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Abstract. When the method of finite spheres is used for the solution of time-harmonic acoustic wave
propagation problems in nonhomogeneous media, a mixed (or saddle-point) formulation is obtained
in which the unknowns are the pressure fields and the Lagrange multiplier fields defined at the inter-
faces between the regions with distinct material properties. Then certain inf-sup conditions must be
satisfied by the discretized spaces in order for the finite-dimensional problems to be well-posed. We
discuss in this paper the analysis and use of these conditions. Since the conditions involve norms of
functionals in fractional Sobolev spaces, we derive ‘stronger’ conditions that are simpler in form. These
new conditions pave the way for the inf-sup testing, a tool for assessing the stability of the discretized
problems.
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1. INTRODUCTION

1.1. Overview

The method of finite spheres (MFS) is a meshfree method [1], such as the smoothed particle hydro-
dynamics (SPH) [2], the element-free Galerkin (EFG) [3], and the meshless local Petrov-Galerkin meth-
ods [4]. While each of these procedures have been used differently [5], the basic characteristic shared
by all of them is the complete absence of meshes, as those employed in the traditional finite element
method [6].

The MFS is a truly meshfree method (in the sense that the numerical integrations are carried out
locally on the subdomains) and leads to sparse linear systems of algebraic equations. The method has
also been used in the AMORE scheme of analysis [7] and it is the basis for the development of the
‘overlapping finite elements’ [8]. First proposed as a tool for the analysis of solids, the MFS has also suc-
cessfully been applied to electromagnetic wave scattering problems [9]. Building on these results, we
conducted a study [10] in which we used the MFS to solve time-harmonic acoustic wave propagation
problems in nonhomogeneous media [11]. In these solutions, objects of different material properties
(density and bulk modulus) are considered in a homogeneous host medium. The discontinuity of ma-
terial properties across the interfaces between the objects and the host medium leads to jumps in the
gradients of the pressure field. If a meshfree method is used for the solution of such problems, oscil-
lations in the predicted response are observed unless specially treated. The pressure field is governed
by the Helmholtz equation, and we use a Lagrange multiplier field to impose the discontinuity of the
gradients in a weak sense. Thus we are led to a two-field mixed formulation [6,12–14] in which we seek
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to solve for a primary field (in this case, the pressure field) and a secondary field (given by the Lagrange
multiplier field).

The present paper can be regarded to be a companion paper to [10]. In the following, we show
in detail how the weak formulation naturally leads to the use of Lagrange multipliers and the relevant
inf-sup conditions. We recast these inf-sup conditions into forms easier to evaluate. In particular, these
final inf-sup conditions can be used for a numerical inf-sup test. In a sense, this presentation provides
the theoretical foundation for the numerical simulations carried out in [10].

1.2. Lagrange multiplier fields and dual norms

In the standard variational formulation of scalar problems with discontinuous gradients (like in
acoustic wave propagations in nonhomogeneous media), the Lagrange multiplier field is generally a
functional in the space H−1/2 (Γ), the dual space of the fractional Sobolev space H1/2 (Γ), where Γ de-
notes the interface between the media of different material properties [15–17]. Given that the direct
evaluation of the H1/2 norm of functions is an involved task (due to double integrals along Γ and singu-
larities in the integrands [16, 17]), and that the original inf-sup conditions involve the evaluation of the
H−1/2 dual norm of Lagrange multiplier fields, it is difficult to verify whether these conditions hold true.

There are two approaches to circumvent the difficulties due to the H−1/2 norms in the inf-sup
conditions. In the first, instead of evaluating the inf-sup condition relative to the problem at hand,
the focus is directed to the final linear system of algebraic equations [18–22]. Since the dimension of
the subspace used to approximate the Lagrange multiplier field must be smaller than the dimension
of the subspace used to approximate the pressure field [23], the idea is to obtain an upper limit on
the dimension of the first and ensure that the number of Lagrange multiplier constraint equations (in
the linear system) remains smaller than this upper limit [6]. The authors arrive at an algebraic relation
concerning the suitable number of Lagrange multiplier DoF’s (degrees of freedom) to be used. However,
this algebraic relation is necessary for the well-posedness of the problem solution, but not sufficient (i.e.,
if the inf-sup condition holds, then this relation is satisfied, but satisfying this relation does not imply
that the inf-sup condition holds).

In the second approach we would transform the inf-sup condition (which involves the H−1/2 dual
norm) into a weaker inf-sup condition that does not involve the H−1/2 norm. Mesh-dependent norms and
inequalities are used, so that the H−1/2 dual norm of the Lagrange multiplier field is usually substituted
by some quantity involving the discretization length h (a characteristic of the mesh) [24–27]. However,
in some cases the weaker inf-sup condition is necessary (i.e., if the actual inf-sup condition holds, so
does the weaker condition), but not sufficient (i.e., satisfying the weaker condition does not imply that
the actual condition holds [24]). In other words, the weaker condition can only be used to rule out
possible discretization schemes [24]). Once the weaker condition is established, an inf-sup test can be
performed [28].

In this work, we propose a third approach. The difficulty presented by the H−1/2 norm is removed
not by using a weaker condition but by using a stronger inf-sup condition. This is achieved by find-
ing new inf-sup conditions which do not involve the H−1/2 norm and are stronger than the original
conditions (which involve the H−1/2 norm). Essentially, we look for sufficient conditions: If the new
conditions hold, then the original conditions also hold true necessarily. Schematically,

new
inf-sup condition ⇒ original

inf-sup condition ⇒ Wellposedness
of the discrete problem (1)

The key ingredient is the correct use of an auxiliary theorem which allows us to replace H−1/2

norms by H1 norms in certain geometric settings. The resulting new inf-sup conditions are stronger and
at the same time easier to deal with than the original conditions. Once we have established the new
stronger conditions, the well-posedness of the discrete problems follows from (1). The stability of the
discretized problems can finally be assessed by the aforementioned inf-sup test. This test was originally
developed and applied to real-valued variational problems and matrices [28–30]. Since the Helmholtz
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problem examined here is complex-valued in nature, we first treat the complex-valued matrices in order
to derive from them certain real-valued matrices. We then apply the inf-sup test.

1.3. Organization of the manuscript

In Section 2 we introduce the equations to be solved for the problems considered, together with the
assumptions made regarding the geometry of the problem. We derive the weak form of the problem
formulation in Section 3 and show how the Lagrange multiplier fields arise naturally. In Section 4
we give a brief discussion of the discretization process using the method of finite spheres. The well-
posedness of the variational problem depends on two distinct inf-sup conditions, given in Section 5. We
derive in Sections 6 and 7 more tractable inf-sup conditions which can be used in the inf-sup test. In
Section 8, we provide a demonstration of the MFS method, followed by the inf-sup testing procedure in
Section 9. Finally, we give our concluding remarks.

2. EQUATIONS OF WAVE PROPAGATION

In this section we specify the geometrical properties of the problem and state the equations to
be solved.

2.1. Geometry

The geometrical setting corresponding to our problem is specified in detail in [10]. In R2, let B (0; R)
be an open ball with radius R and centered at the origin, see Fig. 1. The boundary of this region is the
circle denoted by ΓR. Within this region, we place a number of objects with distinct characteristic mate-
rial properties. The regions occupied by these objects are open subsets of B (0; R), which are identified
by numerical indices, beginning with 1. (For example, if our problem is characterized by 3 objects im-
mersed in the host medium as in Fig. 1, the regions occupied by them are Ω1, Ω2 and Ω3.) The host
medium is represented by the set difference between B (0; R) and the union of the closures of the regions
occupied by the objects. The region corresponding to the host medium will always be indexed by a
number equal to the number of objects plus 1 (here Ω4 in Fig. 1). We assume the boundaries of all these
regions to be Lipschitz continuous curves. Moreover, given any two regions, their boundaries are such
that either they do not touch each other (i.e., they lie at a certain distance from each other, as ∂Ω1 and
∂Ω3 in Fig. 1) or, if they do, then their intersection must be a single closed curve (as ∂Ω1 and ∂Ω2 in
Fig. 1). We shall focus our attention on sufficiently regular closed curves, described by a finite number
of vertices connected together either by straight segments or by arcs. We refer to [10] for examples of
boundaries with different geometrical configurations.

Throughout this paper we will refer to the geometry illustrated in Fig. 1, but the procedures pre-
sented below can be generalized to any kind of geometry as long as the above-stated assumptions hold.
In the geometrical setting depicted in Fig. 1, the boundaries of each region can be represented by the
union of closed curves as

∂Ω1 = Γ1,2, (2a)

∂Ω2 = Γ1,2 ∪ Γ2,4, (2b)

∂Ω3 = Γ3,4, (2c)

∂Ω4 = Γ2,4 ∪ Γ3,4 ∪ ΓR, (2d)

where Γ1,2
def
= ∂Ω1 ∩ ∂Ω2 denotes the interface between regions Ω1 and Ω2, and likewise for the other

pairs of indices. So in accordance with the assumptions made above, given any two distinct indices i and
j taken from the set {1, 2, 3, 4}, either Γi,j is the empty set (as Γ1,3 in Fig. 1), or Γi,j is a single closed curve
(as Γ1,2 in Fig. 1). Regions Ω1 and Ω3 are simply-connected, whereas regions Ω2 and Ω4 are not simply-
connected. The boundaries ∂Ω2 and ∂Ω4 are represented by the union of more than one closed curve,
according to (2b) and (2d), respectively. The region representing the host medium will, by definition,
always be a not simply-connected domain (i.e., it contains holes left by the objects).
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Fig. 1. A geometrical setting with 3 objects, occupying the open regions Ω1, Ω2, and Ω3. These objects are 

immersed in the host medium, represented by region Ω4, and given by the set difference between the circle 

𝐵(𝟎; 𝑅) and Ω̅1 ∪ Ω̅2 ∪ Ω̅3, where Ω̅1 = Ω1 ∪ 𝜕Ω1, and so on. This region is shown in blue. The geometry 

portrayed here is a representative of the class of all geometries amenable to be treated by the methods described 

in this work. All boundaries 𝜕Ω1, … , 𝜕Ω4 are Lipschitz curves. Regions such as Ω2, which are not simply-

connected, can model the cladding of some object, in this case, the object occupying region Ω1. 

𝜕Ω1 = Γ1,2, (2𝑎) 

𝜕Ω2 = Γ1,2 ∪ Γ2,4, (2𝑏) 

𝜕Ω3 = Γ3,4, (2𝑐) 

𝜕Ω4 = Γ2,4 ∪ Γ3,4 ∪ Γ𝑅 , (2𝑑) 

where Γ1,2 ≝ 𝜕Ω1 ∩ 𝜕Ω2 denotes the interface between regions Ω1 and Ω2, and likewise for the other 

pairs of indices. So in accordance with the assumptions made above, given any two distinct indices 𝑖 
and 𝑗 taken from the set {1,2,3,4}, either Γ𝑖,𝑗 is the empty set (as Γ1,3 in Fig. 1), or Γ𝑖,𝑗 is a single closed 

curve (as Γ1,2 in Fig. 1). Regions Ω1 and Ω3 are simply-connected, whereas regions Ω2 and Ω4 are not 

simply-connected. The boundaries 𝜕Ω2 and 𝜕Ω4 are represented by the union of more than one closed 

curve, according to (2b) and (2d), respectively. The region representing the host medium will, by 

definition, always be a not simply-connected domain (i.e., it contains holes left by the objects). 

2.2. The wave equations 

The scattering of acoustic waves considered here refers to an incident (or incoming) pressure 

wave 𝑝𝑖𝑛𝑐 propagating in the host medium (represented by a function defined within 𝐵(𝟎; 𝑅) and 

along its known boundary Γ𝑅), which is perturbed by the material objects. Based on our setting, the 

wave equations to be solved within each region are [11]: For 𝑟 = 1,… ,4, find 𝑝𝑟 ∶ Ω̅𝑟 ⟶ ℂ such that 

for any 𝒙 ∈ Ω𝑟, 

𝛁 ∙ (
1

𝜌𝑟(𝒙)
𝛁𝑝𝑟(𝒙)) +

𝜔2

𝐾𝑟(𝒙)
𝑝𝑟(𝒙) = 0. (3) 

Fig. 1. A geometrical setting with 3 objects, occupying the open regions Ω1, Ω2, and Ω3. These objects are immersed
in the host medium, represented by region Ω4, and given by the set difference between the circle B (0; R) and
Ω̄1 ∪ Ω̄2 ∪ Ω̄3, where Ω̄1 = Ω1 ∪ ∂Ω1, and so on. This region is shown in blue. The geometry portrayed here is
a representative of the class of all geometries amenable to be treated by the methods described in this work. All
boundaries ∂Ω1, . . . , ∂Ω4 are Lipschitz continuous curves. Regions such as Ω2, which are not simply-connected,

can model the cladding of some object, in this case, the object occupying region Ω1

2.2. The wave equations

The scattering of acoustic waves considered here refers to an incident (or incoming) pressure wave
pinc propagating in the host medium (represented by a function defined within B (0; R) and along its
boundary ΓR), which is perturbed by the material objects. Based on our setting, the wave equations to
be solved within each region are [11]: For r = 1, . . . , 4, find pr : Ω̄r → C such that for any x ∈ Ωr,

∇ ·
(

1
ρr (x)

∇pr (x)
)
+

ω2

Kr (x)
pr (x) = 0. (3)

In the equations above, pr is the phasor pressure field (in N/m2). It is related to the time-harmonic
pressure Pr by Pr(x, t) = Re

{
pr(x)ejωt

}
, where ω = 2π f is the angular frequency (in rad/s), f is

the frequency (in Hz), and Re{·} denotes the real part of a complex quantity. The density (in kg/m3)
and the bulk modulus (in Pa) within region Ωr are given by the known functions ρr : Ωr → R+ and
Kr : Ωr → R+, respectively. We assume that the material properties of the host medium are constant, i.e.,
ρ4 and K4 are constant functions. These constants are used to normalize the density and bulk modulus
for all other regions, i.e., we define ‘relative’ properties, and write, for r = 1, . . . , 4 and for x ∈ Ωr,

ρr,rel(x) def
= ρr(x)/ρ4, (4a)

Kr,rel(x) def
= Kr(x)/K4. (4b)

The quantities ρr,rel and Kr,rel are dimensionless. It follows from these assumptions that ρ4,rel =
K4,rel = 1 throughout the host medium Ω4. Substituting (4a) and (4b) in (3), we obtain new equations
for the pressure fields: For each r = 1, . . . , 4, find pr : Ω̄r → C such that for any x ∈ Ωr,

∇ ·
(

1
ρr,rel(x)

∇pr(x)
)
+

k2

Kr,rel(x)
pr(x) = 0, (5)
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where the wavenumber associated with the host medium is given by k = ω/c (in rad/m), and the speed
of sound in the host medium is c =

√
K4/ρ4. The boundary condition to be satisfied by p4 along ΓR is

∇p4(x) · n4,∞(x) +
(

jk +
1

2R

)
p4(x) = F(x), (6a)

for all x ∈ ΓR, where n4,∞ is the outward-pointing unit normal vector at x (see Fig. 1), and the function
F is given by

F(x) def
= ∇pinc(x) · n4,∞(x) +

(
jk +

1
2R

)
pinc(x), (6b)

for all x ∈ ΓR, where pinc is the incident field. Eqs. (6a) and (6b) are derived after application of the first-
order Bayliss–Turkel absorbing boundary conditions along the circle ΓR [31]. Considering the interface
conditions, we have the closed curves Γ1,2, Γ2,4, and Γ3,4 in Fig. 1. Along each of these interfaces, we
impose the traditional equations of equilibrium (equal pressures on both sides of the interface) and
compatibility (equal normal velocities). When the velocities are replaced by pressure gradients, we
obtain jumps (or discontinuities) in their normal components, since the densities are different on the
two sides of the interface.

3. WEAK FORMS

3.1. Function spaces

The problem in strong form is defined pointwise by Eqs. (5), complemented by the boundary con-
dition (6a) and by the interface conditions. When looking for weak solutions, the fields are no longer de-
fined pointwise, and must be sought within suitable Lebesgue and Sobolev spaces [32,33]. We therefore
shall no longer consider the dependence of the fields on position x. The behavior of the pressure fields
at the boundaries and interfaces is characterized by their traces, and we now assume that pr : Ωr → C,
for r = 1, . . . , 4. We look for weak solutions regular enough to satisfy pr ∈ H1 (Ωr), for r = 1, . . . , 4.
Moreover, we assume material properties such that (1/ρr,rel) ∈ C (Ω̄r) and (1/Kr,rel) ∈ C (Ω̄r). For
bounded domains Ωr we have C (Ω̄r) ⊂ L∞ (Ωr) (see, e.g., chapter 6 in [34]). For further details on
the regularity of weak solutions to the Helmholtz equation, we refer to [35–37]. We need the following
result, discussed in [13, 38–40].

Theorem 3.1. Let Ω be a domain in R2 with Lipschitz continuous boundary ∂Ω. Suppose that u ∈ H1 (Ω) , ¯̄σ ∈
L∞(Ω)2×2, and ¯̄σ ·∇u ∈ H(div; Ω). It can be concluded that

1. γn,∂Ω( ¯̄σ ·∇u) ∈ H−1/2(∂Ω). (7a)

2. For any v ∈ H1(Ω),
∫
Ω

v∇ · ( ¯̄σ ·∇u) dΩ +
∫
Ω

∇v · ( ¯̄σ ·∇u) dΩ =
〈
γn,∂Ω ( ¯̄σ ·∇u) |γ∂Ω (v)

〉
H1/2(∂Ω) ,

(7b)

where γ∂Ω (v) ∈ H1/2 (∂Ω) is the (interior) trace of v along the boundary ∂Ω, and γn,∂Ω( ¯̄σ ·∇u) is the normal
trace of ¯̄σ ·∇u along ∂Ω. The brackets represent the duality pairing between the functional γn,∂Ω( ¯̄σ ·∇u) ∈
H−1/2 (∂Ω) and the function γ∂Ω (v) ∈ H1/2 (∂Ω).

In order to use this theorem, for r = 1, . . . , 4, we make the substitutions Ω = Ωr, u = pr, and
¯̄σ = (1/ρr,rel)

¯̄I, where ¯̄I is the identity tensor. Using the assumptions we made regarding the regularity
of 1/ρr,rel and 1/Kr,rel , it can be shown that ¯̄σ ∈ L∞ (Ωr)

2×2 and that (1/ρr,rel)∇pr ∈ H (div; Ωr). We
conclude from (7a) that the normal trace γn,∂Ωr ((1/ρr,rel)∇pr) belongs to H−1/2 (∂Ωr). The equations
in weak form are obtained from (5) and (7b): For r = 1, . . . , 4 and for any vr ∈ H1 (Ωr),∫

Ωr

(
1

ρr,rel
∇vr ·∇pr −

k2

Kr,rel
vr pr

)
dΩ−

〈
γn,∂Ωr

(
1

ρr,rel
∇pr

)∣∣∣∣γ∂Ωr (vr)

〉
H1/2(∂Ωr)

= 0. (8)
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The following result is fundamental to justifying the form assumed by the boundary and interface
conditions in the weak sense, when the region Ωr is not simply-connected (as Ω2 and Ω4 in Fig. 1). We
give the proof in Appendix C.

Theorem 3.2. Let Ω be an open, bounded, and not simply-connected region of R2 with Lipschitz continuous
boundary ∂Ω (see example in Fig. 2). Suppose the boundary ∂Ω can be represented by the union of a number of
connected components (“pieces”) as ∂Ω = σ1 ∪ · · · ∪ σc, where c > 1. These connected components are closed
curves, and lie at a certain distance from each other. Consider the k-th connected component σk of ∂Ω, where
1 ≤ k ≤ c. Let the extension by zero operator E[σk ,∂Ω] be defined as: For any w ∈ H1/2 (σk), E[σk ,∂Ω] (w) is a
function defined on the whole boundary ∂Ω such that

E[σk ,∂Ω](w)
def
=

{
w on σi, i = k
0 on σi, i 6= k (9a)

It can be concluded that:
1. E[σk ,∂Ω] is a linear and bounded operator from H1/2 (σk) into H1/2 (∂Ω).
2. There is an operator Λ[∂Ω,σk ]

: H−1/2(∂Ω) → H−1/2 (σk) such that for any µ ∈ H−1/2 (∂Ω) and for
any w ∈ H1/2 (σk), 〈

Λ[∂Ω,σk ]
(µ) | w

〉
H1/2(σk)

=
〈

µ | E[σk ,∂Ω](w)
〉

H1/2(∂Ω)
. (9b)

3. For any µ ∈ H−1/2 (∂Ω) and for any g ∈ H1/2 (∂Ω),

〈 µ | g 〉H1/2(∂Ω) =
c

∑
k=1

〈
Λ[∂Ω,σk ]

(µ)
∣∣∣ g| σk

〉
H1/2(σk)

, (9c)

where g|σk
is the restriction of g to σk. Fig. 2 shows the geometrical notions involved in this theorem.

Fig. 2. Geometrical notions involved in Theorem 3.2. In this example, the region Ω is not simply-connected. Its
boundary ∂Ω is composed of 4 connected components σ1, . . . , σ4. These components are all closed curves, and do
not touch each other. In this example, c = 4, and we have ∂Ω = σ1 ∪ σ2 ∪ σ3 ∪ σ4. We consider the second component
σ2, shown in red. Let w be an arbitrary function whose domain of definition is σ2. Suppose w belongs to the space
H1/2 (σ2). The new function E[σ2,∂Ω] (w) in (9a) is defined in all of ∂Ω; it coincides with w at the points located along
σ2, and it is zero at the points located along σ1, σ3, and σ4 (shown in black). Let µ be a functional to be paired with
functions defined on the whole of ∂Ω. Suppose µ belongs to H−1/2 (∂Ω). The new functional Λ[∂Ω,σ2] (µ) in (9b)

belongs to H−1/2 (σ2), and must be paired with functions defined on σ2 only

3.2. Boundary conditions in the weak sense

The objective of this subsection is to derive a variational expression to replace the pointwise condi-
tion (6a).
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3.2.1. The incident field

The function defined in (6b) in terms of the incident pressure field pinc must be regular enough
to belong to L2 (ΓR). It can be shown that incident fields given by plane wave solutions of the form
pinc (x) = e−jk·x, when substituted in (6b), allow us to conclude that ‖F‖L2(ΓR)

< ∞. In the expression
of the plane wave, k = kk̂, where the unit vector k̂ gives the direction of propagation of the plane wave,
and x = [x, y] is the radius vector.

3.2.2. Variational expression

Since p4 ∈ H1 (Ω4) (see Section 3.1), its trace γ∂Ω4 (p4) belongs to H1/2 (∂Ω4) (see Theorem A.1
in Appendix A). Moreover, since ΓR is a subset of ∂Ω4 (see (2d)), it follows that the restriction of the
trace to ΓR belongs to H1/2 (ΓR) (property 2 in Appendix B). Consider the bilinear form g : H1/2 (ΓR)×
H1/2 (ΓR)→ C defined as: For any (t, w) ∈ H1/2 (ΓR)× H1/2 (ΓR),

g(t, w)
def
=

∫
ΓR

(
jk +

1
2R

)
twdΓ. (10a)

It can be shown that g is bounded, i.e., we can find a positive constant C such that |g(t, w)| ≤
C‖t‖H1/2(ΓR)

‖w‖H1/2(ΓR)
. If we fix the first coordinate, i.e., if we make t = γ∂Ω4 (p4)

∣∣
ΓR

, then we can
construct a linear and bounded functional

G′(w)
def
= g

(
γ∂Ω4 (p4)

∣∣
ΓR

, w
)

, (10b)

for any w ∈ H1/2 (ΓR), i.e., G′ ∈ H−1/2 (ΓR).
It can be shown that G′ is bounded, i.e., we can find a positive constant C (independent of w) such

that
∣∣G′ (w)

∣∣ ≤ C‖w‖H1/2(ΓR)
. Since G′ is linear and bounded, it follows that G′ ∈ H−1/2 (ΓR).

We introduce now another linear functional F′ : H1/2 (ΓR)→ C defined as: For any w ∈ H1/2 (ΓR),

F′(w)
def
=

∫
ΓR

FwdΓ, (11)

where the function F is defined in (6b). If the incident field pinc is assumed to be a plane wave, and
using the fact that ‖F‖L2(ΓR)

< ∞ (see Section 3.2.1), it is straightforward to show that F′ is bounded. It

thus follows that F′ ∈ H−1/2 (ΓR).
The region Ω4 corresponding to the host medium is not simply-connected (see Section 2.1). More-

over, we note that the normal trace γn,∂Ω4 ((1/ρ4,rel)∇p4) belongs to H−1/2 (∂Ω4), see Section 3.1. Since
ρ4,rel = 1 (see (4a)), we use (2d) and make the substitutions Ω = Ω4, σk = ΓR, and µ = γn,∂Ω4 (∇p4)
in Theorem 3.2. The second conclusion (9b) allows us to conclude that there is an operator Λ[∂Ω4,ΓR ] :
H−1/2 (∂Ω4)→ H−1/2 (ΓR) such that for any w ∈ H1/2 (ΓR),〈

Λ[∂Ω4,ΓR ]

(
γn,∂Ω4 (∇p4)

)
| w
〉

H1/2(ΓR)
=
〈

γn,∂Ω4 (∇p4) | E[ΓR ,∂Ω4]
(w)

〉
H1/2(∂Ω4)

, (12)

where E[ΓR ,∂Ω4]
takes a function w defined on ΓR and extends it by zero to the rest of the boundary ∂Ω4

(i.e., along the connected components Γ2,4 and Γ3,4, see (2d)). The boundary condition in pointwise sense
(6a) is substituted by the operator equation:

Λ[∂Ω4,ΓR ]

(
γn,∂Ω4 (∇p4)

)
+ G′ = F′, (13)

in H−1/2 (ΓR) , where G′ and F′ are defined in (10b) and (11), respectively. Eq. (13) immediately gives
our desired variational expression once we form the duality pairings with elements from the space
H1/2 (ΓR).

3.3. Interface conditions in the weak sense

We must now derive suitable variational expressions for the interface conditions that will replace
those defined in a pointwise sense (see [10]).
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3.3.1. The first set of interface conditions

There are three interfaces in the geometry of Fig. 1, namely, the closed curves Γ1,2, Γ2,4, and Γ3,4.
Continuity of the pressure fields across these interfaces can be imposed in the weak sense through the
expressions 〈

µ
∣∣γ∂Ω2 (p2)

∣∣
Γ1,2
− γ∂Ω1 (p1)

〉
H1/2(Γ1,2)

= 0, for any µ ∈ H−1/2 (Γ1,2) , (14a)〈
µ
∣∣γ∂Ω4 (p4)

∣∣
Γ2,4
− γ∂Ω2 (p2)

∣∣
Γ2,4

〉
H1/2(Γ2,4)

= 0, for any µ ∈ H−1/2 (Γ2,4) , (14b)〈
µ
∣∣γ∂Ω4 (p4)

∣∣
Γ3,4
− γ∂Ω3 (p3)

〉
H1/2(Γ3,4)

= 0, for any µ ∈ H−1/2 (Γ3,4) , (14c)

where, for the case of not simply connected regions, γ∂Ω2 (p2)
∣∣
Γ1,2

means the trace of p2 (originally
defined along the whole of boundary ∂Ω2) restricted to Γ1,2, and similarly for the others.

3.3.2. The second set of interface conditions

We consider first the interface Γ1,2, between regions Ω1 and Ω2. According to Section 3.1, the
normal trace γn,∂Ω1 ((1/ρ1,rel)∇p1) belongs to H−1/2 (∂Ω1), or to H−1/2 (Γ1,2), since ∂Ω1 = Γ1,2, by (2a).
Still in accordance with Section 3.1, the normal trace γn,∂Ω2 ((1/ρ2,rel)∇p2) belongs to H−1/2 (∂Ω2). In
order to “restrict” this functional to Γ1,2, we apply Theorem 3.2. We use (2b) and make the substitutions
Ω = Ω2, σk = Γ1,2, and µ = γn,∂Ω2 ((1/ρ2,rel)∇p2) in Theorem 3.2. From the second conclusion
(9b), we conclude that there is an operator Λ[∂Ω2,Γ1,2]

: H−1/2 (∂Ω2) → H−1/2 (Γ1,2) such that for any

w ∈ H1/2 (Γ1,2),〈
Λ[∂Ω2,Γ1,2]

(
γn,∂Ω2

(
1

ρ2,rel
∇p2

))
| w
〉

H1/2(Γ1,2)

=

〈
γn,∂Ω2

(
1

ρ2,rel
∇p2

)
| E[Γ1,2,∂Ω2] (w)

〉
H1/2(∂Ω2)

,

where E[Γ1,2,∂Ω2] takes a function w defined on Γ1,2 and extends it by zero to the rest of the boundary
∂Ω2 (i.e., along the connected component Γ2,4, see (2b)). The second interface condition along Γ1,2 is
substituted by the operator equation

γn,∂Ω1

(
1

ρ1,rel
∇p1

)
+ Λ[∂Ω2,Γ1,2]

(
γn,∂Ω2

(
1

ρ2,rel
∇p2

))
= 0, in H−1/2 (Γ1,2) , (15a)

which immediately gives our desired variational expression once we form the duality pairing with ele-
ments from the space H1/2 (Γ1,2). The second interface conditions along Γ2,4 and Γ3,4 are derived by a
similar reasoning, and are given by the operator equations:

Λ[∂Ω2,Γ2,4]

(
γn,∂Ω2

(
1

ρ2,rel
∇p2

))
+ Λ[∂Ω4,Γ2,4]

(
γn,∂Ω4 (∇p4)

)
= 0, in H−1/2 (Γ2,4) , (15b)

γn,∂Ω3

(
1

ρ3,rel
∇p3

)
+ Λ[∂Ω4,Γ3,4]

(
γn,∂Ω4 (∇p4)

)
= 0, in H−1/2 (Γ3,4) , (15c)

where we recalled that ρ4,rel = 1 (see (4a)). Eqs. (15b) and (15c) give variational expressions once we
form the duality pairings with elements from the spaces H1/2 (Γ2,4) and H1/2 (Γ3,4), respectively.

3.4. The problem in weak form

In this section we show how the Lagrange multiplier fields arise naturally and we present the final
formulation of the problem in mixed form.

3.4.1. Function spaces

Given the geometry from Fig. 1, the suitable function spaces to be used in the weak formulation of
the problem are given by

X def
= H1 (Ω1)× H1 (Ω2)× H1 (Ω3)× H1 (Ω4) , (16a)

Y def
= H−1/2 (Γ1,2)× H−1/2 (Γ2,4)× H−1/2 (Γ3,4) . (16b)
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3.4.2. Lagrange multiplier fields

The first step is to sum equations (8) for r = 1, . . . , 4, which we write as

4

∑
r=1

∫
Ωr

(
1

ρr,rel
∇vr ·∇pr −

k2

Kr,rel
vr pr

)
dΩ−

4

∑
r=1

〈
γn,∂Ωr

(
1

ρr,rel
∇pr

)
|γ∂Ωr (vr)

〉
H1/2(∂Ωr)

= 0,

for any (v1, v2, v3, v4) ∈ X . Regions Ω2 and Ω4 are not simply connected (see (2b) and (2d)), and we use
this fact together with the third conclusion (9c) from Theorem 3.2 to rewrite the above equation as

4

∑
r=1

∫
Ωr

(
1

ρr,rel
∇vr ·∇pr −

k2

Kr,rel
vr pr

)
dΩ−

〈
γn,∂Ω1

(
1

ρ1,rel
∇p1

)
︸ ︷︷ ︸

λ1,2

|γ∂Ω1 (v1)

〉
H1/2 (∂Ω1)︸ ︷︷ ︸

Γ1,2

−
〈

Λ[∂Ω2,Γ1,2]

(
γn,∂Ω2

(
1

ρ2,rel
∇p2

)) ∣∣γ∂Ω2 (v2)
∣∣
Γ1,2

〉
H1/2(Γ1,2)

−
〈

Λ[∂Ω2,Γ2,4]

(
γn,∂Ω2

(
1

ρ2,rel
∇p2

))
︸ ︷︷ ︸

λ2,4

∣∣γ∂Ω2 (v2)
∣∣∣Γ2,4

〉
H1/2(Γ2,4)

−
〈

γn,∂Ω3

(
1

ρ3,rel
∇p3

)
︸ ︷︷ ︸

λ3,4

∣∣γ∂Ω3 (v3)

〉
H1/2 (∂Ω3)︸ ︷︷ ︸

Γ3,4

−
〈

Λ[∂Ω4Γ2,4]

(
γn,∂Ω4 (∇p4)

) ∣∣γ∂Ω4 (v4)
∣∣
Γ2,4

〉
H1/2(Γ2,4)

−
〈

Λ[∂Ω4Γ3,4]

(
γn,∂Ω4 (∇p4)

) ∣∣γ∂Ω4 (v4)
∣∣
Γ3,4

〉
H1/2(Γ3,4)

−
〈

Λ[∂Ω4ΓR ]

(
γn,∂Ω4 (∇p4)

) ∣∣γ∂Ω4 (v4)
∣∣
ΓR

〉
H1/2(ΓR)

= 0,

(17a)

for any (v1, v2, v3, v4) ∈ X , where we recalled that ρ4,rel = 1, see (4a). Secondly, in (17a) we make the
substitutions ∂Ω1 = Γ1,2 and ∂Ω3 = Γ3,4, according to (2a) and (2c), respectively. These are indicated
above. Thirdly, we introduce the Lagrange multiplier fields

λ1,2
def
= γn,∂Ω1

(
1

ρ1,rel
∇p1

)
, (17b)

λ2,4
def
= Λ[∂Ω2,Γ2,4]

(
γn,∂Ω2

(
1

ρ2,rel
∇p2

))
, (17c)

λ3,4
def
= γn,∂Ω3

(
1

ρ3,rel
∇p3

)
, (17d)

which are also indicated in (17a). Note that these Lagrange multiplier fields are defined differently from
the definitions in other problem formulations, see e.g. [6, 14]. The fourth step is to combine (15a) with
(17b), (15b) with (17c), and (15c) with (17d), and substitute back in (17a). The result becomes

4

∑
r=1

∫
Ωr

(
1

ρr,rel
∇vr ·∇pr −

k2

Kr,rel
vr pr

)
dΩ +

〈
λ1,2

∣∣∣γ∂Ω2 (v2)
∣∣
Γ1,2
− γ∂Ω1 (v1)

〉
H1/2(Γ1,2)

+

〈
λ2,4

∣∣∣∣γ∂Ω4 (v4)
∣∣
Γ2,4
− γ∂Ω2 (v2)

∣∣
Γ2,4

〉
H1/2(Γ2,4)

+
〈

λ3,4

∣∣∣γ∂Ω4 (v4)
∣∣
Γ3,4
− γ∂Ω3 (v3)

〉
H1/2(Γ3,4)

−
〈

Λ[∂Ω4,ΓR ]

(
γn,∂Ω4

(∇p4)
)∣∣∣γ∂Ω4 (v4)

∣∣
ΓR

〉
H1/2(ΓR)

= 0,

(18)
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for any (v1, v2, v3, v4) ∈ X . The fifth and final step is to substitute the boundary condition (13) into (18).

3.4.3. Mixed formulation

We use bold letters to represent the vectors in spaces X and Y , like v = (v1, v2, v3, v4) and µ =

(µ1,2, µ2,4, µ3,4), respectively. Defining the bilinear forms a : X × X −→ C, b : X × Y −→ C and the
linear functional Q′ : X −→ C given by

a (w, v) def
=

4

∑
r=1

∫
Ωr

(
1

ρr,rel
∇vr ·∇wr −

k2

Kr,rel
vrwr

)
dΩ

+ g
(

γ∂Ω4 (w4)
∣∣
ΓR

, γ∂Ω4 (v4)
∣∣
ΓR

)
, for any (w, v) ∈ X ×X ,

(19a)

b (v, µ)
def
=
〈

µ1,2

∣∣∣γ∂Ω2 (v2)
∣∣
Γ1,2
− γ∂Ω1 (v1)

〉
H1/2(Γ1,2)

+

〈
µ2,4

∣∣∣∣γ∂Ω4 (v4)
∣∣
Γ2,4
− γ∂Ω2 (v2)

∣∣
Γ2,4

〉
H1/2(Γ2,4)

+
〈

µ3,4

∣∣∣γ∂Ω4 (v4)
∣∣
Γ3,4
− γ∂Ω3 (v3)

〉
H1/2(Γ3,4)

, for any (v, µ) ∈ X ×Y ,

(19b)

Q′ (v) def
=
〈

F′
∣∣∣γ∂Ω4 (v4)

∣∣
ΓR

〉
H1/2(ΓR)

, for any v ∈ X , (19c)

Eq. (18) becomes

a (p, v) + b (v, λ) =
〈

Q′
∣∣v〉X , (20a)

for any v ∈ X . It can be shown that the functional Q′ defined in (19c) is bounded in the norm of
X (see (29a)). The field equations (8), the boundary condition (13), and the second set of interface
conditions (15a)–(15c) are all embedded in (20a). Finally we impose the first set of interface conditions
given by (14a)–(14c). If we consider arbitrary functionals µ1,2 ∈ H−1/2 (Γ1,2) , µ2,4 ∈ H−1/2 (Γ2,4), and
µ3,4 ∈ H−1/2 (Γ3,4), substitute them for µ in (14a), (14b), and (14c), respectively, and sum the result, we
obtain

b (p, µ) = 0, for any µ ∈ Y . (20b)

When Eqs. (20a) and (20b) are put together, our problem can formally be written as

Find (p, λ) ∈ X ×Y such that

a (p, v) + b (v, λ) =
〈

Q′
∣∣v〉X , for any v ∈ X ,

b (p, µ) = 0, for any µ ∈ Y ,

(21)

whose structure is readily recognized to be that of a mixed (saddle-point) formulation [6, 12, 23].

4. DISCRETIZATION IN THE METHOD OF FINITE SPHERES

Given an arbitrary region Ω (like one of the regions Ω1, . . . , Ω4 in Fig. 1), we proceed to cover it
with balls, or spheres, as illustrated in Fig. 3 [1, 10]. Next, a collection of real-valued basis functions is
constructed; each basis function has the whole set Ω as its domain of definition, but it is different from
zero only within a certain ball. These compactly-supported basis functions lead to sparse matrices, as in
traditional finite element analysis, whose basis functions are nonzero only within certain elements in the
mesh [6]. These basis functions allow us to construct finite-dimensional subspacesM (Ωr) ⊂ H1 (Ωr)

for r = 1, . . . , 4. Arbitrary functions vr ∈ H1 (Ωr) can be approximated by their discretized equivalents
vr;h ∈ M (Ωr) as

vr;h = HT
r Ṽr, (22a)

γ∂Ωr (vr;h) = TT
r Ṽr, (22b)
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where Hr : Ωr −→ RdimM(Ωr) is a vector function collecting all basis functions defined on Ωr, and
Tr : ∂Ωr −→ RdimM(Ωr) is a vector function collecting the traces of all basis functions along the bound-
ary ∂Ωr [10]. The vector Ṽr ∈ CdimM(Ωr) collects the expansion coefficients. After the finite- dimen-

sional subspacesM (Ωr) have been constructed for r = 1, . . . , 4, we use Xh
def
= M (Ω1)×M (Ω2)×

M (Ω3)×M (Ω4) as the finite-dimensional counterpart to space X introduced in (16a), where we have
for the dimensions of these finite-dimensional subspaces, dimXh = dimM (Ω1) + . . . + dimM (Ω4).
Arbitrary elements of Xh can be represented by vectors as vh = (v1;h, v2;h, v3;h, v4;h).
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Fig. 3. (a) In the method of finite spheres, an arbitrary region Ω together with its boundary ∂Ω must be covered by
a finite collection of balls, as in (b). The same holds for closed curves: (c) Given an arbitrary closed curve Γ, it must

be covered by a finite collection of balls, as in (d)

The construction of discrete spaces for the Lagrange multiplier fields defined at the interfaces is
similar. An arbitrary closed curve Γ (like one of the curves Γ1,2, Γ2,4, and Γ3,4 in Fig. 1) is also cov-
ered with balls, as in Fig. 3. Given arbitrary functionals µ1,2 ∈ H−1/2 (Γ1,2) , µ2,4 ∈ H−1/2 (Γ2,4), and
µ3,4 ∈ H−1/2 (Γ3,4), their finite-dimensional counterparts are represented by µ1,2;h ∈ M (Γ1,2)

′ , µ2,4;h ∈
M (Γ2,4)

′, and µ3,4;h ∈ M (Γ3,4)
′, respectively. The spacesM (Γ1,2)

′ ,M (Γ2,4)
′, andM (Γ3,4)

′ are finite-
dimensional subspaces of H−1/2 (Γ1,2) , H−1/2 (Γ2,4), and H−1/2 (Γ3,4), respectively. The action of the
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discretized functionals µ1,2;h, µ2,4;h, and µ3,4;h on arbitrary functions is given by〈
µ1,2;h

∣∣w〉H1/2(Γ1,2)
= ŨT

1,2

∫
Γ1,2

H1,2wdΓ, for any w ∈ H1/2 (Γ1,2) ,

〈
µ2,4;h

∣∣w〉H1/2(Γ2,4)
= ŨT

2,4

∫
Γ2,4

H2,4wdΓ, for any w ∈ H1/2 (Γ2,4) ,

〈
µ3,4;h

∣∣w〉H1/2(Γ3,4)
= ŨT

3,4

∫
Γ3,4

H3,4wdΓ, for any w ∈ H1/2 (Γ3,4) ,

(22c)

where H1,2 : Γ1,2 −→ RdimM(Γ1,2)
′
, H2,4 : Γ2,4 −→ RdimM(Γ2,4)

′
, and H3,4 : Γ3,4 −→ RdimM(Γ3,4)

′

are vector functions which collect suitable basis functions defined along the curves Γ1,2, Γ2,4, and Γ3,4,
respectively, and Ũ1,2 ∈ CdimM(Γ1,2)

′
, Ũ2,4 ∈ CdimM(Γ2,4)

′
, and Ũ3,4 ∈ CdimM(Γ3,4)

′
are vectors collect-

ing the expansion coefficients [10]. After the three finite-dimensional subspaces M (Γ1,2)
′ ,M (Γ2,4)

′,

and M (Γ3,4)
′ have been constructed we use Yh

def
= M (Γ1,2)

′ ×M (Γ2,4)
′ ×M (Γ3,4)

′ as the finite-
dimensional counterpart to space Y introduced in (16b). Its dimension is given by dimYh =
dimM (Γ1,2)

′ + dimM (Γ2,4)
′ + dimM (Γ3,4)

′. Arbitrary elements of Yh can be represented by vec-
tors as µh = (µ1,2;h, µ2,4;h, µ3,4;h).

After all pressure fields p1, . . . , p4, test functions v1, . . . , v4, Lagrange multiplier fields λ1,2, λ2,4, λ3,4,
and test functionals µ1,2, µ2,4, µ3,4 have been substituted in (21) by their finite-dimensional counterparts
defined by the expansions (22a)–(22c), we obtain the discrete mixed problem

Find (ph, λh) ∈ Xh ×Yh such that

a (ph, vh) + b (vh, λh) =
〈

Q′
∣∣vh
〉
X , for any vh ∈ Xh,

b (ph, µh) = 0, for any µh ∈ Yh.

(23)

The individual terms in (23) assume the representation

a (ph, vh) = ṼT ĀP̃, (24a)

b (vh, λh) = L̃T B̄Ṽ, (24b)〈
Q′
∣∣vh
〉
X = ṼT F, (24c)

b (ph, µh) = ŨT B̄P̃. (24d)

The vectors P̃T =
[
P̃T

1 , P̃T
2 , P̃T

3 , P̃T
4

]
and ṼT =

[
ṼT

1 , ṼT
2 , ṼT

3 , ṼT
4

]
collect all coefficients used in the

expansion of p1;h, . . . , p4;h and v1;h, . . . , v4;h, respectively, in the manner of (22a). The vectors L̃T =[
L̃T

1,2, L̃T
2,4, L̃T

3,4

]
and ŨT =

[
ŨT

1,2, ŨT
2,4, ŨT

3,4

]
collect all coefficients used in the expansion of λ1,2;h, λ2,4;h,

λ3,4;h and µ1,2;h, µ2,4;h, µ3,4;h, respectively, in the manner of (22c). Substitution of (24a)–(24d) into (23)
finally yields the (saddle-point) linear system

Find
(
P̃, L̃

)
∈ CdimXh ×CdimYh such that[

Ā B̄T

B̄

] [
P̃
L̃

]
=

[
F
0

]
.

(25)

We should emphasize here that we are solving in (25) for the phasor pressure fields, and hence as indi-
cated, in general the matrices and solution vectors in (25) are complex-valued with real and imaginary
parts.

5. THE INF-SUP CONDITIONS

We now turn to establish the tools for evaluating the well-posedness of the mixed method of finite
spheres formulation.
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5.1. Well-posedness of the discrete problems

The bilinear forms a in (19a) and b in (19b) must be bounded, i.e., there must be positive constants
C1 and C2 such that for any (w, v) ∈ X ×X , and for any (v, µ) ∈ X ×Y ,

|a (w, v)| ≤ C1‖w‖X ‖v‖X , (26a)

|b (v, µ)| ≤ C2‖v‖X ‖µ‖Y , (26b)

respectively. In the geometrical setting of Fig. 1, ‖ · ‖X and ‖ · ‖Y refer to the norms of vectors in the
spaces X and Y defined in (16a) and (16b), respectively (to be given below in Section 5.2). It can be
shown that these bilinear forms are bounded. We then introduce the operator Bh : Xh −→ Y?

h defined
as: For any (vh, µh) ∈ Xh ×Yh,

〈 Bh (vh) | µh 〉Y?
h ,Yh

def
= b (vh, µh) , (27a)

where Y?
h is the dual space of Yh [12, 13, 41, 42]. The kernel (or null space) of Bh is given by

ker Bh
def
= {vh ∈ Xh : Bh (vh) = 0, in Y?

h } . (27b)

The well-posedness of the finite-dimensional problem (23) is governed by the following theorem [12,13,
41]:

Theorem 5.1. Consider the finite-dimensional subspaces Xh ⊂ X and Yh ⊂ Y . Let a : X × X −→ C and
b : X × Y −→ C be two bounded bilinear forms. The finite-dimensional saddle-point problem (23) is well-posed
(i.e., its solution exists, is unique, and depends continuously on the data) if and only if the following two conditions
are satisfied:

1. There is a constant αh > 0 such that

inf
wh∈ker Bh

wh 6=0

sup
vh∈ker Bh

vh 6=0

|a (wh, vh)|
‖wh‖X ‖vh‖X

≥ αh. (28a)

2. There is a constant βh > 0 such that

inf
µh∈kerYh

µh 6=0

sup
vh∈kerXh

vh 6=0

|b (vh, µh)|
‖µh‖Y‖vh‖X

≥ βh. (28b)

In the variational formulation of many problems in mechanics, the bilinear form a has the prop-
erty of coercivity, or ellipticity [6, 33, 41, 43], i.e., there is a positive constant C such that for any v ∈
X , |a (v, v)| ≥ C‖v‖2

X . Clearly if a is coercive, then it satisfies (28a). In this case, only condition (28b)
needs to be verified (e.g., the Stokes problem [38, 40]). However, in the variational formulation of the
Helmholtz equation considered here, the bilinear form a in (19a) is not coercive, so that in this work both
conditions must be verified. More details about problems with non-coercive bilinear forms (and other ap-
proaches to handle them, such as the Fredholm Alternative) can be found in the references [32,34,43–45].

5.2. Norms of vectors

In the example geometry of Fig. 1, arbitrary vectors v = (v1, v2, v3, v4) ∈ X and µ = (µ1,2, µ2,4, µ3,4) ∈
Y have their norms given by

‖v‖2
X

def
=

4

∑
r=1
‖vr‖2

H1(Ωr)
, (29a)

‖µ‖2
Y

def
= ‖µ1,2‖2

H−1/2(Γ1,2)
+ ‖µ2,4‖2

H−1/2(Γ2,4)
+ ‖µ3,4‖2

H−1/2(Γ3,4)
, (29b)
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where the standard norms in the H1 and H−1/2 spaces are

‖vr‖2
H1(Ωr)

def
=

∫
Ωr

(∇vr ·∇v∗r + vrv∗r ) dΩ, (29c)

‖µ1,2‖H−1/2(Γ1,2)
def
= sup

t∈H1/2(Γ1,2)
t 6=0

∣∣∣〈µ1,2 | t〉H1/2(Γ1,2)

∣∣∣
‖t‖H1/2(Γ1,2)

. (29d)

The norm ‖ · ‖H−1/2(Γ1,2)
defined in (29d) is a dual norm (since H−1/2 is the dual space of H1/2). The

norm ‖ · ‖H1/2(Γ1,2)
is given in Appendix B. The terms ‖µ2,4‖H−1/2(Γ2,4)

and ‖µ3,4‖H−1/2(Γ3,4)
are defined

likewise. The finite-dimensional subspaces Xh ⊂ X and Yh ⊂ Y introduced in Section 4 inherit the
norms in (29a) and (29b), respectively.

Given a meshfree setting characterized by the discretization length h (see [10]), we can guarantee
the well-posedness of our discrete problem (23) if we show that (28a) and (28b) hold true. However,
because of the complications involved due to the use of the dual norm H−1/2, as indicated in (29b) and
(29d), we derive new inf-sup conditions simpler than (28a) and (28b), but which at the same time are
sufficient to imply (28a) and (28b), i.e., we shall use stronger conditions.

6. THE FIRST INF-SUP CONDITION

In this section we discuss an inf-sup condition which is stronger than condition (28a).

6.1. Stronger condition

Considering the bilinear form a : X ×X −→ C from (19a), since Re {a (wh, vh)} ≤ |a (wh, vh)| for
any wh, vh ∈ Xh\ {0}, we shall use:

There is a constant αh > 0 such that

inf
wh∈ker Bh
wh 6=0

sup
vh∈ker Bh
vh 6=0

Re {a (wh, vh)}
‖wh‖X ‖vh‖X

≥ αh. (30a)

6.2. Stronger condition, linear-algebraic aspects

Given an arbitrary vector vh = (v1;h, v2;h, v3;h, v4;h) ∈ Xh, if we use the expansion (22a) for r =
1, . . . , 4 in (29c), it is straightforward to express (29a) in matrix form as

‖vh‖2
X =

4

∑
r=1

Ṽ†
r S̄rṼr =


Ṽ1
Ṽ2
Ṽ3
Ṽ4


†

︸ ︷︷ ︸
Ṽ


S̄1

S̄2
S̄3

S̄4


︸ ︷︷ ︸

S̄


Ṽ1
Ṽ2
Ṽ3
Ṽ4


︸ ︷︷ ︸

Ṽ

= Ṽ†S̄Ṽ, (30b)

where Ṽ†
r is the conjugate transposed version of the coefficient vector Ṽr. The symmetric matrices S̄r

belong to RdimM(Ωr)×dimM(Ωr), and the matrix S̄ (also symmetric) belongs to RdimXh×dimXh .

The kernel of the matrix B̄ introduced in (24b) is ker B̄ def
=
{

Ṽ ∈ CdimXh : B̄Ṽ = 0
}

, where 0 is

the zero vector of length dimYh. There is a bijection between ker Bh in (27b) and ker B̄, thanks to the
isomorphism between Xh and CdimXh . Using the matrix representation as in (24a) and (30b), condition
(30a) becomes equivalent to:

There is a constant αh > 0 such that

inf
W̃∈ker B̄
W̃ 6=0

sup
Ṽ∈ker B̄
Ṽ 6=0

Re
{

ṼT ĀṼ
}

√
W̃†S̄W̃

√
Ṽ†S̄Ṽ

≥ αh. (30c)

We now find a basis for ker B̄. Suppose the dimension of ker B̄ is K i.e., dim ker B̄ = K. We look
for a linearly independent set of K vectors ψk ∈ CdimXh such that ker B̄ = span {ψ1, . . . , ψK}. These
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basis vectors are arranged into a matrix Ψ̄ ∈ CdimXh×K as Ψ̄ = [ψ1, . . . , ψK]. The map Z̃ 7−→ Ψ̄Z̃ is an
isomorphism between CK and ker B̄, so that condition (30c) becomes equivalent to:

There is a constant αh > 0 such that

inf
D̃∈CK

D̃ 6=0

sup
C̃∈CK

C̃ 6=0

Re
{

C̃TΨ̄
T ĀΨ̄D̃

}
√

D̃†Ψ̄
†S̄Ψ̄D̃

√
C̃†Ψ̄

†S̄Ψ̄C̃
≥ αh. (30d)

If we let ĪK ∈ RK×K denote the identity matrix of size K×K, then the natural isomorphism between

R2K and CK can be represented by the matrix J̄K
def
= [ ĪK, j ĪK] ∈ CK×2K, via the map w̃ 7−→ J̄Kw̃ (this

transformation takes any vector of real numbers of size 2K and uniquely associates with it a vector of
complex numbers of size K). In the rest of this text, real-valued vectors of coefficients will be written
using lowercase bold German letters with a tilde, such as w̃. Condition (30d) becomes equivalent to:

There is a constant αh > 0 such that

inf
w̃∈R2K

w̃ 6=0

sup
ṽ∈R2K

ṽ 6=0

Re
{
ṽT J̄T

KΨ̄T ĀΨ̄J̄Kw̃
}√

w̃† J̄†
KΨ̄†S̄Ψ̄J̄Kw̃

√
ṽ† J̄†

KΨ̄†S̄Ψ̄J̄Kṽ
≥ αh. (30e)

The vectors w̃ and ṽ are real-valued, which implies that w̃† = w̃T and ṽ† = ṽT . The numerator

in (30e) is rewritten as ṽTĀw̃, where the matrix Ā
def
= Re

{
J̄T

KΨ̄
T ĀΨ̄J̄K

}
belongs to R2K×2K. It is a

symmetric matrix, since the matrix Ā in (24a) is symmetric. The term inside the first square root in the

denominator of (30e) is rewritten as w̃TD̄w̃, where the symmetric matrix D̄
def
= Re

{
J̄†

KΨ̄
†S̄Ψ̄J̄K

}
belongs

to R2K×2K (the matrix S̄ in (30b) is real and symmetric, and it can be verified that the imaginary part of
J̄†

KΨ̄
†S̄Ψ̄J̄K satisfies w̃†Im

{
J̄†

KΨ̄
†S̄Ψ̄J̄K

}
w̃ = 0). The second term in the denominator of (30e) is treated

likewise. The inf-sup condition (30e) assumes its final form, becoming equivalent to:
There is a constant αh > 0 such that

inf
w̃∈R2K

w̃ 6=0

sup
ṽ∈R2K

ṽ 6=0

w̃TĀṽ√
w̃TD̄w̃

√
ṽTD̄ṽ

≥ αh, (31)

where we used the fact that ṽTĀw̃ = w̃TĀT ṽ = w̃TĀṽ, since Ā is symmetric. Condition (31) is written
entirely in terms of real-valued vectors and matrices, despite the original function spaces used in the
scattering problem being complex-valued in nature.

7. THE SECOND INF-SUP CONDITION

Our goal is now to discuss an inf-sup condition which is stronger than condition (28b).

7.1. Stronger condition

Since for any µh ∈ Yh \ {0} and vh ∈ Xh \ {0} we have that Re {b (vh, µh)} ≤ |b (vh, µh)|, we use
the following stronger condition:

There is a constant βh > 0 such that

inf
µh∈Yh
µh 6=0

sup
vh∈Xh
vh 6=0

Re {b (vh, µh)}
‖µh‖Y‖vh‖X

≥ βh. (32)

To evaluate this condition we need the following result:

Theorem 7.1. Let Σ be a simple (i.e., which does not cross itself), closed (endpoints coincide), and Lipschitz
continuous curve in R2. Let Σo denote the region of the plane interior to the curve Σ. Then, there is a positive
constant CΣo (which depends only on the geometry of Σo) such that for any θ ∈ H−1/2 (Σ),

1. There is a unique function fθ ∈ H1 (Σo) such that

‖θ‖H−1/2(Σ) ≤ CΣo ‖ fθ‖H1(Σo) . (33a)
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2. This function fθ satisfies the variational equality:∫
Σo

(∇w ·∇ fθ + w fθ) dΩ = 〈θ | γΣ(w)〉H1/2(Σ) , for any w ∈ H1 (Σo) . (33b)

This result (proved in Appendix D) is fundamental since it releases us from the task of working
with the dual norm H−1/2 (see (29b) and (29d)). In (33b), γΣ (w) is the trace of w along Σ. In the
geometrical setting of Fig. 1, let Γo

1,2, Γo
2,4, and Γo

3,4 denote the regions of the plane interior to the closed
curves (interfaces) Γ1,2, Γ2,4, and Γ3,4, respectively. We form the space

Z def
= H1 (Γo

1,2
)
× H1 (Γo

2,4
)
× H1 (Γo

3,4
)

. (34a)

Arbitrary elements from Z can be represented by vectors as z = (z1,2, z2,4, z3,4). We equip Z with the
following norm: For any z ∈ Z ,

‖z‖2
Z

def
= ‖z1,2‖2

H1(Γo
1,2)

+ ‖z2,4‖2
H1(Γo

2,4)
+ ‖z3,4‖2

H1(Γo
3,4)

. (34b)

We next consider an arbitrary vector of discretized functionals µh = (µ1,2;h, µ2,4;h, µ3,4;h) ∈ Yh, see Sec-
tion 4. Application of Theorem 7.1 to each component gives the existence of three positive constants
CΓo

1,2
, CΓo

2,4
, and CΓo

3,4
such that ∥∥µ1,2;h

∥∥
H−1/2(Γ1,2)

≤ CΓo
1,2

∥∥∥ fµ1,2;h

∥∥∥
H1(Γo

1,2)
,∥∥µ2,4;h

∥∥
H−1/2(Γ2,4)

≤ CΓo
2,4

∥∥∥ fµ2,4;h

∥∥∥
H1(Γo

2,4)
,∥∥µ3,4;h

∥∥
H−1/2(Γ3,4)

≤ CΓo
3,4

∥∥∥ fµ3,4;h

∥∥∥
H1(Γo

3,4)
,

(34c)

where the functions fµ1,2;h ∈ H1 (Γo
1,2
)

, fµ2,4;h ∈ H1 (Γo
2,4
)
, and fµ3,4;h ∈ H1 (Γo

3,4
)

are solutions to the
problems∫

Γo
1,2

(
∇w1,2 ·∇ fµ1,2;h + w1,2 fµ1,2;h

)
dΩ =

〈
µ1,2;h | γΓ1,2 (w1,2)

〉
H1/2(Γ1,2)

, for any w1,2 ∈ H1 (Γo
1,2
)

,∫
Γo

2,4

(
∇w2,4 ·∇ fµ2,4,h + w2,4 fµ2,4;h

)
dΩ =

〈
µ2,4;h | γΓ2,4 (w2,4)

〉
H1/2(Γ2,4)

, for any w2,4 ∈ H1 (Γo
2,4
)

,∫
Γo

3,4

(
∇w3,4 ·∇ fµ3,4;h + w3,4 fµ3,4;h

)
dΩ =

〈
µ3,4;h | γΓ3,4 (w3,4)

〉
H1/2(Γ3,4)

, for any w3,4 ∈ H1 (Γo
3,4
)

,

(34d)

respectively. Using these functions, we define the vector fµh

def
=
(

fµ1,2;h , fµ2,4;h , fµ3,4;h

)
∈ Z . Based on

(29b) and (34b), the three inequalities in (34c) allow us to conclude that there is a positive constant C
(independent of µh) such that

‖µh‖Y ≤ C
∥∥fµh

∥∥
Z . (34e)

We can now introduce the following inf-sup condition:
There is a constant βh > 0 such that

inf
µh∈Yh
µh 6=0

sup
vh∈Xh
vh 6=0

Re {b (vh, µh)}∥∥fµh

∥∥
Z‖vh‖X

≥ βh. (35)

Since we have (34e), it follows that (35) implies (32), i.e., it is ‘stronger’ than (32). The inf-sup condition
(35) does not involve the norm in the space Y (given in terms of H−1/2 norms, see (29b) and (29d))
as in (32), and hence we shall use it. However, we must solve problems (34d) in order to find the
functions fµ1,2;h , fµ2,4;h , and fµ3,4;h . We use meshfree finite-dimensional subspaces of H1 (Γo

1,2
)

, H1 (Γo
2,4
)
,

and H1 (Γo
3,4
)
, and solve for approximations of these functions within these spaces.
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7.2. Meshfree finite dimensional subspaces for the interior regions

For each interior region Γo
1,2, Γo

2,4, and Γo
3,4, we construct meshfree spacesM

(
Γo

1,2
)

,M
(
Γo

2,4
)
, and

M
(
Γo

3,4
)
, respectively, using the process outlined in Section 4. Arbitrary functions z1,2 ∈ H1 (Γo

1,2
)

, z2,4 ∈
H1 (Γo

2,4
)

and z3,4 ∈ H1 (Γo
3,4
)

together with their traces can be approximated by their discretized equiv-
alents as

z1,2;h = ET
1,2Z̃1,2, z2,4;h = ET

2,4Z̃2,4, z3,4;h = ET
3,4Z̃3,4, (36a)

γΓ1,2 (z1,z;h) = RT
1,2Z̃1,2, γΓ2,4 (z2,4;h) = RT

2,4Z̃2,4, γΓ3,4 (z3,4;h) = RT
3,4Z̃3,4, (36b)

where E1,2 : Γo
1,2 −→ R

dimM(Γo
1,2) is a vector function collecting all basis functions defined on Γo

1,2, and

R1,2 : Γ1,2 −→ R
dimM(Γo

1,2) is a vector function which collects the traces of all basis functions along the

boundary ∂Γo
1,2, where ∂Γo

1,2 = Γ1,2, by definition. The vector Z̃1,2 ∈ C
dimM(Γo

1,2) collects the expansion
coefficients. The same holds for the expansions of z2,4;h and z3,4;h above.

Note that the closed curve Γ1,2 does not encircle any other curve, because region Ω1 is simply-
connected. It follows that Γo

1,2 = Ω1. Hence to approximate z1,2 ∈ H1 (Γo
1,2
)

we use the same set of
basis functions as that used to approximate v1 ∈ H1 (Ω1), see Section 4, i.e., in (36a) and (36b) we can

define E1,2
def
= H1 and R1,2

def
= T1, where H1 and T1 have been introduced in (22a) and (22b), respectively.

The same holds for the closed curve Γ3,4, since Ω3 is simply-connected and Γo
3,4 = Ω3. We thus define

E3,4
def
= H3 and R3,4

def
= T3. In the case of curve Γ2,4, its interior Γo

2,4 does not coincide with Ω2 (see Fig. 4).
A separate set of basis functions must be set up for approximating functions defined on Γo

2,4, together
with their traces along Γ2,4. The vector function E2,4 in (36a) differs from H2 in (22a), and R2,4 in (36b)
differs from T2 in (22b).  The Method of Finite Spheres in Acoustic Wave Propagation 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Consider the interface Γ2,4, between regions Ω2 and Ω4. The region Ω2 is not simply-connected (due to 

the hole left by Ω1). Consequently, the region interior to the curve Γ2,4, denoted by Γ2,4
o , is distinct from Ω2. This 

originates two different sets of basis functions. (a) Balls in a finite sphere system for approximating functions 

defined on Ω2. Their union must cover the closure of Ω2 (b) Balls in a finite sphere system for approximating 

functions defined on Γ2,4
o . Their union must cover the closure of Γ2,4

o . 

𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝛽ℎ > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   

inf
𝛍ℎ=(𝜇1,2;ℎ,𝜇2,4;ℎ,𝜇3,4;ℎ) ∈ 𝒴ℎ  

𝛍ℎ≠𝟎

 sup 
�̃�∈ℂdim𝒳ℎ

�̃�≠𝟎

 
Re{�̃�𝑇 �̅� �̃�}

‖(𝑓𝜇1,2;ℎ , 𝑓𝜇2,4;ℎ , 𝑓𝜇3,4;ℎ)‖𝒵
√�̃�† �̅� �̃�

≥ 𝛽ℎ. 
(38) 

In order to find 𝑓𝜇1,2;ℎ, we use the first equation from (22c) and the first variational problem from 

(34d), thus obtaining 

∫ (𝛁𝑤1,2 ∙ 𝛁𝑓𝜇1,2;ℎ +𝑤1,2 𝑓𝜇1,2;ℎ)
Γ1,2
o

𝑑Ω = �̃�1,2 
𝑇 ∫ 𝐇1,2 𝛾Γ1,2(𝑤1,2)

Γ1,2

 𝑑Γ, (39𝑎) 

for any 𝑤1,2 ∈ 𝐻
1(Γ1,2

o ). In order to find an approximation 𝑓𝜇1,2;ℎ for 𝑓𝜇1,2;ℎ within the meshfree space 

ℳ(Γ1,2
o ), we represent it as 𝑓𝜇1,2;ℎ = 𝐄1,2 

𝑇 �̃�1,2, as in (36a), where the (unknown) vector of coefficients 

�̃�1,2 belongs to ℂdimℳ(Γ1,2
o ), see Section 7.2. The testing functions 𝑤1,2 in (39a) must now be taken 

from space ℳ(Γ1,2
o ), and so we denote them by 𝑤1,2;ℎ. They are represented likewise as 𝑤1,2;ℎ =

𝐄1,2 
𝑇 �̃�1,2, and their trace are represented as 𝛾Γ1,2(𝑤1,2;ℎ) = 𝐑1,2 

𝑇 �̃�1,2, in accordance with (36a) and 

(36b). After substituting these expansions, the discrete version of problem (39a) becomes 

�̃�1,2 
𝑇 �̅�1,2 �̃�1,2 = �̃�1,2

𝑇 �̅�1,2�̃�1,2, (39𝑏) 

for any �̃�1,2 ∈ ℂ
dimℳ(Γ1,2

o ). The symmetric matrix �̅�1,2 belongs to ℝdimℳ(Γ1,2
o )×dimℳ(Γ1,2

o ), and the 

matrix �̅�1,2 belongs to ℝdimℳ(Γ1,2
o )×dimℳ(Γ1,2)

′
, since �̃�1,2 ∈ ℝ

dimℳ(Γ1,2)
′
, see Section 4. From 

(39b), we obtain �̅�1,2�̃�1,2 = �̅�1,2�̃�1,2, and the coefficient vector �̃�1,2 can be retrieved as 

�̃�1,2 = �̅�1,2 
−1 �̅�1,2 �̃�1,2. (39𝑐) 

(

b) 

(a) (b) 
(a)
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defined on Ω2. Their union must cover the closure of Ω2 (b) Balls in a finite sphere system for approximating 

functions defined on Γ2,4
o . Their union must cover the closure of Γ2,4

o . 

𝑇ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝛽ℎ > 0 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   

inf
𝛍ℎ=(𝜇1,2;ℎ,𝜇2,4;ℎ,𝜇3,4;ℎ) ∈ 𝒴ℎ  

𝛍ℎ≠𝟎

 sup 
�̃�∈ℂdim𝒳ℎ

�̃�≠𝟎

 
Re{�̃�𝑇 �̅� �̃�}

‖(𝑓𝜇1,2;ℎ , 𝑓𝜇2,4;ℎ , 𝑓𝜇3,4;ℎ)‖𝒵
√�̃�† �̅� �̃�

≥ 𝛽ℎ. 
(38) 

In order to find 𝑓𝜇1,2;ℎ, we use the first equation from (22c) and the first variational problem from 

(34d), thus obtaining 

∫ (𝛁𝑤1,2 ∙ 𝛁𝑓𝜇1,2;ℎ +𝑤1,2 𝑓𝜇1,2;ℎ)
Γ1,2
o

𝑑Ω = �̃�1,2 
𝑇 ∫ 𝐇1,2 𝛾Γ1,2(𝑤1,2)

Γ1,2

 𝑑Γ, (39𝑎) 

for any 𝑤1,2 ∈ 𝐻
1(Γ1,2

o ). In order to find an approximation 𝑓𝜇1,2;ℎ for 𝑓𝜇1,2;ℎ within the meshfree space 

ℳ(Γ1,2
o ), we represent it as 𝑓𝜇1,2;ℎ = 𝐄1,2 

𝑇 �̃�1,2, as in (36a), where the (unknown) vector of coefficients 

�̃�1,2 belongs to ℂdimℳ(Γ1,2
o ), see Section 7.2. The testing functions 𝑤1,2 in (39a) must now be taken 

from space ℳ(Γ1,2
o ), and so we denote them by 𝑤1,2;ℎ. They are represented likewise as 𝑤1,2;ℎ =

𝐄1,2 
𝑇 �̃�1,2, and their trace are represented as 𝛾Γ1,2(𝑤1,2;ℎ) = 𝐑1,2 

𝑇 �̃�1,2, in accordance with (36a) and 

(36b). After substituting these expansions, the discrete version of problem (39a) becomes 

�̃�1,2 
𝑇 �̅�1,2 �̃�1,2 = �̃�1,2

𝑇 �̅�1,2�̃�1,2, (39𝑏) 

for any �̃�1,2 ∈ ℂ
dimℳ(Γ1,2

o ). The symmetric matrix �̅�1,2 belongs to ℝdimℳ(Γ1,2
o )×dimℳ(Γ1,2

o ), and the 

matrix �̅�1,2 belongs to ℝdimℳ(Γ1,2
o )×dimℳ(Γ1,2)

′
, since �̃�1,2 ∈ ℝ

dimℳ(Γ1,2)
′
, see Section 4. From 

(39b), we obtain �̅�1,2�̃�1,2 = �̅�1,2�̃�1,2, and the coefficient vector �̃�1,2 can be retrieved as 

�̃�1,2 = �̅�1,2 
−1 �̅�1,2 �̃�1,2. (39𝑐) 

(

b) 

(a) (b) (b)

Fig. 4. Consider the interface Γ2,4, between regions Ω2 and Ω4. The region Ω2 is not simply-connected (due to
the hole left by Ω1). Consequently, the region interior to the curve Γ2,4, denoted by Γo

2,4, is distinct from Ω2. This
originates two different sets of basis functions. (a) Balls in a finite sphere system for approximating functions
defined on Ω2. Their union must cover the closure of Ω2 (b) Balls in a finite sphere system for approximating

functions defined on Γo
2,4. Their union must cover the closure of Γo

2,4

Once the meshfree spacesM
(
Γo

1,2
)

,M
(
Γo

2,4
)
, andM

(
Γo

3,4
)

have been constructed, we introduce
the finite dimensional subspace Zh of Z in (34a) as:

Zh
def
= M

(
Γo

1,2
)
×M

(
Γo

2,4
)
×M

(
Γo

3,4
)

. (36c)

The norm in Zh is that inherited from Z in (34b). The dimension of Zh is given by the sum of the
dimensions ofM

(
Γo

1,2
)

,M
(
Γo

2,4
)
, andM

(
Γo

3,4
)
.
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7.3. Stronger condition, linear-algebraic aspects

We now turn our attention to condition (35). Arbitrary vectors of functionals µh ∈ Yh can be written
as µh = (µ1,2;h, µ2,4;h, µ3,4;h), see Section 4. The arbitrary functionals µ1,2;h, µ2,4;h, and µ3,4;h determine the
functions fµ1,2;h , fµ2,4;h , and fµ3,4;h , respectively, via the variational problems in (34d), see Section 7.1. In

other words, the vector µh determines the vector fµh

def
=
(

fµ1,2;h , fµ2,4;h , fµ3,4;h

)
. We rewrite (35) as:

There is a constant βh > 0 such that

inf
µh=(µ1,2;h ,µ2,4;h ,µ3,4;h)∈Yh

µh 6=0

sup
vh∈Xh
vh 6=0

Re {b (vh, µh)}∥∥∥( fµ1,2;h , fµ2,4;h , fµ3,4;h

)∥∥∥
Z
‖vh‖X

≥ βh. (37)

Let the coefficient vectors Ṽ ∈ CdimXh and Ũ ∈ CdimYh be arbitrary. These coefficient vectors can
be broken into subvectors as ṼT =

[
ṼT

1 , ṼT
2 , ṼT

3 , ṼT
4

]
and ŨT =

[
ŨT

1,2, ŨT
2,4, ŨT

3,4

]
, see Section 4. The

vector vh ∈ Xh in (37) collects the four discrete fields as vh = (v1;h, v2;h, v3;h, v4;h), see Section 4. The
component v1;h is determined by the coefficient subvector Ṽ1 as in (22a), and likewise for the other com-
ponents. It follows that the coefficient vector Ṽ ultimately determines the vector vh. In the functionals,
the components µ1,2;h, µ2,4;h, and µ3,4;h are determined by the coefficient subvectors Ũ1,2, Ũ2,4, and Ũ3,4,
respectively, as in (22c). It follows that the coefficient vector Ũ ultimately determines the vector µh. The
numerator in (37) is therefore rewritten as Re {b (vh, µh)} = Re{ŨT B̄Ṽ}, using (24d). The second term

in the denominator of (37) is written as ‖vh‖x =
√

Ṽ†S̄Ṽ, using (30b). Condition (37) becomes:
There is a constant βh > 0 such that

inf
µh=(µ1,2;h ,µ2,4;h ,µ3,4;h)∈Yh

µh 6=0

sup
Ṽ∈CdimXh

Ṽ 6=0

Re
{

ŨT B̄Ṽ
}∥∥∥( fµ1,2;h , fµ2,4;h , fµ3,4;h

)∥∥∥
Z

√
Ṽ†S̄Ṽ

≥ βh. (38)

In order to find fµ1,2;h , we use the first equation from (22c) and the first variational problem from (34d),
thus obtaining ∫

Γo
1,2

(
∇w1,2 ·∇ fµ1,2;h + w1,2 fµ1,2;h

)
dΩ = ŨT

1,2

∫
Γ1,2

H1,2γΓ1,2 (w1,2) dΓ, (39a)

for any w1,2 ∈ H1 (Γo
1,2
)
. In order to find an approximation f̃µ1,2;h for fµ1,2;h within the meshfree space

M
(
Γo

1,2
)
, we represent it as f̃µ1,2;h = ET

1,2F̃1,2, as in (36a), where the (unknown) vector of coefficients F̃1,2

belongs to C
dimM(Γo

1,2), see Section 7.2. The testing function w1,2 in (39a) must now be taken from space
M
(
Γo

1,2
)
, and so we denote it by w1,2;h. It is represented likewise as w1,2;h = ET

1,2W̃1,2, and its trace
is represented as γΓ1,2 (w1,2;h) = RT

1,2W̃1,2, in accordance with (36a) and (36b). After substituting these
expansions, the discrete version of problem (39a) becomes

W̃T
1,2Q̄1,2F̃1,2 = W̃T

1,2N̄1,2Ũ1,2, (39b)

for any W̃1,2 ∈ C
dimM(Γo

1,2). The symmetric matrix Q̄1,2 belongs to R
dimM(Γo

1,2)×dimM(Γo
1,2), and the

matrix N̄1,2 belongs to R
dimM(Γo

1,2)×dimM(Γ1,2)
′
, since Ũ1,2 ∈ CdimM(Γ1,2)

′
, see Section 4. From (39b), we

obtain Q̄1,2F̃1,2 = N̄1,2Ũ1,2, and the coefficient vector F̃1,2 can be retrieved as

F̃1,2 = Q̄−1
1,2 N̄1,2Ũ1,2. (39c)

The same procedure above can be applied to find the approximations f̃µ2,4;h and f̃µ3,4;h . These are ex-
panded as f̃µ2,4;h = ET

2,4F̃2,4 and f̃µ3,4;h = ET
3,4F̃3,4, after (36a), and the unknown coefficients are given by

F̃2,4 = Q̄−1
2,4 N̄2,4Ũ2,4, (39d)

F̃3,4 = Q̄−1
3,4 N̄3,4Ũ3,4. (39e)
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Using (34b), the norm
∥∥∥fµh

∥∥∥
Z

in the denominator of inf-sup condition (38) can be approximated as

∥∥∥fµh

∥∥∥2

Z
=
∥∥∥( fµ1,2;h , fµ2,4;h , fµ3,4;h

)∥∥∥2

Z
def
=
∥∥∥ fµ1,2;h

∥∥∥2

H1(Γo
1,2)

+
∥∥∥ fµ2,4;h

∥∥∥2

H1(Γo
2,4)

+
∥∥∥ fµ3,4;h

∥∥∥2

H1(Γo
3,4)

∼=
∥∥∥ f̃µ1,2,h

∥∥∥2

H1(Γo
1,2)

+
∥∥∥ f̃µ2,4;h

∥∥∥2

H1(Γo
2,4)

+
∥∥∥ f̃µ3,4;h

∥∥∥2

H1(Γo
3,4)

.
(40a)

The first term of the sum above is expanded as∥∥∥ f̃µ1,2;h

∥∥∥2

H1(Γo
1,2)

def
=

∫
Γo

1,2

(
∇ f̃µ1,2;h ·∇ f̃ ∗µ1,2;h

+ f̃µ1,2;h f̃ ∗µ1,2;h

)
dΩ

= F̃†
1,2Q̄1,2F̃1,2

= Ũ†
1,2N̄†

1,2

(
Q̄−1

1,2

)†
Q̄1,2Q̄−1

1,2 N̄1,2Ũ1,2

= Ũ†
1,2N̄T

1,2

(
Q̄−1

1,2

)T
N̄1,2Ũ1,2

= Ũ†
1,2N̄T

1,2Q̄−1
1,2 N̄1,2Ũ1,2,

(40b)

where we used the discretized representation f̃µ1,2;h = ET
1,2F̃1,2 (see (36a)). The matrix Q̄1,2 is the same

as that which appears in (39b). The vector F̃1,2 is given by (39c). The matrices Q̄1,2 and N̄1,2 are real-

valued, which implies that N̄†
1,2 = N̄T

1,2 and
(

Q̄−1
1,2

)†
=
(

Q̄−1
1,2

)T
. Finally, since Q̄1,2 is symmetric,(

Q̄−1
1,2

)T
= Q̄−1

1,2 . Applying the same reasoning to the second and third terms of (40a), we obtain

∥∥∥ f̃µ2,4;h

∥∥∥2

H1(Γo
2,4)

= Ũ†
2,4N̄T

2,4Q̄−1
2,4 N̄2,4Ũ2,4, (40c)

∥∥∥ f̃µ3,4;h

∥∥∥2

H1(Γo
3,4)

= Ũ†
3,4N̄T

3,4Q̄−1
3,4 N̄3,4Ũ3,4. (40d)

Using (40b)–(40d), the sum (40a) can be rewritten in matrix form as

∥∥∥fµh

∥∥∥2

Z
∼=

 Ũ1,2
Ũ2,4
Ũ3,4


︸ ︷︷ ︸

Ũ

† N̄1,2
N̄2,4

N̄3,4


︸ ︷︷ ︸

N̄

T Q̄1,2
Q̄2,4

Q̄3,4


︸ ︷︷ ︸

Q̄

−1  N̄1,2
N̄2,4

N̄3,4


︸ ︷︷ ︸

N̄

 Ũ1,2
Ũ2,4
Ũ3,4


︸ ︷︷ ︸

Ũ

= Ũ†N̄TQ̄−1N̄Ũ, (41)

where the symmetric matrix Q̄ belongs to RdimZh×dimZh and the matrix N̄ belongs to RdimZh×dimYh .
Finally, the inf-sup condition (38) becomes equivalent to:

There is a constant βh > 0 such that

inf
Ũ∈CdimYh

Ũ 6=0

sup
Ṽ∈CdimXh

Ṽ 6=0

Re
{

ŨT B̄Ṽ
}√

Ũ†N̄TQ̄−1N̄Ũ
√

Ṽ†S̄Ṽ
≥ βh. (42)

using (41). If the identity matrix of size dimXh is denoted by ĪdimXh
∈ RdimXh×dimXh , the natural iso-

morphism between R2 dimXh and CdimXh can be represented by the matrix J̄dimXh

def
=
[
ĪdimXh

, j ĪdimXh

]
∈

CdimXh×2 dimXh , via the map ṽ 7−→ J̄dimXh
ṽ. Analogously, the natural isomorphism between R2 dimYh

and CdimYh can be represented by the matrix J̄dimYh

def
=
[
ĪdimYh

, j ĪdimYh

]
∈ CdimYh×2 dimYh , via the map

ũ 7−→ J̄dimYh
ũ. Condition (42) becomes equivalent to:
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There is a constant βh > 0 such that

inf
ũ∈R2 dimYh

ũ 6=0

sup
ṽ∈R2 dimXh

ṽ 6=0

Re
{
ũT J̄T

dimYh
B̄J̄dimXh

ṽ
}

√
ũ† J̄†

dimYh
N̄TQ̄−1N̄ J̄dimYh

ũ
√

ṽ† J̄†
dimXh

S̄J̄dimXh
ṽ
≥ βh. (43)

The vectors ũ and ṽ are real-valued, which implies that ũ† = ũT and ṽ† = ṽT . The numerator in (43)

is rewritten as ũTB̄ṽ, where the matrix B̄
def
= Re

{
J̄T

dimYh
B̄J̄dimXh

}
belongs to R2 dimYh×2 dimXh . The

term inside the first square root in the denominator of (43) is rewritten as ũTM̄ũ, where the matrix

M̄
def
= Re

{
J̄†

dimYh
N̄TQ̄−1N̄ J̄dimYh

}
belongs to R2 dimYh×2 dimYh . The matrix Q̄ in (41) is real-valued

and symmetric, and it can be verified that the imaginary part of matrix J̄†
dimYh

N̄TQ̄−1N̄ J̄dimYh
satisfies

ũ†Im
{

J̄†
dimYh

N̄TQ̄−1N̄ J̄dimYh

}
ũ = 0. The term inside the second square root in the denominator of

(43) is rewritten as ṽTX̄ṽ, where the matrix X̄
def
= Re

{
J̄†

dimXh
S̄J̄dimXh

}
belongs to R2 dimXh×2 dimXh . The

matrix S̄ in (30b) is real-valued and symmetric, and it can be verified that the imaginary part of matrix
J̄†

dimXh
S̄J̄dimXh

satisfies ṽ† Im
{

J̄†
dimXh

S̄J̄dimXh

}
ṽ = 0. The inf-sup condition (43) assumes its final form,

becoming equivalent to:
There is a constant βh > 0 such that

inf
ũ∈R2 dimYh

ũ 6=0

sup
ṽ∈R2 dimXh

ṽ 6=0

ũTB̄ṽ√
ũTM̄ũ

√
ṽTX̄ṽ

≥ βh. (44)

Analogously to (31), condition (44) is written entirely in terms of real-valued vectors and matrices.

8. DEMONSTRATION OF THE MFS PROCEDURE

In this section we illustrate the application of the MFS procedures from Section 4 to a particular
scattering problem. The computational details and further solutions are given in the companion paper,
see reference [10]. The problem refers to the scattering of a plane wave by a circular object. In this
setting, we have a single object, corresponding to a circle, see Fig. 5(a). This geometric arrangement
agrees with the assumptions made in Section 2.1. The material properties in regions Ω1 and Ω2 are
ρ1 = 8.94× 103 kg/m3 and ρ2 = 1× 103 kg/m3 (density), and K1 = 123× 109 Pa and K2 = 2.28× 109 Pa
(bulk modulus). The ‘relative’ values are ρ1,rel = 8.94 and ρ2,rel = 1, and K1,rel = 53.95 and K2,rel = 1,
according to (4a) and (4b). We use the reference frequency of f0 = 100 kHz.

The reference wavenumber k0 associated with the host medium Ω2 is k0 = ω0/c = 2π f0
√

ρ2/K2 =
416.11 rad/m. Consequently, the reference wavelength of a (hypothetical) plane wave with frequency
f0 propagating in Ω2 is given by λ0 = 2π/k0 = 15.10× 10−3 m. Region Ω1 is a circle with radius equal
to λ0, and the outer circular boundary ΓR has its radius given by R = 2.15λ0. Region Ω1 is simply
connected, and region Ω2 (the host medium) is not simply-connected, as expected (see Section 2.1). This
problem has a single interface, indicated by Γ1,2 in Fig. 5(a).

We consider a unit plane wave with frequency f equal to the reference frequency, i.e., f = f0, with
the wavenumber k = k0. This wave propagates along the unit vector k̂ = [1, 0] (i.e., from left to right),
and the incident field is therefore given by pinc (x) = e−jkk̂·x = e−jkx N/m2, x ∈ Ω̄2.

In the discretization process, we set up three finite sphere systems, as illustrated in Figs. 5(b)–5(d).
The closure of region Ω1 is covered with 549 balls, the closure of region Ω2 is covered with 1996 balls, and
the interface Γ1,2 is covered with 81 balls. The real and imaginary parts of the predicted total pressure
field ph = (p1;h, p2;h), as well as its modulus, are shown in Figs. 6(a)–6(c). We apply a close zoom to the
solutions calculated along the line segment 0.8λ0 ≤ x ≤ 1.2λ0, y = 0, shown in Figs. 6a and 6b. This line
segment crosses the interface, and we compare the meshfree solutions thus obtained with FEM solutions
(using quadratic Lagrange triangular elements) calculated along the same segment. The results for both
real and imaginary parts are shown in Figs. 7(a) and 7(b), respectively. The solutions provided by both
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Fig. 5. Scattering by a copper circular object immersed in water. (a) Geometry of the problem. (b) Balls in a 

finite sphere system over region Ω2 and along its boundary ∂Ω2 = Γ1,2 ∪ Γ𝑅. (c) Balls in a finite sphere system 

covering Ω1 and ∂Ω1 = Γ1,2. (d) Balls in a finite sphere system covering the interface Γ1,2. 

We use the reference frequency of 𝑓0 = 100 kHz. The reference wavenumber 𝑘0 associated with the 

host medium Ω2 is 𝑘0 = 𝜔0 𝑐⁄ = 2𝜋𝑓0√𝜌2 𝐾2⁄ = 416.11 rad m⁄ . Consequently, the reference 

wavelength of a (hypothetical) plane wave with frequency 𝑓0 propagating in Ω2 is given by 𝜆0 =
2𝜋 𝑘0⁄ = 15.10 × 10−3 m. Region Ω1 is a circle with radius equal to 𝜆0, and the outer circular 

boundary Γ𝑅 has its radius given by 𝑅 = 2.15𝜆0. Region Ω1 is simply connected, and region Ω2 (the 

host medium) is not simply-connected, as expected (see Section 2.1). This problem has a single 

interface, indicated by Γ1,2 in Fig. 5a. 
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Fig. 5. Scattering by a copper circular object immersed in water. (a) Geometry of the problem. (b) Balls in a 

finite sphere system over region Ω2 and along its boundary ∂Ω2 = Γ1,2 ∪ Γ𝑅. (c) Balls in a finite sphere system 

covering Ω1 and ∂Ω1 = Γ1,2. (d) Balls in a finite sphere system covering the interface Γ1,2. 
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Fig. 5. Scattering by a circular object. (a) Geometry of the problem. (b) Balls in a finite sphere system over region
Ω2 and along its boundary ∂Ω2 = Γ1,2 ∪ ΓR. (c) Balls in a finite sphere system covering Ω1 and ∂Ω1 = Γ1,2. (d) Balls

in a finite sphere system covering the interface Γ1,2
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Fig. 6. Scattering by a copper circular object immersed in water. (a) Real part of the meshfree solution 
throughout the computational domain. (b) Imaginary part of the meshfree solution. (c) The modulus of the 
meshfree solution. 

We consider a unit plane wave with frequency 𝑓 equal to the reference frequency, i.e., 𝑓 = 𝑓0, 
with the wavenumber 𝑘 = 𝑘0. This wave propagates along the unit vector �̂� = [1,0] (i.e., from left to 
right), and the incident field is therefore given by 𝑝𝑖𝑛𝑐(𝒙) = 𝑒−𝑗𝑘�̂�∙𝒙 = 𝑒−𝑗𝑘𝑥  N m2⁄ , 𝒙 ∈ Ω̅2. 

In the discretization process, we set up three finite sphere systems, as illustrated in Figs. 5b-5d. 
The closure of region Ω1 is covered with 549 balls, the closure of region Ω2 is covered with 1996 
balls, and the interface Γ1,2 is covered with 81 balls. The real and imaginary parts of the predicted total 
pressure field 𝒑ℎ = (𝑝1;ℎ, 𝑝2;ℎ), as well as its modulus, are shown in Figs. 6a-6c. 
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Fig. 6. Scattering by a circular object. (a) Real part of the meshfree solution throughout the computational domain.
(b) Imaginary part of the meshfree solution. (c) The modulus of the meshfree solution

methods agree with each other, and the MFS solution reproduced the discontinuity in the gradients
accurately. No oscillations are observed, according to our objective in the MFS formulation.
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Fig. 7. (a) Real part of meshfree and FEM solutions along the segment 0.8𝜆0 ≤ 𝑥 ≤ 1.2𝜆0, 𝑦 = 0 (shown in 
white in Fig. 6a). (b) Imaginary part of meshfree and FEM solutions along the same segment (shown in white in 
Fig. 6b). 

We apply a close zoom to the solutions calculated along the line segment 0.8𝜆0 ≤ 𝑥 ≤ 1.2𝜆0, 𝑦 = 0, 
shown in Figs. 6a and 6b. This line segment crosses the interface, and we compare the meshfree 
solutions thus obtained with FEM solutions (using quadratic Lagrange elements set up on a triangular 
mesh) calculated along the same segment. The results for both real and imaginary parts are shown in 
Figs. 7a and 7b, respectively. The solutions provided by both methods agree with each other, and the 
MFS solution reproduced the discontinuity in the gradients accurately. No oscillations are observed, 
according to our objective in the MFS formulation. 

9. DEMONSTRATION OF THE INF-SUP TESTING 
For a given discretization characterized by length ℎ, Sections 5-7 showed that the discrete 

problem (23) is well-posed (its solution exists, is unique, and depends continuously on the data) if the 
inf-sup conditions (31) and (44) are satisfied. In order to verify if these conditions hold, we observe 
that 
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where 𝜎min(ℎ, 𝑓) and 𝜏min(ℎ) are the smallest eigenvalues in the problems 
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Fig. 7. (a) Real part of meshfree and FEM solutions along the segment 0.8λ0 ≤ x ≤ 1.2λ0, y = 0 (shown in white in
Fig. 6(a)). (b) Imaginary part of meshfree and FEM solutions along the same segment (shown in white in Fig. 6(b))

9. DEMONSTRATION OF THE INF-SUP TESTING

For a given discretization characterized by length h, Sections 5–7 showed that the discrete problem
(23) is well-posed (its solution exists, is unique, and depends continuously on the data) if the inf-sup
conditions (31) and (44) are satisfied. In order to verify if these conditions hold, we observe that

inf
w̃∈R2K

w̃ 6=0

sup
ṽ∈R2K

ṽ 6=0

w̃TĀṽ√
w̃TD̄w̃

√
ṽTD̄ṽ

=
√

σmin(h, f ), (45a)

inf
ũ∈R2 dimYh

ũ 6=0

sup
ṽ∈R2 dimXh

ṽ 6=0

ũTB̄ṽ√
ũTM̄ũ

√
ṽTX̄ṽ

=
√

τmin(h), (45b)

where σmin (h, f ) and τmin (h) are the smallest eigenvalues in the problems

ĀD̄−1ĀTw̃i = σiD̄w̃i, (46a)

B̄X̄−1B̄T ũi = τiM̄ũi, (46b)
see [6]. These smallest eigenvalues depend on the discretization length h. The matrix Ā in (31) is given
in terms of the matrix Ā in (24a), which is the discrete representation of the bilinear form a in (19a). This
bilinear form involves the wavenumber k, which is calculated as k = ω/c (see Sections 2 and 8). Since
ω = 2π f , it follows that the matrix Ā depends on the frequency f of the incident field. The smallest
eigenvalue σmin in (45a) therefore depends on both h and f .

The idea behind the inf-sup test is to evaluate the behavior of these smallest eigenvalues as the
discretization is refined, i.e., as h becomes successively smaller [28]. If these eigenvalues stabilize at a
value larger than zero, the inf-sup test is passed for the discretization scheme used. If in this way both
inf-sup tests are passed, we can conclude that the discrete problems retain their well-posedness and
hence the MFS formulation results in stable solutions for any h.

We demonstrate now the stability of the scattering problem considered in Section 8. Further dis-
cussion and more examples are given in [10]. We consider a sequence of 15 pairs of meshfree spaces
Xh and Yh, from the coarsest to the finest. For each pair, the discretization length h is established as
follows: for each ball in the discretization, we calculate the distance between its center and that of its
closest neighboring ball; then h is defined as the largest of these distances. The number of balls over Ω1
varies from 57 to 401, the number of balls over Ω2 varies from 227 to 1473, and the number of balls over
Γ1,2 varies from 25 to 69. Since region Ω1 is simply connected (see Fig. 5(a)), it follows that the region
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interior to curve Γ1,2 is the region Ω1, i.e., Γo
1,2 = Ω1. We thus reuse the finite sphere systems over Ω1 as

the finite sphere systems over Γo
1,2 (see Section 7.2).

In Section 8, the incident plane wave has a frequency of f = f0 = 100 kHz, so that the wavenumber
of the problem is k = k0 = 416.11 rad/m. For the first inf-sup condition, we first consider a frequency
f = 50 kHz, so that the wavenumber of the problem is k = ω/c = 2π f

√
ρ2/K2 = 208.06 rad/m, and

calculate the smallest eigenvalues σmin (h, 50 kHz) in (45a) for the sequence of 15 discretizations. Next,
we consider the new frequency f = 60 kHz, determine the new wavenumber k, and proceed to calculate
the smallest eigenvalues σmin (h, 60 kHz) for the sequence of 15 discretizations. This process is repeated
until f = 300 kHz (i.e., we consider increments of 10 kHz in the frequency). Using these results, we

plot the graph corresponding to the values
√

σmin (h, f ) in Fig. 8(a). We notice that for each frequency f ,

the values
√

σmin (h, f ) are positive and stabilize around a positive value (i.e., they neither increase nor
decrease with h). This implies that for each fixed frequency f , the test for the first inf-sup condition (31)
has been passed. At any given f there is a negligible variation with h in Fig. 8(a), hence the figure shows
a profile with parallel lines along the h axis. The inf-sup values may appear to be small but what really
matters is that they do not decrease with h, i.e., they stabilize as the discretization becomes finer, see
also [46, 47]. Hence we see that the inf-sup test is passed for all frequencies considered. Fig. 8(b) shows

the values
√

τmin (h) for the second inf-sup condition. We observe that they are all positive and stabilize
at a positive value, so that the test for the second inf-sup condition (44) is also passed. We conclude
that for this example and this range of frequencies (which are reasonable to consider in finite element
analysis) the proposed MFS procedure is stable and yields reliable solutions.W. L. Nicomedes, K. J. Bathe, F. J. S. Moreira, R. C. Mesquita 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8. The inf-sup values, scattering by a circular object (Section 8). (a) First inf-sup condition, 
log10 √𝜎min(ℎ, 𝑓) as a function of  log10 ℎ and 𝑓. (b) Second inf-sup condition, log10 √𝜏min(ℎ) as a function of 
log10 ℎ. 

These conditions pave the way for use of the inf-sup test, an application of which is given in Section 9. 
The goal of this test is to numerically verify the stability of the mixed formulation.  

The analysis presented uses the geometrical setting given in  Fig. 1 as an example, which is 
general enough to treat the scattering of waves in simply connected regions (such as Ω3) and also in 
not simply-connected regions (such as Ω2). Of course, the discussion can be adapted to any geometry, 
as long as the assumptions made still hold. 

The ideas presented here can also be developed and built upon to analyze the inf-sup conditions 
of scattering problems posed in domains in which the interfaces between media of different material 
properties are open curves (see for example [10]). Furthermore, the development given also provides a 
basis for use with other meshfree methods and for use in analyses using the overlapping finite element 
schemes [7], [14]. 
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Fig. 8. The inf-sup values, scattering by a circular object (Section 8). (a) First inf-sup condition, log10
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σmin (h, f ) as

a function of log10 h and f . (b) Second inf-sup condition, log10
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τmin (h) as a function of log10 h

10. CONCLUDING REMARKS

We provided a derivation of the method of finite spheres equations for solutions of acoustic pres-
sure fields in nonhomogeneous media. Lagrange multiplier fields arise naturally leading to a mixed
formulation. Using the solution scheme, the well-posedness of the discrete problems is governed by
two inf-sup conditions. These conditions are difficult to work with, particularly the second one, due
to the H−1/2 dual norm. We presented an analysis able to cover the most general case when the bilin-
ear forms may assume complex values. Our result is that we obtained stronger conditions, simpler to
deal with and written entirely in terms of real-valued matrices and vectors. These conditions pave the
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way for use of the inf-sup test, an application of which is given in Section 9. The goal of this test is to
numerically verify the stability of the mixed formulation.

The analysis presented uses the geometrical setting given in Fig. 1 as an example, which is general
enough to treat the scattering of waves in simply connected regions (such as Ω3) and also in not simply-
connected regions (such as Ω2). Of course, the discussion can be adapted to any geometry, as long as
the assumptions made still hold.

The ideas presented here can also be developed and built upon to analyze the inf-sup conditions
of scattering problems posed in domains in which the interfaces between media of different material
properties are open curves (see for example [10]). Furthermore, the development given also provides a
basis for use with other meshfree methods and for use in analyses using the overlapping finite element
schemes [7, 14].
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[25] N. Moës, E. Béchet, and M. Tourbier. Imposing Dirichlet boundary conditions in the extended finite el-
ement method. International Journal for Numerical Methods in Engineering, 67, (12), (2006), pp. 1641–1669.
https://doi.org/10.1002/nme.1675.
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APPENDIX A. THE TRACE THEOREM

The complete version of this theorem is discussed in detail in [40, 48].

Theorem A.1. Let D be a bounded and open subset of R2 with a Lipschitz continuous boundary ∂D. The trace
operator γ∂D : H1 (D) −→ H1/2 (∂D), which is linear and continuous, admits a right inverse, i.e., there is a
linear and continuous operator γ−∂D : H1/2 (∂D) −→ H1 (D) such that for any g ∈ H1/2 (∂D),

γ∂D
(
γ−∂D(g)

)
= g, (A.1)

and there is a positive constant CD > 0 such that for any g ∈ H1/2 (∂D),∥∥γ−∂D(g)
∥∥

H1(D)
≤ CD‖g‖H1/2(∂D). (A.2)

APPENDIX B. THE SPACE H1/2

Let D be an open and bounded subset of R2 with Lipschitz continuous boundary ∂D. A function
t ∈ L2 (∂D) belongs to the fractional Sobolev space H1/2 (∂D) if the Slobodeckij seminorm

|t|H1/2(∂D)
def
=

(∫
∂D

∫
∂D

|t(x)− t(y)|2
‖x− y‖2 dΓxdΓy

) 1
2

, (B.1)

is finite, where dΓx and dΓy denote the length measure on ∂D parametrized by x and y, respectively
[15–17]. The norm in H1/2 (∂D) is given by

‖t‖H1/2(∂D)
def
=
(
‖t‖2

L2(∂D) + |t|
2
H1/2(∂D)

) 1
2 . (B.2)

Among the properties of the space H1/2, we list:
1. The space H1/2 (∂D) is a Hilbert space, and it is the image of the trace operator γ∂D introduced

in Appendix A.
2. For any t ∈ H1/2 (∂D) and for any subset Γ0 ⊂ ∂D (with nonzero measure), it follows from (B.1)

that the restriction of t to Γ0 belongs to H1/2 (Γ0), i.e., t|Γ0
∈ H1/2 (Γ0).

APPENDIX C. THE THEOREM 3.2

Proof (1). The linearity of E[σk ,∂Ω] is obvious. We check for boundedness. Assume that w ∈ H1/2 (σk) is
arbitrary. It is clear that E[σk ,∂Ω] (w) ∈ L2 (∂Ω), since∥∥∥E[σk ,∂Ω](w)

∥∥∥2

L2(∂Ω)

def
=

∫
∂Ω

∣∣∣E[σk ,∂Ω](w)
∣∣∣2 dΓ

=
c

∑
i=1

∫
σi

∣∣∣E[σk ,∂Ω](w)
∣∣∣2 dΓ =

∫
σk

|w|2dΓ = ‖w‖2
L2(σk)

< ∞.
(C.1)

The Slobodeckij seminorm of E[σk ,∂Ω] (w) is:

∣∣∣E[σk ,∂Ω](w)
∣∣∣2

H1/2(∂Ω)

def
=

∫
∂Ω

∫
∂Ω

∣∣∣(E[σk ,∂Ω](w)
)
(x)−

(
E[σk ,∂Ω](w)

)
(y)
∣∣∣2

‖x− y‖2 dΓxdΓy

=
c

∑
i=1

c

∑
j=1

∫
σj

∫
σi

∣∣∣(E[σk ,∂Ω](w)
)
(x)−

(
E[σk ,∂Ω](w)

)
(y)
∣∣∣2

‖x− y‖2 dΓxdΓy

=
∫

σk

∫
σk

|w(x)− w(y)|2
‖x− y‖2 dΓxdΓy +

c

∑
j=1
j 6=k

∫
σj

∫
σk

|w(x)− 0|2
‖x− y‖2 dΓxdΓy

+
c

∑
i=1
i 6=k

∫
σk

∫
σi

|0− w(y)|2
‖x− y‖2 dΓxdΓy +

c

∑
i=1
i 6=k

c

∑
j=1
j 6=k

∫
σj

∫
σi

|0− 0|2
‖x− y‖2 dΓxdΓy,

(C.2)
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where we used the extension rule from (9a). The first term at the right side of the last equality in (C.2)
is just |w|2H1/2(σk)

, according to (B.1). Since the connected components σ1, . . . , σc lie at a certain distance
from each other, it means that for any i, j = 1, . . . , c, if i 6= j, then

‖x− y‖ ≥ dist
(
σi, σj

)
> 0, for all (x, y) ∈ σi × σj. (C.3)

Moreover, since w is a function defined on σk, (C.2) becomes∣∣∣E[σk ,∂Ω](w)
∣∣∣2

H1/2(∂Ω)
≤ |w|2H1/2(σk)

+
c

∑
j=1
j 6=k

1

dist
(
σk, σj

)2

∫
σj

(∫
σk

|w(x)|2dΓx

)
dΓy +

c

∑
i=1
i 6=k

1

dist (σi, σk)
2

∫
σk

|w(y)|2
(∫

σi

dΓx

)
dΓy.

(C.4)

The term within the parentheses in the first integral above is ‖w‖2
L2(σk)

, whereas the term within paren-
theses in the second integral is just the length of σi, denoted by |σi|. Expression above becomes

∣∣∣E[σk ,∂Ω](w)
∣∣∣2

H1/2(∂Ω)
≤ |w|2H1/2(σk)

+ ‖w‖2
L2(σk)

 c

∑
j=1
j 6=k

∣∣σj
∣∣

dist
(
σk, σj

)2 +
c

∑
i=1
i 6=k

|σi|
dist (σi, σk)

2


︸ ︷︷ ︸

C

. (C.5)

Clearly, C in (C.5) is a positive constant depending only on the geometry of the boundary ∂Ω. It fol-
lows from (C.5) that the Slobodeckij seminorm of E[σk ,∂Ω] (w) is finite, and thus E[σk ,∂Ω] (w) belongs to
H1/2 (∂Ω) (see Appendix B). Moreover, according to (B.2),∥∥∥E[σk ,∂Ω](w)

∥∥∥2

H1/2(∂Ω)
=
∥∥∥E[σk ,∂Ω](w)

∥∥∥2

L2(∂Ω)
+
∣∣∣E[σk ,∂Ω](w)

∣∣∣2
H1/2(∂Ω)

≤ ‖w‖2
L2(σk)

+ C‖w‖2
L2(σk)

+ |w|2H1/2(σk)

≤ (1 + C)
(
‖w‖2

L2(σk)
+ |w|2H1/2(σk)

)
= (1 + C)‖w‖2

H1/2(σk)
,

(C.6)

where we used (C.1) and (C.5). Since the constant 1 + C depends only on the geometry of ∂Ω, it thus
follows that E[σk ,∂Ω] is a bounded operator from H1/2 (σk) into H1/2 (∂Ω). �

Proof (2). Let µ ∈ H−1/2 (∂Ω) be arbitrary. We define the functional µ̃k as

µ̃k(w)
def
=
〈

µ | E[σk ,∂Ω](w)
〉

H1/2(∂Ω)
, (C.7)

for any w ∈ H1/2 (σk). Linearity of µ̃k is obvious. Boundedness follows from

|µ̃k(w)| =
∣∣∣∣〈µ | E[σk ,∂Ω](w)

〉
H1/2(∂Ω)

∣∣∣∣
≤ ‖µ‖H−1/2(∂Ω)

∥∥∥E[σk ,∂Ω](w)
∥∥∥

H1/2(∂Ω)

≤
√

1 + C‖µ‖H−1/2(∂Ω)︸ ︷︷ ︸
D

‖w‖H1/2(σk)
,

(C.8)

due to (C.6). The positive constant D is independent of any particular choice of w. Since the functional
µ̃k is linear and bounded, it belongs to the dual space H−1/2 (σk). We can therefore represent the action

of µ̃k on elements of H1/2 (σk) as 〈 µ̃k | w 〉H1/2(σk)
def
= µ̃k (w), for any w ∈ H1/2 (σk). So for each µ ∈

H−1/2 (∂Ω) there exists a corresponding µ̃k ∈ H−1/2 (σk) such that

〈µ̃k | w〉H1/2(σk)
=
〈

µ | E[σk ,∂Ω](w)
〉

H1/2(∂Ω)
, (C.9)
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for any w ∈ H1/2 (σk). We can thus introduce an operator Λ[∂Ω,σk ]
: H−1/2 (∂Ω) −→ H−1/2 (σk) and

make Λ[∂Ω,σk ]
(µ)

def
= µ̃k. The result in (9b) then follows. �

Proof (3). Let µ ∈ H−1/2 (∂Ω) and g ∈ H1/2 (∂Ω) be arbitrary. For each k = 1, · · · , c, g|σk
∈ H1/2 (σk)

(see Property 2 in Appendix B). Therefore, for each k, we have E[σk ,∂Ω]

(
g|σk

)
∈ H1/2 (∂Ω) (see Conclu-

sion 1 of this theorem). This motivates our writing

g =
c

∑
k=1

E[σk ,∂Ω]

(
g|σk

)
, (C.10)

so that

〈µ | g〉H1/2(∂Ω) =

〈
µ |

c

∑
k=1

E[σk ,∂Ω]

(
g|σk

)〉
H1/2(∂Ω)

=
c

∑
k=1

〈
Λ[∂Ω,σk ]

(µ) | g|σk

〉
H1/2(σk)

, (C.11)

due to the linearity of µ and to (9b). �

APPENDIX D. THE THEOREM 7.1

Since Σ is a simple closed curve in R2 (see Fig. A1), its complement R2 \ Σ is comprised of two
connected components, the interior (denoted by Σo) and the exterior (denoted by ext Σ), such that Σo is
bounded and ∂Σo = ∂ (ext Σ) = Σ (see Jordan Curve theorem [49]). Let θ be an arbitrary nonzero ele-
ment of H−1/2 (Σ). Since H1/2 (∂Σo) is a Hilbert space (Property 1, Appendix B), Riesz’s Representation
theorem [42] asserts the existence of an operatorR : H−1/2 (∂Σo) −→ H1/2 (∂Σo) such that

〈θ | t〉H1/2(∂Σo) = (t,R(θ))H1/2(∂Σo), (D.1)

for any t ∈ H1/2 (∂Σo), and

‖θ‖H−1/2(∂Σo) = ‖R(θ)‖H1/2(∂Σo), (D.2)

where (·, ·)H1/2(∂Σo) denotes the inner product in the space H1/2 (∂Σo). The spaces H1 (Σo) and H1/2 (∂Σo)

are Hilbert spaces. The trace operator γ∂Σo : H1 (Σo) −→ H1/2 (∂Σo) is continuous (Theorem A.1), and
therefore it admits an adjoint operator γT

∂Σo : H1/2 (∂Σo) −→ H1 (Σo) defined as [42]

(γ∂Σo (w), g)H1/2(∂Σo) =
(

w, γT
∂Σo (g)

)
H1(Σo)

, (D.3)

for any (w, g) ∈ H1 (Σo)×H1/2 (∂Σo), where ( ·, ·)H1(Σo) denotes the inner product in the space H1 (Σo).

Let w ∈ H1 (Σo) be arbitrary. Since the trace γ∂Σo (w) belongs to H1/2 (∂Σo), we make t = γ∂Σo (w)
in (D.1) and conclude that

〈θ | γ∂Σo (w)〉H1/2(∂Σo) = (γ∂Σo (w),R(θ))H1/2(∂Σo) , (D.4)

for any w ∈ H1 (Σo). We now make g = R (θ) in (D.3) and conclude that

(γ∂Σo (w),R(θ))H1/2(∂Σo) =
(

w, γT
∂Σo (R(θ))

)
H1(Σo)

, (D.5)

for any w ∈ H1 (Σo).
Let γ−∂Σo : H1/2 (∂Σo) −→ H1 (Σo) be the right inverse trace operator, according to Appendix A.

Since R (θ) ∈ H1/2 (∂Σo) (see (D.1)), it follows that γ−∂Σo (R (θ)) ∈ H1 (Σo). We make w = γ−∂Σo (R (θ))
in (D.5) (

γ∂Σo
(
γ−∂Σo (R(θ))

)
,R(θ)

)
H1/2(∂Σo)

=
(

γ−∂Σo (R(θ)), γT
∂Σo (R(θ))

)
H1(Σo)

. (D.6)

But γ∂Σo
(
γ−∂Σo (R (θ))

)
= R (θ) (make D = Σo and g = R (θ) in (A.1)), so that (D.6) becomes

(R(θ),R(θ))H1/2(∂Σo) =
(

γ−∂Σo (R(θ)), γT
∂Σo (R(θ))

)
H1(Σo)

, (D.7)



The method of finite spheres in acoustic wave propagation through nonhomogeneous media: Inf-sup stability conditions 237

 The Method of Finite Spheres in Acoustic Wave Propagation 35 

 

 

 

 

 

 

 
 

 

(a)                                                                                                    (b) 

Fig. A1. The geometrical setting for the application of Theorem 8.1. (a) A simple and closed Lipschitz curve Σ in 
ℝ2. (b) The bounded region Σo corresponds to the interior of curve Σ, whereas the region ext Σ corresponds to 
the exterior of the curve. It follows that 𝜕Σo = 𝜕(ext Σ) = Σ. 

since we assumed 𝜃 different from zero. The operators ℛ (Riesz) and 𝛾𝜕Σo
𝑇  (adjoint trace) were shown 

to exist, and so the image of the compound operator 𝛾𝜕Σo
𝑇 ∘ ℛ must therefore exist in 𝐻1(Σo). In order 

to find the element (𝛾𝜕Σo
𝑇 ∘ ℛ)𝜃 = 𝛾𝜕Σo

𝑇 (ℛ(𝜃)), we observe from (A4.4) and (A4.5) that 

(𝑤, 𝛾𝜕Σo
𝑇 (ℛ(𝜃)))

𝐻1(Σo)
= ⟨ 𝜃 | 𝛾𝜕Σo(𝑤) ⟩𝐻1 2⁄ (𝜕Σo), (𝐴4.11) 

for any 𝑤 ∈ 𝐻1(Σo). The unknown 𝛾𝜕Σo
𝑇 (ℛ(𝜃)) thus satisfies the equality 

∫ [𝛁𝑤 ∙ 𝛁 (𝛾𝜕Σo
𝑇 (ℛ(𝜃)))

∗
+ 𝑤 (𝛾𝜕Σo

𝑇 (ℛ(𝜃)))
∗
]

Σo
𝑑Ω =  ⟨ 𝜃 | 𝛾𝜕Σo(𝑤) ⟩𝐻1 2⁄ (𝜕Σo), (𝐴4.12) 

for any 𝑤 ∈ 𝐻1(Σo), after we expanded the inner product for the (complex-valued) Hilbert space 
𝐻1(Σo) in (A4.11). If we define 𝑓𝜃 ≝ (𝛾𝜕Σo

𝑇 (ℛ(𝜃)))∗ and recall that 𝜕Σo = Σ (see Fig. A1), (A4.12) 
becomes 

∫ (𝛁𝑤 ∙ 𝛁𝑓𝜃 + 𝑤𝑓𝜃)
Σo

𝑑Ω = ⟨ 𝜃 | 𝛾Σ(𝑤) ⟩𝐻1 2⁄ (Σ), (𝐴4.13) 

for any 𝑤 ∈ 𝐻1(Σo). This equality can be interpreted as a problem in weak form; if 𝜃 is given, then 
we can solve for 𝑓𝜃. After we find 𝑓𝜃, we make 

‖𝑓𝜃‖𝐻1(Σo) = ‖(𝛾𝜕Σo
𝑇 (ℛ(𝜃)))

∗
‖

𝐻1(Σo)
= ‖𝛾𝜕Σo

𝑇 (ℛ(𝜃))‖𝐻1(Σo), (𝐴4.14) 

and the inequality (A4.10) becomes 

‖𝜃‖𝐻−1 2⁄ (Σ) ≤ 𝐶Σo‖𝑓𝜃‖𝐻1(Σo), (𝐴4.15) 

where we again recalled that 𝜕Σo = Σ (see Fig. A1). Since 𝜃 ∈ 𝐻−1 2⁄ (Σ) is arbitrary, and since the 
constant 𝐶Σo does not depend on any particular choice of 𝜃, the conclusions (35a) and (35b) in 
Theorem 7.1 follow from (A4.15) and (A4.13), respectively. 

(a)
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Fig. A1. The geometrical setting for the application of Theorem 8.1. (a) A simple and closed Lipschitz curve Σ in 
ℝ2. (b) The bounded region Σo corresponds to the interior of curve Σ, whereas the region ext Σ corresponds to 
the exterior of the curve. It follows that 𝜕Σo = 𝜕(ext Σ) = Σ. 

since we assumed 𝜃 different from zero. The operators ℛ (Riesz) and 𝛾𝜕Σo
𝑇  (adjoint trace) were shown 

to exist, and so the image of the compound operator 𝛾𝜕Σo
𝑇 ∘ ℛ must therefore exist in 𝐻1(Σo). In order 

to find the element (𝛾𝜕Σo
𝑇 ∘ ℛ)𝜃 = 𝛾𝜕Σo

𝑇 (ℛ(𝜃)), we observe from (A4.4) and (A4.5) that 

(𝑤, 𝛾𝜕Σo
𝑇 (ℛ(𝜃)))

𝐻1(Σo)
= ⟨ 𝜃 | 𝛾𝜕Σo(𝑤) ⟩𝐻1 2⁄ (𝜕Σo), (𝐴4.11) 

for any 𝑤 ∈ 𝐻1(Σo). The unknown 𝛾𝜕Σo
𝑇 (ℛ(𝜃)) thus satisfies the equality 

∫ [𝛁𝑤 ∙ 𝛁 (𝛾𝜕Σo
𝑇 (ℛ(𝜃)))

∗
+ 𝑤 (𝛾𝜕Σo

𝑇 (ℛ(𝜃)))
∗
]

Σo
𝑑Ω =  ⟨ 𝜃 | 𝛾𝜕Σo(𝑤) ⟩𝐻1 2⁄ (𝜕Σo), (𝐴4.12) 

for any 𝑤 ∈ 𝐻1(Σo), after we expanded the inner product for the (complex-valued) Hilbert space 
𝐻1(Σo) in (A4.11). If we define 𝑓𝜃 ≝ (𝛾𝜕Σo

𝑇 (ℛ(𝜃)))∗ and recall that 𝜕Σo = Σ (see Fig. A1), (A4.12) 
becomes 

∫ (𝛁𝑤 ∙ 𝛁𝑓𝜃 + 𝑤𝑓𝜃)
Σo

𝑑Ω = ⟨ 𝜃 | 𝛾Σ(𝑤) ⟩𝐻1 2⁄ (Σ), (𝐴4.13) 

for any 𝑤 ∈ 𝐻1(Σo). This equality can be interpreted as a problem in weak form; if 𝜃 is given, then 
we can solve for 𝑓𝜃. After we find 𝑓𝜃, we make 

‖𝑓𝜃‖𝐻1(Σo) = ‖(𝛾𝜕Σo
𝑇 (ℛ(𝜃)))

∗
‖

𝐻1(Σo)
= ‖𝛾𝜕Σo

𝑇 (ℛ(𝜃))‖𝐻1(Σo), (𝐴4.14) 

and the inequality (A4.10) becomes 

‖𝜃‖𝐻−1 2⁄ (Σ) ≤ 𝐶Σo‖𝑓𝜃‖𝐻1(Σo), (𝐴4.15) 

where we again recalled that 𝜕Σo = Σ (see Fig. A1). Since 𝜃 ∈ 𝐻−1 2⁄ (Σ) is arbitrary, and since the 
constant 𝐶Σo does not depend on any particular choice of 𝜃, the conclusions (35a) and (35b) in 
Theorem 7.1 follow from (A4.15) and (A4.13), respectively. 

(b)

Fig. A1. The geometrical setting for the application of Theorem 7.1. (a) A simple and closed Lipschitz continu-
ous curve Σ in R2. (b) The bounded region Σo corresponds to the interior of curve Σ, whereas the region ext Σ

corresponds to the exterior of the curve. It follows that ∂Σo = ∂ (ext Σ) = Σ

or, by the definition of norms in Hilbert spaces [42]

‖R(θ)‖2
H1/2(∂Σo)

=
(

γ−∂Σo (R(θ)), γT
∂Σo (R(θ))

)
H1(Σo)

. (D.8)

The left-hand side of (D.8) is a nonnegative real number, and so is the right-hand side. In this way,(
γ−∂Σo (R(θ)), γT

∂Σo (R(θ))
)

H1(Σo)
=

∣∣∣∣(γ−∂Σo (R(θ)), γT
∂Σo (R(θ))

)
H1(Σo)

∣∣∣∣
≤
∥∥γ−∂Σo (R(θ))

∥∥
H1(Σo)

∥∥∥γT
∂Σo (R(θ))

∥∥∥
H1(Σo)

≤ CΣo‖R(θ)‖H1/2(∂Σo)

∥∥∥γT
∂Σo (R(θ))

∥∥∥
H1(Σo)

,

(D.9)

where we used Cauchy-Schwarz inequality, and made D = Σo and g = R (θ) in (A.2), so that CΣo is a
positive constant (depending on the geometry of region Σo). From (D.8), (D.9), and (D.2), we obtain

‖θ‖H−1/2(∂Σo) ≤ CΣo

∥∥∥γT
∂Σo (R(θ))

∥∥∥
H1(Σo)

, (D.10)

since we assumed θ different from zero. The operatorsR (Riesz) and γT
∂Σo (adjoint trace) were shown to

exist, and so the image of the compound operator γT
∂Σo ◦ R must therefore exist in H1 (Σo). In order to

find the element
(

γT
∂Σo ◦ R

)
θ = γT

∂Σo (R (θ)), we observe from (D.4) and (D.5) that(
w, γT

∂Σo (R(θ))
)

H1(Σo)
= 〈θ | γ∂Σo (w)〉H1/2(∂Σo) , (D.11)

for any w ∈ H1 (Σo). The unknown γT
∂Σo (R (θ)) thus satisfies the equality∫

Σo

[
∇w ·∇

(
γT

∂Σo (R(θ))
)∗

+ w
(

γT
∂Σo (R(θ))

)∗]
dΩ = 〈θ | γ∂Σo (w)〉H1/2(∂Σo) , (D.12)

for any w ∈ H1 (Σo), after we expanded the inner product for the (complex-valued) Hilbert space

H1 (Σo) in (D.11). If we define fθ
def
=
(

γT
∂Σo (R (θ))

)∗
and recall that ∂Σo = Σ (see Fig. A1), (D.12)

becomes ∫
Σo

(∇w ·∇ fθ + w fθ) dΩ = 〈θ | γΣ(w)〉H1/2(Σ) , (D.13)
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for any w ∈ H1 (Σo). This equality can be interpreted as a problem in weak form; if θ is given, then we
can solve for fθ . After we find fθ , we make

‖ fθ‖H1(Σo) =
∥∥∥(γT

∂Σo (R(θ))
)∗∥∥∥

H1(Σo)
=
∥∥∥γT

∂Σo (R(θ))
∥∥∥

H1(Σo)
, (D.14)

and the inequality (D.10) becomes

‖θ‖H−1/2(Σ) ≤ CΣo ‖ fθ‖H1(Σo) , (D.15)

where we again recalled that ∂Σo = Σ (see Fig. A1). Since θ ∈ H−1/2 (Σ) is arbitrary, and since the con-
stant CΣo does not depend on any particular choice of θ, the conclusions (33a) and (33b) in Theorem 7.1
follow from (D.15) and (D.13), respectively.
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