensional deflection decreases by a rise of the material length scale ratio l/h.

Table 1. Non-dimensional displacement ŵ of FG rectangular microplates (a = b)
under sinusoidally distributed load

a/h n Method
l/h

0 0.05 0.1 0.2 0.5 1.0

Simply supported

5 0.1 Exact-RPT [15] 0.3883 0.3731 0.3341 0.2359 0.0778 0.0230
IGA-TSDT [18] 0.3785 0.3648 0.3290 0.2366 0.0803 0.0240
IGA-RPT [16] 0.3785 0.3305 0.2973 0.2125 0.0717 0.0214

Present 0.3792 0.3671 0.3359 0.2564 0.1206 0.0582

0.5 Exact-RPT [15] 0.5198 0.4983 0.4435 0.3086 0.0997 0.0293
IGA-TSDT [18] 0.5177 0.4975 0.4457 0.3153 0.1045 0.0310
IGA-RPT [16] 0.5176 0.4965 0.4426 0.3098 0.1018 0.0303

Present 0.5192 0.5010 0.4546 0.3397 0.1551 0.0742

1 Exact-RPT [15] 0.6688 0.6396 0.5658 0.3879 0.1223 0.0357
IGA-TSDT [18] 0.6688 0.6412 0.5709 0.3977 0.1286 0.0378
IGA-RPT [16] 0.6688 0.6399 0.5670 0.3908 0.1252 0.0369

Present 0.6691 0.6442 0.5812 0.4285 0.1919 0.0914

2 Exact-RPT [15] 0.8671 0.8286 0.7313 0.4980 0.1544 0.0447
IGA-TSDT [18] 0.8671 0.8307 0.7379 0.5107 0.1627 0.0475
IGA-RPT [16] 0.8671 0.8292 0.7332 0.5021 0.1580 0.0460

Present 0.8592 0.8277 0.7477 0.5530 0.2488 0.1186

4 Exact-RPT [15] 1.0408 0.9967 0.8843 0.6095 0.1921 0.0558
IGA-TSDT [18] 1.0409 0.9994 0.8927 0.6263 0.2034 0.0597
IGA-RPT [16] 1.0409 0.9977 0.8875 0.6159 0.1964 0.0573

Present 1.0101 0.9781 0.8950 0.6831 0.3215 0.1550

10 Exact-RPT [15] 1.2269 1.1790 1.0557 0.7455 0.2454 0.0724
IGA-TSDT [18] 1.2276 1.1829 1.0668 0.7678 0.2614 0.0781
IGA-RPT [16] 1.2276 1.1811 1.0609 0.7548 0.2510 0.0743

Present 1.1802 1.1492 1.0671 0.8457 0.4225 0.2072

10 0.1 IGA-RPT [16] 0.3278 0.3157 0.2842 0.2033 0.0682 0.0203
Present 0.3280 0.3164 0.2864 0.2093 0.0805 0.0336

0.5 IGA-RPT [16] 0.4537 0.4355 0.3887 0.2723 0.0884 0.0260
Present 0.4540 0.4365 0.3917 0.2799 0.1040 0.0428

1 IGA-RPT [16] 0.5890 0.5640 0.5004 0.3453 0.1095 0.0320
Present 0.5890 0.5650 0.5039 0.3550 0.1290 0.0528

2 IGA-RPT [16] 0.7573 0.7253 0.6439 0.4446 0.1407 0.0409
Present 0.7552 0.7249 0.6474 0.4576 0.1671 0.0685

4 IGA-RPT [16] 0.8815 0.8480 0.7614 0.5405 0.1784 0.0526
Present 0.8736 0.8429 0.7630 0.5576 0.2147 0.0895

10 IGA-RPT [16] 1.0087 0.9755 0.8879 0.6535 0.2298 0.0694
Present 0.9966 0.9672 0.8891 0.6767 0.2796 0.1194



264 Chien H. Thai, H. Nguyen-Xuan

a/h n Method
l/h

0 0.05 0.1 0.2 0.5 1.0

Fully clamped

5 0 IGA-TSDT [18] 0.1647 - 0.1404 0.0984 0.0322 0.0095
IGA-RPT [16] 0.1606 0.1535 0.1361 0.0945 0.0308 0.0091

Present 0.1615 0.1567 0.1446 0.1145 0.0588 0.0258

0.5 IGA-TSDT [18] 0.2429 - 0.2050 0.1420 0.0459 0.0135
IGA-RPT [16] 0.2362 0.2253 0.1986 0.1363 0.0440 0.0130

Present 0.2387 0.2308 0.2111 0.1635 0.0817 0.0355

1 IGA-TSDT [18] 0.3113 - 0.2603 0.1774 0.0559 0.0163
IGA-RPT [16] 0.3029 0.2881 0.2523 0.1704 0.0537 0.0158

Present 0.3045 0.2938 0.2673 0.2049 0.1010 0.0438

2 IGA-TSDT [18] 0.4086 - 0.3383 0.2267 0.0693 0.0200
IGA-RPT [16] 0.3976 0.3773 0.3284 0.2183 0.0663 0.0192

Present 0.3919 0.3783 0.3447 0.2648 0.1310 0.0569

5 IGA-TSDT [18] 0.5437 - 0.4476 0.2968 0.0893 0.0256
IGA-RPT [16] 0.5303 0.5025 0.4362 0.2877 0.0856 0.0244

Present 0.4963 0.4819 0.4456 0.3545 0.1832 0.0804

10 IGA-TSDT [18] 0.6304 - 0.5214 0.3505 0.1081 0.0313
IGA-RPT [16] 0.6134 0.5820 0.5071 0.3378 0.1019 0.0292

Present 0.5721 0.5573 0.5195 0.4217 0.2244 0.0992

10 0 IGA-TSDT [18] 0.1170 - 0.1016 0.0730 0.0247 0.0074
IGA-RPT [16] 0.1151 0.1108 0.0997 0.0712 0.0240 0.0071

Present 0.1152 0.1114 0.1017 0.0766 0.0339 0.0161

0.5 IGA-TSDT [18] 0.1773 - 0.1521 0.1068 0.0349 0.0103
IGA-RPT [16] 0.1747 0.1675 0.1492 0.1042 0.0340 0.0100

Present 0.1751 0.1686 0.1522 0.1115 0.0473 0.0222

1 IGA-TSDT [18] 0.2295 - 0.1951 0.1349 0.0430 0.0126
IGA-RPT [16] 0.2261 0.2163 0.1915 0.1318 0.0419 0.0123

Present 0.2262 0.2174 0.1951 0.1409 0.0586 0.0274

2 IGA-TSDT [18] 0.2967 - 0.2517 0.1733 0.0547 0.0159
IGA-RPT [16] 0.2922 0.2794 0.2472 0.1694 0.0532 0.0155

Present 0.2903 0.2792 0.2508 0.1818 0.0759 0.0355

5 IGA-TSDT [18] 0.3676 - 0.3161 0.2233 0.0734 0.0216
IGA-RPT [16] 0.3609 0.3466 0.3100 0.2182 0.0712 0.0209

Present 0.3515 0.3403 0.3113 0.2359 0.1054 0.0503

10 IGA-TSDT [18] 0.4121 - 0.3582 0.2584 0.0884 0.0265
IGA-RPT [16] 0.4041 0.3893 0.3510 0.2523 0.0854 0.0254

Present 0.3927 0.3817 0.3527 0.2745 0.1282 0.0620

4.2. FG circular microplate

Let us consider a FG circular microplate of the radius R and thickness h subjected to a uniform

load q0. The deflection of the FG circular microplate are calculated by: ŵ =
64Dc

q0R4 w (0, 0), where

Dc =
Ech3

12 (1− v2
c )

. Different types of boundary condition as roller, simply supported and fully clamped

are studied. Similar to the previous example, different values of thickness-to-radius ratio (h/R) and
material length scale ratio (l/h) are investigated. The central non-dimensional deflection of FG plates is
given in Tab. 2. The non-dimensional deflection proposed by Zhang et al. [14] based analytical solution
using TSDT, Thai et al. [18] based on IGA-TSDT and Thai et al. [16] based on IGA-RPT are provided
to compare results. It can be seen that obtained results are in good agreement with those referenced
ones Basically, most of obtained results are slightly larger than compared to referenced solutions within
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considering of size effects. Again, we can clearly see that the non-dimensional displacement of the mi-
croplate is decreased when material length scale ratio increases. For reason, it can be concluded that the
size-dependent microplate model based on MSGT can be increased the stiffness of microplate leading
to a decline of the displacement.

Table 2. Comparison of normalized displacement of FG circular microplate with a power index n = 1.5

h/R Reference
l/h

0.0 0.1 0.2 0.5 1.0

Roller

0.2 Exact-TSDT [14] 9.9266 8.6275 5.9775 1.9019 0.5556
IGA-TSDT [18] 9.9230 8.4748 5.8988 1.8917 0.5529
IGA-RPT [16] 9.9230 7.8347 5.8880 1.9045 0.5464

Present 9.9132 8.4943 6.0249 2.1636 0.9185

0.15 Exact-TSDT [14] 9.8090 8.4931 5.9080 1.8746 0.5464
IGA-TSDT [18] 9.7621 8.3364 5.7993 1.8557 0.5417
IGA-RPT [16] 9.7620 8.3281 5.7898 1.9669 0.5419

Present 9.7565 8.3551 5.8680 2.0294 0.7498

0.1 Exact-TSDT [14] 9.7734 8.4464 5.8141 1.8519 0.5399
IGA-TSDT [18] 9.6471 8.2372 5.7278 1.8299 0.5336
IGA-RPT [16] 9.6470 8.2315 5.7138 1.8262 0.5317

Present 9.6446 8.2434 5.7478 1.9036 0.6267

0.05 Exact-TSDT [14] 9.7669 8.3167 5.7794 1.8406 0.5363
IGA-TSDT [18] 9.5781 8.1776 5.6846 1.8143 0.5288
IGA-RPT [16] 9.5780 8.1729 5.6751 1.8101 0.5268

Present 9.5714 8.1757 5.6848 1.8285 0.5512

0.01 Exact-TSDT [14] 9.7669 8.3050 5.7673 1.8370 0.5349
IGA-TSDT [18] 9.5560 8.1584 5.6706 1.8092 0.5272
IGA-RPT [16] 9.5560 8.1542 5.6625 1.8041 0.5255

Present 9.5559 8.1543 5.6629 1.8050 0.5265

Simply supported

0.2 Exact-TSDT [14] 8.5551 7.4543 5.3811 1.8359 0.5497
IGA-TSDT [18] 8.3939 7.3241 5.3088 1.8251 0.5470
IGA-RPT [16] 8.3938 7.2072 5.3635 1.8280 0.5451

Present 8.3830 7.3015 5.4968 2.0036 8.9012

0.15 Exact-TSDT [14] 8.3839 7.3358 5.3121 1.8074 0.5405
IGA-TSDT [18] 8.2325 7.1847 5.2085 1.7892 0.5358
IGA-RPT [16] 8.2325 7.1624 4.7928 1.7867 0.5297

Present 8.2262 7.2219 5.3664 1.6518 0.6591

0.1 Exact-TSDT [14] 8.2621 7.2448 5.2204 1.7849 0.5339
IGA-TSDT [18] 8.1171 7.0847 5.1359 1.7632 0.5278
IGA-RPT [16] 8.1171 7.0787 5.1863 1.7648 0.5228

Present 8.1144 7.0867 5.1405 1.8033 0.6392

0.05 Exact-TSDT [14] 8.2303 7.1476 5.1764 1.7733 0.5304
IGA-TSDT [18] 8.0479 7.0245 5.0920 1.7474 0.5229
IGA-RPT [16] 8.0479 7.0203 5.0833 1.7486 0.5183

Present 8.0472 7.0225 5.0920 1.7616 0.5453

0.01 Exact-TSDT [14] 8.2119 7.1440 5.1735 1.7693 0.5289
IGA-TSDT [18] 8.0258 7.0052 5.0778 1.7422 0.5213
IGA-RPT [16] 8.0257 7.0009 5.0696 1.7372 0.5196

Present 8.0257 7.0010 5.0700 1.7380 0.5206
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h/R Reference
l/h

0.0 0.1 0.2 0.5 1.0

Fully clamped

0.2 Exact-TSDT [14] 2.6947 2.2749 1.5768 0.4877 0.1415
IGA-TSDT [18] 2.7015 2.2896 1.5768 0.4994 0.1456
IGA-RPT [16] 2.6997 2.2808 1.5526 0.4910 0.1442

Present 2.6935 2.3255 1.6870 0.7106 0.3422

0.15 Exact-TSDT [14] 2.5628 2.1482 1.4934 0.4666 0.1353
IGA-TSDT [18] 2.5459 2.1632 1.4934 0.4733 0.1378
IGA-RPT [16] 2.5447 2.1558 1.4797 0.4670 0.1354

Present 2.5404 2.1802 1.5515 0.5993 0.2646

0.1 Exact-TSDT [14] 2.4566 2.0878 1.4309 0.4512 0.1307
IGA-TSDT [18] 2.4340 2.0705 1.4308 0.4532 0.1319
IGA-RPT [16] 2.4332 2.0647 1.4204 0.4472 0.1301

Present 2.4311 2.0752 1.4525 0.5101 0.1968

0.05 Exact-TSDT [14] 2.3910 2.0320 1.3918 0.4410 0.1278
IGA-TSDT [18] 2.3664 2.0137 1.3918 0.4404 0.1280
IGA-RPT [16] 2.3661 2.0090 1.3831 0.4352 0.1263

Present 2.3655 2.0116 1.3912 0.4518 0.1452

0.01 Exact-TSDT [14] 2.3765 2.0226 1.3785 0.4381 0.1270
IGA-TSDT [18] 2.3446 1.9953 1.3790 0.4361 0.1267
IGA-RPT [16] 2.3446 1.9910 1.3709 0.4311 0.1250

Present 2.3445 1.9911 1.3712 0.4318 0.1258

5. CONCLUSIONS

In this paper, a novel simple size-dependent isogeometric approach using MSGT, sFSDT and iso-
geometric analysis was presented to analyze the bending behavior of FG microplates. The advantages
of the present approach are only to contain four unknowns and three material length scale parameters.
Thus, it is suitable for computation of size-dependent practical problems. In addition, material proper-
ties as Young’s modulus, Poison’s ratio and density mass were computed by the power rule. In addition,
the classical sFSDT model was retrieved from the present model by taking zero of all material length
scale parameters. Numerical results pointed out that the non-dimensional deflection obtained from the
present solution are slightly larger than those referenced ones in the case of l/h 6= 0. In addition, the
stiffness of microplate can be increased as considering small scale effects leading to a decrease of the
deflection.
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