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Abstract. This paper presents a novel numerical formulation of computational homoge-
nization analysis of materials at limit state. The fluctuating displacement field are approx-
imated using the Element-Free Galerkin (EFG) meshless method. The estimated yield sur-
face of materials can be determined by handling the multiscale (macro-micro) transition.
Taking advantage of high-order EFG shape function and the second-order cone program-
ming, the resulting optimization problem can be solved rapidly with the great accuracy.
Several benchmark examples will be investigated to demonstrate the computational effi-
ciency of proposed method.

Keywords: homogenization, limit analysis, second-order cone programming, Element-Free
Galerkin method.

1. INTRODUCTION

As the increasing use of composite and heterogeneous materials in practical engi-
neering structures, the estimation of their effective properties plays a vital role in safety
assessment as well as structural design. The elastic-plastic incremental method can be
employed to predict the ultimate load and collapse mechanism of structures. However,
direct method, e.g. limit analysis shows more effectively, i.e. the critical status of struc-
tures can be determined without any knowledge of whole loading path history [1, 2].

Dealing with the microstructures, the multi-scale homogenization technique or so-
called global-local analysis firstly introduced in [3] has been widely exploited in recent
years. The computational homogenization methodology has been mostly applied to the
periodic composite and heterogeneous materials. Based on the concept of representa-
tive volume element (RVE) and homogenization technique in [3], the first formulation
of limit analysis in terms of solving the composite structure at micro-scale has been pro-
posed in [4]. Then, the theoretical formulation was developed by [5,6] for fiber-reinforced
composite using Drucker-Prager, Mohr-Coulomb or von Mises yield criterion. The first
numerical implementation for this field has been reported in [7] with the use of finite
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element method and linear mathematical programming. By means of static direct meth-
ods, a three-dimensions finite element procedure for analysis of isotropic microstructures
was developed by [8, 9]. Besides, using the similar approach, a quasi-lower bound for-
mulation for periodic composite and heterogeneous materials using the nonlinear pro-
gramming was presented in [10]. In contrast, the kinematic formulations in combination
with nonlinear algorithms can be found in [11–15]. In those works, both of isotropic and
anisotropic materials obeying the von Mises or elliptic yield criterion were considered. In
order to improve the computational aspect, a numerical procedure based on combination
of kinematic limit analysis and homogenization theory for periodic materials proposed
in [16]. However, these studies only focused on the application of finite element method.

This study aims to develop a novel computational homogenization approach for up-
per bound limit analysis of microstructures using Element-Free Galerkin method known
as one of most successful procedures for yield design problems. The stability conform-
ing nodal integration (SCNI) technique proposed in [17] is employed to improve the
performance of the numerical formulation. In addition, the plastic dissipation will be
transformed into the form of a sum of norms and the resulting optimization are then
formulated as conic one. The benchmark numerical examples will be considered and
the good agreement in comparison to previous procedures proves the performance of
present method.

2. LIMIT ANALYSIS BASED ON HOMOGENIZATION THEORY

2.1. Homogenization theory

Consider a heterogeneous representative volume element (RVE) Ω ∈ R2 at every
material point x ∈ V, where V ∈ R2 denotes the heterogeneous macroscopic-continuum.
The micro-structure is subjected to the body force f, the surface load t on the static bound-
ary Γt and fixed by the displacement field u on the kinematic boundary Γu.

The micro-scale problem can be treated as the boundary value one in solid mechan-
ics, where the overall strain E are transferred to micro-structure in form of kinematic
boundary constrains. At microscopic scale, the local fields is decomposed into two parts
including mean and fluctuation terms. The displacement, strain and stress fields of mi-
crostructure are now given by

u(x) = E · X + ũ(x), (1a)

ε(x) = E + ε̃(x), (1b)

σ(x) = Σ + σ̃(x), (1c)

where matrix X consists of the position components of each material point in the compu-
tational domain; Σ is the overall stress; ũ(x), ε̃(x) and σ̃(x) denote the fluctuation parts
of displacement, strain and stress rate.

For the enforcement of boundary conditions, the most efficient in terms of conver-
gence rate so-called periodic procedure, where there are the periodicity of fluctuation
displacement field and anti-periodicity of traction field on RVE boundary, is employed
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in this study
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traction field of positive and negative boundaries, respectively.

Note that regarding to the periodic characteristic of the fluctuation terms, the average
of ε̃(x) and σ̃(x) over the RVE should vanish, it means

〈ε̃〉 = 0, 〈σ̃〉 = 0, (3)

where the operation 〈·〉 stands the volume average of fields over the RVE. Denoting |Ω|
for the area of RVE, the macroscopic quantities can be calculated from the microscopic
ones via the average relations

E ≡ 〈ε〉 = 1
|Ω|

∫

Ω
εdΩ, Σ ≡ 〈σ〉 = 1

|Ω|
∫

Ω
σdΩ. (4)

For any admissible velocity and stress field satisfying the periodic and anti-periodic
conditions on boundary, the principle of macroscopic virtual work can be expressed as

〈σ : ε〉 = Σ : E. (5)

2.2. Fundamental of limit analysis
Denoting X and Y for the appropriate spaces of statically admissible stress state and

of kinematically admissible velocity state, respectively. The exact collapse multiplier will
be obtained if one of following optimization problems is solved

λexact = max{λ | ∃σ ∈ B : a(σ, u) = λF(u), ∀u ∈ Y} (6a)

= max
σ∈B

min
u∈C

a(σ, u) (6b)

= min
u∈C

max
σ∈B

a(σ, u) (6c)

= min
u∈C

D(u), (6d)

where C = {u ∈ Y | F(u) = 1};B = {σ ∈ X | ψ(σ) ≤ 0}; the plastic dissipation rate
D(u) and the external work F(u) can be expressed in terms of σ and u as follow

D(u) = max
σ∈B

a(σ, u), (7a)

F(u) =
∫

Ω
fTudΩ +

∫

Γt

tTudΓ. (7b)

It is worth noting that most of yield criterion can be expressed in the following form

ψ(σ) =
√

σTPσ − 1, (8)

where P is the coefficient matrix consisting of strength properties of materials. For iso-
tropic materials, the von Mises criterion is frequently applied, and matrix P for plane
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stress problem can be expressed as

P =
1
σp




1 −1/2 0
−1/2 1 0

0 0 3


 , (9)

where σp is the isotropic yield stress of material.
In framework of limit analysis, the strain rates are assumed to obey the normality

rule. Denoting Θ for the inversion matrix of P, the power of dissipation can be formulated
in terms of strain rates as

D(ε) =
∫

Ω

√
εTΘεdΩ. (10)

2.3. Kinematic limit analysis based on homogenization theory
Assuming that all constitutions of ductile composite are rigid-perfectly plastic and

the strain of constitutions obey the normality rule. The kinematic approach in framework
of limit analysis for computation homogenization described in [11, 12, 14, 15, 18, 19] will
be taken into account in this paper. According to the homogenization theory, all vari-
ables related to the microscopic structures are split into two parts including mean fields
averaged over RVE and fluctuation fields.

Omitting the body force f and applying the principle of microscopic virtual work (5),
the normalization condition of external power can be rewritten as

F(u) =
∫

Γt

tTudΓ = ΣTE = 1. (11)

Now, the kinematic limit formulation of computational homogenization analysis for
a periodic micro-structure can be expressed as

λ+ = min
∫

Ω

√
εTΘεdΩ (12a)

s.t
{

ΣTE = 1
ũ periodic on Γu

(12b)

Solving the nonlinear problem (12), the upper-bound of macroscopic limit strength
λ+Σ will be determined. It should be noted that present study only considers the continu-
ous velocity fields, and in cases when the velocity fields are assumed to be discontinuous,
the dissipated power generated by discontinuities must be taken into account.

3. ELEMENT-FREE GALERKIN METHOD

The approximate function at point x reflected via a set of scattered nodes in arbitrary
domain Ω using moving least square (MLS) technique can be expressed as

uh(x) =
m

∑
i=1

pi (x) ai(x) = pT(x)a(x), (13)
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where the coefficient vector a(x) and the basis function vector p(x) are defined by

a(x) = [a1(x), a2(x), . . . , am(x)] , (14a)

pT(x) = [p1(x), p2(x), . . . , pm(x)] . (14b)

The complete polynomial basis is given by

pT(x) =
[
1, x, y, x2, xy, y2] . (15)

The unknown coefficient ai(x) is a function of x, a(x) is determined such that the
weighted, discrete L2 norm

J(x) =
N
∑
i=1

w (x− xi)
[
pT(x)a(x)− ui

]
, (16)

is minimized, where ui denotes the nodal value of approximate function at point ith,N is
number of points in the neighborhood of x, w(x− xi) is the weighting function depending
on the influent domain of point x. This study employs the isotropic quadratic spline

w (x− xi) ≡ wi(x) =
{

1− 6s2
i + 8s3

i − 3s4
i , if si ≤ 1

0, if si ≤ 1
(17)

where si =
‖x− xi‖

Ri
, with Ri is the support radius of node ith.

Minimizing J(x) in Eq. (16) leads to the system linear equation

A(x)a(x) = B(x)u, (18)

with

u = [u1, u2, . . . , uN ] , (19a)

A(x) =
N
∑
I=1

w (x− xI)p (xI)pT (xI) , (19b)

B(x) = [w (x− x1) p (x1) , w (x− x2) p (x2) , . . . , w (x− xN ) p (xN )] . (19c)

Taking an inversion, a(x) can be obtained by solving Eq. (18) as

a(x) = A−1(x)BI(x)u. (20)

Now, the approximate function can be expressed as

uh(x) =
N
∑
i=1

Φi(x)ui (21)

where the EFG shape function is defined by

Φi(x) = pT(x)A−1 (xi)Bi(x) (22)

In order to improve the computational efficiency of the EFG method, the stabilized
conforming nodal integration presented in [17] is applied here to obtain stabilized shape
function derivatives as

Φ̃i,α =
1

AC

∮

ΓC

Φi(x)nα(x)dΓ (23)
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where AC is the area of a Voronoi smoothing domain with boundary ΓC, nα is the outward
surface normal vector. Detailed calculation of the smoothing shape function derivatives
Φ̃i,α can be found in [19].

4. DISCRETE FORMULATION USING EFG METHOD

In the kinematic formulation, the local microscopic fluctuation displacement ũ(x)
and fluctuation strain ε̃(x) at point x can be approximated using EFG method as

ũh(x) =
N
∑
i=1

Φi(x)ũi = N(x)d, (24a)

ε̃(x) =
N
∑
i=1

Φ̃i,α(x)ũi = B(x)d, (24b)

where N(x) denotes the iRBF shape function; B(x) is the strain-displacement matrix con-
sisting the smoothed version of shape function derivatives; and d is the vector containing
the nodal fluctuation displacement components.

With the use of SCNI technique for the numerical integration, the plastic dissipation
well-known as the objective function of the optimization problems can be expressed as

Dp(ε) =
N
∑
i=1

σp Ai

√
(E + Bd)TΘ(E + Bd), (25)

where σp is the yield stress of material, Ai is the area of the ith nodal representative do-
main created using Voronoi diagrams.

In this study, the optimization problem will be formulated in the form of second
order cone programming (SOCP) ensuring that it can be solved using the highly efficient
solves. Hence, a form of sum of norm can be used to calculate the internal dissipation
power as

Dp(ε) =
N

∑
i=1

σp Ai ‖ρi‖ , (26)

where ‖ · ‖ denotes the Euclidean norms and σ is the vector of additional variables de-
fined by

ρi = QT(E + Bd), (27)

with Q denotes the Cholesky factor of Θ.
Next, the periodic feature of the fluctuation displacement for nodes on the boundary

of RVE need to be enforced. Denoting Γ+ and Γ− for the positive and negative boundary
such that Γ+ ∪ Γ− = Γ and Γ+ ∩ Γ− = ∅, the periodic boundary condition for each pair{

x+, x−
}

of boundary material points can be expressed as

ũ
(
x+
)
− ũ

(
x−
)
= 0. (28)

Assembling to the global matrix, Eq. (28) can be rewritten as

Cd = 0. (29)
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Finally, by introducing the auxiliary variables (t1, t2, . . . , tN ), the optimization prob-
lem can be formulated in the form of conic programming as follows

λ+ =min
N

∑
i=1

σp Ai ‖ρi‖ (30a)

s.t





ΣTE = 1
Cd = 0
‖ρi‖ ≤ ti, i = 1, 2, . . . ,N

(30b)

5. NUMERICAL EXAMPLES

In this section, the computational aspect of proposed method will be investigated.
An unit RVE of a× a = 1× 1 mm is used for all examples. The problems are considered
in plane stress, and thus number of variables Nvar is equal to 6×N + 3. The resultant
optimization problems are solved using the commercial software package Mosek on a
2.8 GHz Intel Core i7 PC running Window 10.
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(b) Circular hole RVE

Fig. 1. RVEs of perforated materials: geometry, loading and dimension

The effect of microscopic hole on the overall strength of perforated materials is inves-
tigated. Two perforated material models including a rectangular hole of size L1 × L2 and
a circle hole of radius R at center are considered. The problems have been investigated
using kinematic formulation in [11, 12, 16] and quasi-static formulation in [10]. The RVE
is subjected to an orthogonal macroscopic stress (Σ11, Σ22) in plane (x1, x2) as shown in
Fig. 1, where θ denotes the angle between the principle stress and x1-axis. The matrix ma-
terial of rectangular hole RVE is aluminum Al whose yield stress is σp = 137 MPa, while
those of RVE with circular hole is mild steel St3s with yield stress σp = 273 MPa. Material
behavior is assumed to obey the von Mises yield criterion. Fig. 2 illustrates the scheme
of nodal discretization using Voronoi diagram.
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(a) Rectangular hole RVE (L1 ⇥
L2 = 0.1 ⇥ 0.5 mm)

(b) Circular hole RVE (R = 0.25⇥a)

Fig. 2. RVEs of perforated materials: nodal discretization using Voronoi cells

Table 1. Rectangular hole RVE (L1 ⇥ L2 = 0.1 ⇥ 0.5 mm, ✓ = 0o)

Author and approach ⌃11/�p sdof CPU-Time (s)

Present study, EFG 0.5559 6228 17

Li et al. [12], FEM 0.5600 1920 95

Le et al. [16], FEM 0.5561 8140 6

sdof denotes the total system degrees of freedom

0 20 40 60 80

(o)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

11
/
p

Li and Yu
Litewka et al.

Le et al.
Present EFG

(a) L1 ⇥ L2 = 0.1 ⇥ 0.5 mm

0 20 40 60 80

(o)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

11
/
p

Li and Yu
Litewka et al.

Le et al.
Present EFG

(b) L1 ⇥ L2 = 0.1 ⇥ 0.7 mm

Fig. 3. Rectangular hole RVE: limit uniaxial strength ⌃11 in comparison with other procedures
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(b) L1 ⇥ L2 = 0.1 ⇥ 0.7 mm

Fig. 3. Rectangular hole RVE: limit uniaxial strength ⌃11 in comparison with other procedures

(b) Circular hole RVE (R = 0.25× a)

Fig. 2. RVEs of perforated materials: nodal discretization using Voronoi cells

Table 1. Rectangular hole RVE (L1 × L2 = 0.1× 0.5 mm, θ = 0◦)

Author and approach Σ11/σp sdof CPU-Time (s)

Present study, EFG 0.5559 6228 17
Li et al. [12], FEM 0.5600 1920 95
Le et al. [16], FEM 0.5561 8140 6

sdof denotes the total system degrees of freedom

In case of rectangular hole RVE, the problem is considered with different dimensions
of hole involving (L1 × L2 = 0.1× 0.5 mm) and (L1 × L2 = 0.1× 0.7 mm). Tab. 1 shows
present numerical solutions compared with those in [12, 16]. It can be observed that pro-
posed procedure can prove the highly accurate solutions with low computational cost
in comparison with approaches presented in [12, 16]. The number of variables in present
procedure is less than those used in [16], while the numerical result is approximate. More-
over, with the use of cone-based algorithm the resultant optimization problem in present
study can be solved rapidly, the CPU-time required for handling the problem is much less
than those in [12] using iterative algorithm. Fig. 3 plots the macroscopic uniaxial strength
Σ11 for various values of angle θ corresponding to two different sizes of rectangular hole.
It can be seen from both of sub-figures that the upper-bound solutions obtained using
present iRBF are slightly lower (better) than available those in other studies. The figure
also shows the good agreement of present solutions in comparison with previous numer-
ical results reported in [12, 16] as well as the experimental results reported by Litewka et
al. (ref [12]).

For the case of perforated material with circular hole, various values of ratio R/a
and loading angle θ are considered. Fig. 4 also plots the solutions reported in [11, 16].
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Fig. 3. Rectangular hole RVE: limit uniaxial strength Σ11 in comparison with other procedures

From the comparison in the Figure, it can be observed that present solutions are in good
agreement in comparison with available those in other numerical methods.

Next, the effect of microscopic hole size on the overall strength of perforated mate-
rials is investigated. Obviously, it is reasonable that the effective macroscopic strength
decreases when increasing size of holes. For rectangular hole RVE, it can be observed
that for all values of angle θ, the obtained macroscopic strengths in case of L1 × L2 =
0.1× 0.7 mm are lower than those in case of L1× L2 = 0.1× 0.5 mm, as seen in Fig. 3. For
the case of RVE with circular hole, the solutions in Fig. 4 shows the similar trend when
increasing ratio R/a.
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Figure 1, where ✓ denotes the angle between the principle stress and x1-axis. The matrix
material of rectangular hole RVE is aluminum Al whose yield stress is �p = 137 MPa,
while those of RVE with circular hole is mild steel St3s with yield stress �p = 273 MPa.
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material of rectangular hole RVE is aluminum Al whose yield stress is �p = 137 MPa,
while those of RVE with circular hole is mild steel St3s with yield stress �p = 273 MPa.
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Fig. 4. Circular hole RVE: limit uniaxial strength Σ11 in comparison with other procedures
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The approximate macroscopic strength domain of perforated materials with rectan-
gular hole (L1 × L2 = 0.1× 0.5 mm) and circular hole (R = 0.25× a) for θ = 0° and
θ = 45◦ are illustrated in Fig. 5. The strength in Σ22 direction is greater than that in Σ11
direction in case of rectangular hole RVE, while those are equivalent in case of circular
hole RVE. The plastic dissipation distributions representing the failure mechanisms of
RVEs are also presented in Figs. 6 and 7.
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Material behavior is assumed to obey the von Mises yield criterion. Figure 2 illustrates
the scheme of nodal discretization using Voronoi diagram.

In case of rectangular hole RVE, the problem is considered with di↵erent dimensions
of hole involving (L1 ⇥L2 = 0.1⇥ 0.5 mm) and (L1 ⇥L2 = 0.1⇥ 0.7 mm). Table 1 shows
present numerical solutions compared with those in [12, 16]. It can be observed that pro-
posed procedure can prove the highly accurate solutions with low computational cost in
comparison with approaches presented in [12,16]. The number of variables in present pro-
cedure is less than those used in [16], while the numerical result is approximate. Moreover,
with the use of cone-based algorithm the resultant optimization problem in present study
can be solved rapidly, the CPU-time required for handling the problem is much less than
those in [12] using iterative algorithm. Figure 3 plots the macroscopic uniaxial strength
⌃11 for various values of angle ✓ corresponding to two di↵erent sizes of rectangular hole.
It can be seen from both of sub-figures that the upper-bound solutions obtained using
present iRBF are slightly lower (better) than available those in other studies. The figure
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cedure is less than those used in [16], while the numerical result is approximate. Moreover,
with the use of cone-based algorithm the resultant optimization problem in present study
can be solved rapidly, the CPU-time required for handling the problem is much less than
those in [12] using iterative algorithm. Figure 3 plots the macroscopic uniaxial strength
⌃11 for various values of angle ✓ corresponding to two di↵erent sizes of rectangular hole.
It can be seen from both of sub-figures that the upper-bound solutions obtained using
present iRBF are slightly lower (better) than available those in other studies. The figure
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the scheme of nodal discretization using Voronoi diagram.

In case of rectangular hole RVE, the problem is considered with di↵erent dimensions
of hole involving (L1 ⇥L2 = 0.1⇥ 0.5 mm) and (L1 ⇥L2 = 0.1⇥ 0.7 mm). Table 1 shows
present numerical solutions compared with those in [12, 16]. It can be observed that pro-
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comparison with approaches presented in [12,16]. The number of variables in present pro-
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can be solved rapidly, the CPU-time required for handling the problem is much less than
those in [12] using iterative algorithm. Figure 3 plots the macroscopic uniaxial strength
⌃11 for various values of angle ✓ corresponding to two di↵erent sizes of rectangular hole.
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6. CONCLUSIONS

The plastic limit strength and the collapse mechanism of materials has been stud-
ied using the combination of direct analysis and homogenization theory. By means of
second-order cone programming and the EFG approximation, the resulting optimization
problems are kept in minimum size and solved rapidly. The good agreement of numer-
ical solutions in comparison with other studies shows the computational efficiency of
proposed method. In future work, the plane strain or three-dimensions problems, for
which the volumetric locking phenomena is required to be handled, are extended. In ad-
dition, more complicate effects, e.g. material interfaces, multiple crack or even variable
loading should be considered.
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