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Abstract. A simple method is introduced for computing the effective conductivity of
isotropic composite with imperfect interface. Based on the doubly-coated circle assem-
blage model, one can determine the effective thermal conductivity of the composite. The
application of this model to the composite with imperfect interface of the Kapitza’s type
is proposed. The results obtained were compared with the Fast Fourier Transform sim-
ulation and the equivalent inclusion approximation in 2D show the effectiveness of the
methods.
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1. INTRODUCTION

Understanding of the effects of the microstructural characteristics on effective prop-
erties of composite has been the subject of numerous works in the framework of the
homogenization theory. In the literature, most research has focused on the idealized case
of perfect interface contact. However many experimental results [1, 2] indicate that the
effective thermal conductivity of composites can be affected by a thermal resistance at
the interface between the individual components. The theoretical analyses of this prob-
lem were conducted by Benveniste and Miloh [3], Hasselman and Johnson [4], Dunn and
Taya [5], Torquato and Rintoul [6]. An important point to all these works is that the effec-
tive conductivity of the composites depends on the size of the inclusion. The purpose of
the present paper is to propose a simple method to compute the effective thermal conduc-
tivity for isotropic composite with Kapitza interface resistance in two-dimensional space.
The paper is organized as follows. Section 2 presents a multi-coated sphere assemblage
model. Section 3 will apply this model for materials with imperfect interface of Kapitza
type in which the intermediate phase is very thin and the conductivity depends on the
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thinness of the phase. Section 4 presents the numerical calculation from Fourier Trans-
form method (FFT) when replacing the inclusion with imperfect interface by equivalent
inclusion. The last part is the application of the methods and conclusion.

2. DOUBLY-COATED CIRCLE ASSEMBLAGE MODEL

Let us consider a representative volume element (RVE) of an isotropic three-
component material that occupies circular region V of Euclidean space in 2 dimensions.
The RVE consists of three-component occupying regions Vα ⊂ V of volume fractions vα

(α = 1, . . . , 3; the volume of V is assumed to be the unity) and having isotropic conductiv-
ities cα. A generalization of the Hashin-Shtrikman two-phase coated circle assemblage [7]
is the 3-component doubly-coated circle assemblage. Here circles of phase 1 are coated
with annular plate of phase 2, which in turn are coated with annular plate of phase 3, and
the relative volume proportions and coating orders of the phases in all three-compound
circles are the same. The space of V is entirely filled by such compound circles distributed
randomly with diameters varying to infinitely small (Fig. 1).

Fig. 1. Doubly-coated circle assemblage

From the minimum energy and complementary energy principles, three-point corre-
lation upper and lower bounds on the effective conductivity of isotropic three-component
materials have been constructed [8, 9](
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n is number of phases, δαβ is Kronecker symbol and Aαβ
γ are the three-point correlation

parameters.
For the doubly-coated circle assemblage model, these bounds converge to yield the

exact value of the effective conductivity [10]

ce f f = cV − v′c ·Ac
−1 · vc. (3)

In the two-component case, (3) can be presented as

ce f f = P(v1, c1, c2) =

(
v1

c1 + c2
+

v2

2c2

)−1

− c2 , (4)

in which v1, c1 are the volume fraction and conductivity of the inclusion, while v2, c2 are
the volume fraction and conductivity of the matrix. If v2 � 1 (thin coating), one obtains
asymptotically expression [11]

ce f f = c1 + v2
(c2 − c1)(c1 + c2)

2c2
+ O(v2

2). (5)

3. CIRCLE WITH INTERFACIAL THERMAL RESISTANCE

Consider the two-component coated circle assemblage with thin coating (v2 � 1).

With the thin coating thickness h (
h

R1
� 1, R1 is the radii of inner circle) one has
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further
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In the lowly conducting imperfect interface model [12], it is assumed that

c2 =
h

αK
,

h
R1
→ 0, (9)

where αK is called the Kapitza thermal resistance.
Substituting (8) and (9) into (5), one derives the asymptotic expression of the effective

conductivity c1L of the assemblage of circular inclusions of phase 1 coated by the infinitely
thin shells of thermal resistance αK

c1L =
c1

1 + c1αK
R1

+ O

(
h

R1

)
. (10)

If these coated inclusions are embedded in the circular shells of the matrix phase M, one
obtains the effective conductivity of the circle assemblage with the imperfect interface of
Kapitza thermal resistance αK (in the limit h → 0) between the inclusion 1 and matrix M
components (CAK) by replacing c1L for c1 in (4)

ce f f = P(v1, c1L, cM) =

[
v1

c1(1 + c1αK/R1)−1 + cM
+

vM

2cM

]−1

− cM. (11)

4. FFT SIMULATION FOR COMPOSITE WITH KAPITZA THERMAL
RESISTANCES

Consider a composite reinforced by fibers aligned in the direction Ox3. The fibers
are regularly distributed in the directions Ox1 and Ox2. The contact between fibers and
matrix is the imperfect interface of Kapitza’s type. This problem can be modelled as a
composite of three-component (see for instance [12,13]): inclusion (v1, c1), matrix (vM, cM)

and interphase with volume fraction v2 =
2h
R1

, conductivity c2 =
h

αK
(Fig. 2 (left)). By

substitution scheme, one can consider the two-component composite with perfect inter-
face (Fig. 2 (right)) in which the conductivity of equivalent inclusion is determined by
(10)

cEI = c1L =
c1

1 + c1αK
R1

. (12)

The algorithm for determining the effective conductivity of two-phase periodic materials
based on the Fourier transform method (FFT) has been introduced in the literature [14].
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In the next section, this method will be applied to calculate the effective conductivity of
the composite with Kapitza thermal resistance.

Fig. 2. Unit cell: coated circle assemblage regularly distributed (left), equivalent inclusion (right)

5. NUMERICAL CALCULATION AND COMPARISON

We apply these approaches to the case of a composite with imperfect interface of
Kapitza’s type. Conductivity of the matrix is assumed to be unity (cM = 1), the contrast
c1/cM = 10 and 100. Consider a unit cell having the dimension L = 1 along each space
directions containing inclusion with the dimensionless radius (R1/L) varies from 0.1 to
0.5. Thermal resistance αK = 0.2; 0.5 and 1 (Tabs. 1–3). For the model of circle with inter-
facial thermal resistance, the effective conductivity is calculated from (11). The results of
FFT simulation is obtained from algorithm in [14] in which the conductivity of the equiv-
alent inclusion is determined from (12). The results of Vincent presented in [15] are also
included for comparison.

Table 1. Effective conductivity of composite with imperfect interface of Kapitza’s type, αK = 0.2

c1/cM = 10 c1/cM = 100

v1 CAK FFT Vincent [15] CAK FFT Vincent [15]

0.0314 0.9780 0.9780 0.9783 0.9791 0.9792 0.9796
0.0707 0.9751 0.9752 0.9754 0.9795 0.9795 0.9797
0.1257 0.9881 0.9881 0.9881 0.9988 0.9988 0.9988
0.1963 1.0209 1.0209 1.0207 1.0421 1.0421 1.0419
0.2827 1.0776 1.0776 1.0773 1.1153 1.1155 1.1151
0.3848 1.1637 1.1638 1.1634 1.2268 1.2271 1.2267
0.5027 1.2874 1.2881 1.2876 1.3898 1.3912 1.3907
0.6362 1.4620 1.4649 1.4643 1.6268 1.6336 1.6330
0.7543 1.6525 1.6627 1.6620 1.8963 1.9210 1.9204
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Table 2. Effective conductivity of composite with imperfect interface of Kapitza’s type, αK = 0.5

c1/cM = 10 c1/cM = 100

v1 CAK FFT Vincent [15] CAK FFT Vincent [15]

0.0314 0.9586 0.9588 0.9595 0.9589 0.9591 0.9599
0.0707 0.9253 0.9255 0.9260 0.9265 0.9266 0.9275
0.1257 0.8942 0.8943 0.8948 0.8974 0.8975 0.8983
0.1963 0.8697 0.8698 0.8699 0.8764 0.8765 0.8770
0.2827 0.8547 0.8547 0.8548 0.8666 0.8666 0.8670
0.3848 0.8511 0.8511 0.8510 0.8705 0.8706 0.8707
0.5027 0.8607 0.8607 0.8606 0.8907 0.8907 0.8907
0.6362 0.8855 0.8854 0.8852 0.9299 0.9299 0.9297
0.7543 0.9179 0.9178 0.9175 0.9777 0.9777 0.9775

Table 3. Effective conductivity of composite with imperfect interface of Kapitza’s type, αK = 1

c1/cM = 10 c1/cM = 100

v1 CAK FFT Vincent [15] CAK FFT Vincent [15]

0.0314 0.9498 0.9499 0.9516 0.9499 0.9500 0.9523
0.0707 0.9003 0.9004 0.9014 0.9007 0.9008 0.9026
0.1257 0.8442 0.8444 0.8454 0.8453 0.8454 0.8471
0.1963 0.7868 0.7869 0.7877 0.7890 0.7891 0.7899
0.2827 0.7313 0.7313 0.7318 0.7353 0.7353 0.7360
0.3848 0.6802 0.6799 0.6799 0.6866 0.6863 0.6868
0.5027 0.6348 0.6338 0.6336 0.6444 0.6435 0.6438
0.6362 0.5959 0.5935 0.5930 0.6096 0.6074 0.6076
0.7543 0.5699 0.5654 0.5650 0.5875 0.5836 0.5837

Figs. 3–8 presents the effective conductivity of composite as function of the volume
fraction v1 for various values of αK and ratio c1/cM. One can see a good agreement
between the circle assemblage, the FFT simulation and Vincent’s results [15].

From these figures, one also see the dependence of the effective conductivity on the
Kapitza thermal resistance. When αK = 0.2, one observes a slight decrease then increase.
When αK = 0.5, three curves decrease, reach a minimum at v1 = 0.3 or 0.4 and then in-
crease. This illustrates the effect of inclusion and interface on the effective conductivity.
The inclusion with c1 > cM increases the effective conductivity while the thermal discon-
tinuity at the interface between inclusion and matrix decreases the effective conductivity.
When αK = 1, the curves decrease for all values of volume fraction v1. This shows the
dominance of the thermal resistance coefficient for the effective conductivity.
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Fig. 3. Effective conductivity of composite
with imperfect interface of Kapitza’s type,

αK = 0.2; contrast c1/cM = 10

Fig. 4. Effective conductivity of compos-
ite with imperfect interface of Kapitza’s

type, αK = 0.2; contrast c1/cM = 100

Fig. 5. Effective conductivity of composite
with imperfect interface of Kapitza’s type,

αK = 0.5; contrast c1/cM = 10

Fig. 6. Effective conductivity of composite
with imperfect interface of Kapitza’s type,

αK = 0.5; contrast c1/cM = 100

Fig. 7. Effective conductivity of composite
with imperfect interface of Kapitza’s type,

αK = 1; contrast c1/cM = 10

Fig. 8. Effective conductivity of composite
with imperfect interface of Kapitza’s type,

αK = 1; contrast c1/cM = 100
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6. CONCLUSION

The paper presents the methods to compute the effective conductivity of composites
with imperfect interfaces of Kapitza’s type. In this case, the temperature is discontinu-
ous while the flux remaining continuous across the interface. First approach is based on
the model of circle assemblage with thin coating. Second approach is based on the FFT
simulation combining equivalent-inclusion approach. The results show that the circle
assemblage models give good approach when simulating the effective conductivity of
composite with imperfect interface. Determination of the effective conductivity of com-
posite with imperfect interface was also solved by Vincent [15]. In order to simulate the
discontinuities of the temperature, an enrichment of the space around the interface is in-
troduced. An additional temperature field which are null outside of the inclusion but are
different of zero inside the inclusion is added. This method gives accurate results but
requires more time calculations and computer memory. With the equivalent-inclusion
approach, the FFT simulation in this paper provides a simpler method for computing the
effective conductivity while still ensuring accuracy. The approach shows the ability to
account for the size-dependency of the effective conductivity of the composite with the
radius of the inclusion. The application of the method to three-dimensional problems is
in progress.
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