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Abstract. We study through molecular dynamics finite element method with Stillinger–
Weber potential the uniaxial compression of (0, 24) armchair and (31, 0) zigzag black phos-
phorene nanotubes with approximately equal diameters. Young’s modulus, critical stress
and critical strain are estimated with various tube lengths. It is found that under uniax-
ial compression the (0, 24) armchair black phosphorene nanotube buckles, whereas the
failure of the (31, 0) zigzag one is caused by local bond breaking near the boundary.

Keywords: atomistic simulation, compression, mechanical properties, phosphorene nan-
otubes.

1. INTRODUCTION

A black phosphorene nanotube (BPNT) can be viewed as rolling up a single-layer
black phosphorene sheet along the armchair and zigzag direction as schematically shown
in Fig. 1. The mechanical properties of black phosphorene have been investigated by den-
sity functional theory (DFT) calculations [1], molecular dynamics (MD) simulations [2–6],
finite element analysis (FEA) with beam model [7] and density functional tight-binding
(DF-TB) calculation [8]. The mechanical and electronic properties of monolayer and bi-
layer phosphorene have been recently studied by DFT calculations by Hu et al. [1]. Wang
et al. [2] investigated the effects of mechanical strain on single-layer black phosphorene
nanoresonators at different temperatures by MD simulation. The temperature-dependent
stress-strain relations of black phosphorene under uniaxial tension are also investigated
[3]. It was shown that the Young’s moduli, fracture strength and strain slowly decrease
with increasing the temperature [3, 4]. Chen et al. [5] performed MD simulations with
compass force field and showed that Young’s modulus of BPNT could increase with the
tube length and diameter. Strength and stability of BPNT under axial compression has
been recently investigated by MD simulation by Cai et al. [6]. It was shown that for an
armchair tube with the same ratio of length over diameter, the critical strain decreases
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2. NUMERICAL PROCEDURE 

The armchair (0, 24) BPNT with a diameter of 33,477 Å and zigzag  (31, 0) tube with a 

diameter of 32,678 Å are studied. Tube lengths are L=60, 100, and 140 Å. The geometric parameters 

of black phosphorene are used from reference [21].      

          

          

                             a)                          b) 

Fig. 1.  Schematic illustration of: a) (0, 24) armchair black phosphorene nanotube; b) (31, 0) zigzag black 

phosphorene nanotube. 

Stillinger-Weber potential is used to model the interatomic interactions [22]. Numerical 

procedure of MDFEM with Stillinger-Weber potential was described in our previous work [23]. We 

also follow here similar notations as in our previous studies [ 20, 23]. 

3. RESULTS AND DISCUSSION 

Fig. 2 shows the stress-strain curves of armchair and zigzag BPNTs under uniaxial compression. 

At a given axial compressive strain, the stress of the armchair BPNT is always higher than that of 

corresponding zigzag one. The axial compressive stress increases monotonously with an increase of 

the axial compressive strain up to a peak value, then the axial compressive stress drops suddenly for 
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Fig. 1. Schematic illustration of: a) (0, 24) armchair black phosphorene nanotube; b) (31, 0) zigzag
black phosphorene nanotube

with increasing the diameter and for an armchair tube with the same cross-section, the
critical strain decreases with increasing its length. FEA with beam elements by Ansari
et al. [7] revealed that phosphorene nanotubes with larger diameter have larger Young’s
modulus. Density functional theory (DFT)-tight binding calculations by Sorkin et al. [8]
showed that fracture stress and Young’s modulus of armchair BPNTs are larger than those
of zigzag BPNTs.
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In our previous work, the tensile response of 3 pairs of BPNTs was considered [9].
Here, we study the uniaxial compression of armchair and zigzag BPNTs with molecular
dynamics finite element method (MDFEM) and Stillinger–Weber potential.

2. NUMERICAL PROCEDURE

The armchair (0, 24) BPNT with a diameter of 33,477 Å and zigzag (31, 0) tube with a
diameter of 32,678 Å are studied. Tube lengths are L = 60, 100, and 140 Å. The geometric
parameters of black phosphorene are used from reference [10].

Stillinger–Weber potential is used to model the interatomic interactions [11]. Numer-
ical procedure of MDFEM with Stillinger–Weber potential was described in our previous
work [12]. We also follow here similar notations as in our previous studies [9, 12].

3. RESULTS AND DISCUSSION

Fig. 2 shows the stress-strain curves of armchair and zigzag BPNTs under uniaxial
compression. At a given axial compressive strain, the stress of the armchair BPNT is
always higher than that of the corresponding zigzag one. The axial compressive stress
increases monotonously with an increase of the axial compressive strain up to a peak
value, then the axial compressive stress drops suddenly for all tubes as indicated in Fig. 2.
Maximal axial stress and strain at maximal stress refer to critical stress and critical strain,
respectively.
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Table 1. The mechanical properties of (0, 24) armchair and (31, 0) zigzag BPNT. 

Tubes Young’s modulus Yt, N/m Critical stress t, N/m Critical strain , % 

Armchair (0, 24)    

L=60 Å 54.85 5.022 7.20 

L=100 Å 55.03 4.617 6.65 

L=140 Å 55.10 4.528 6.50 

Zigzag (31, 0)    

Fig. 2. The axial compressive stress-strain curves of armchair and zigzag black phosphorene nan-
otubes under uniaxial compression

Tab. 1 shows the Young’s modulus, critical stress and critical strain of BPNTs. Results
reveal that 2D critical stress of the armchair (0, 24) nanotube (4.617 N/m) is about four
times larger than that of zigzag (31, 0) nanotube (1.142 N/m) with tube length L = 100 Å.
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These results agree with those from DF-TB calculations of (0, 8) armchair and (8, 0) zigzag
BPNTs [8] (the 2D critical stress of the armchair (0, 8) nanotube (13 GPa) is about three
times larger than that of zigzag (8, 0) nanotube (4 GPa). In addition, the critical strain
of the armchair (0, 24) and zigzag (31, 0) BPNTs is 6.65% and 9.20%, with L = 100 Å,
respectively. When L = 100 Å, the 2D Young’s modulus is ∼ 55 N/m for the armchair (0,
24) BPNT, and ∼ 11.7 N/m for the zigzag (31, 0) one.

Table 1. The mechanical properties of (0, 24) armchair and (31, 0) zigzag BPNTs

Tubes Young’s modulus Yt, N/m Critical stress σt, N/m Critical strain ε, %

Armchair (0, 24)
L = 60 Å 54.85 5.022 7.20
L = 100 Å 55.03 4.617 6.65
L = 140 Å 55.10 4.528 6.50

Zigzag (31, 0)
L = 60 Å 11.33 1.151 9.25
L = 100 Å 11.71 1.142 9.20
L = 140Å 11.88 1.139 9.00

Table 2. 2D Young’s modulus of black phosphorene sheet and tubes by various methods

References Types
Young’s modulus

Yt, N/m

Present study by MDFEM Armchair tube 55.03

calculations Zigzag tube 11.71

Wang et al. [2] by MD Zigzag direction, sheet 55.5

simulations Armchair direction, sheet 13.6

Cai et al. [6] by MD
Zigzag tube 10.29simulations

Ansari et al. [7] by DFT-FEM
Zigzag tube 14.67calculations

Sorkin et al. [8] by DF-TB Armchair tube 27.12

calculations Zigzag tube 10.65

Tab. 2 shows the Young’s modulus of black phosphorene sheet and tubes from var-
ious methods. Results reveal that the 2D Young’s modulus of zigzag phosphorene tube
(∼ 11.7 N/m) is close to that from FEA for (24, 0) zigzag BPNT 14.67 N/m [7], from MD
simulations of (14, 0) zigzag BPNT 48.255 GPa (∼ 10.29 N.m) [6] and from DF-TB calcu-
lations of (24, 0) zigzag BPNT 45 GPa (2D Young’s modulus Yt ∼ 10.65 N/m) [8]. The
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2D Young’s modulus of the armchair nanotube (∼ 55 N/m) is higer than that from DF-
TB calculations 114.2 GPa (2D Young’s modulus Yt ∼ 27.12 N/m) [8]. Critical stress and
critical strain of armchair and zigzag BPNTs decrease with an increase of length-diameter
ratio L/D as shown in Figs. 3 and 4.Atomistic simulation of the uniaxial compression of black phosphorene nanotubes 5 

 

Fig. 3. Variations of the critical stress versus the L/D ratio of armchair and zigzag black phosphorene nanotubes 

under uniaxial compression. 

 

Fig. 4. Variations of the critical strain versus the L/D ratio of armchair and zigzag black phosphorene nanotubes 

under uniaxial compression. 
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Atomistic simulation of the uniaxial compression of black phosphorene nanotubes 5 

 

Fig. 3. Variations of the critical stress versus the L/D ratio of armchair and zigzag black phosphorene nanotubes 

under uniaxial compression. 

 

Fig. 4. Variations of the critical strain versus the L/D ratio of armchair and zigzag black phosphorene nanotubes 
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Figs. 5 and 6 show the snapshots of (0, 24) armchair and (31, 0) zigzag BPNTs un-
der uniaxial compression, respectively. The (0, 24) armchair nanotube exhibits clearly
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buckling under uniaxial compression when its compressive axial strain exceeds a critical
value of ∼ 6.60%. In the other hand, buckling is not observed for the (31, 0) zigzag one
under compression. The failure of this tube is caused by local bond breaking near the
boundary. The puckers are parallel to the armchair direction, which is the direction of
tube axis (the compressive direction) of the (0, 24) armchair tube as indicated in Fig. 1(a).
Whereas, the compressive direction (the tube axis) of the (31, 0) zigzag tube is perpendic-
ular to the plans of puckers as shown in Fig. 1(b). These crystal structures lead to the fact
that the Young’s modulus and critical stress of the armchair tube are higher than those
of the zigzag one, while the critical strain of the armchair tube is lower than that of the
zigzag one as shown in Fig. 2 and Tab. 1.
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Fig. 5.  Snapshots of (0, 24) armchair black phosphorene nanotube (L=100 Å) at an axial compressive 

strain of: a) =6.60%; and b) =6.65%. 
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Fig. 5.  Snapshots of (0, 24) armchair black phosphorene nanotube (L=100 Å) at an axial compressive 

strain of: a) =6.60%; and b) =6.65%. 

(b) 6.65%

Fig. 5. Snapshots of (0, 24) armchair black phosphorene nanotube (L = 100 Å)
at an axial compressive strain of: a) ε = 6.60%; and b) ε = 6.65%
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Fig. 6.  Snapshots of (31, 0) zigzag black phosphorene nanotube (L=100 Å) at an axial compressive strain 

of: a) =9.15%; and b) =9.20%. 

4. CONCLUSIONS 

The present work uses MDFEM with Stillinger-Weber potential to study the compressive 

behavior of (0, 24) armchair and (31, 0) zigzag BPNTs. The (0, 24) armchair nanotube exhibits clearly 

buckling under uniaxial compression. The failure of the (31, 0) zigzag one under compression is 

caused by local bond breaking near the boundary. Young’s modulus and critical stress of the armchair 

tube are higher than those of the corresponding zigzag one, while an inverse trend is found for the 

critical strain. Critical stress and critical strain decrease with an increase of length-diameter ratio L/D. 

The mechanical behavior of these 2 tubes under compression are highly different from each other 

although their diameters are approximately equal. These issues should be further studied to get more 

information for the design and application of BPNTs in nanodevices. 
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Fig. 6. Snapshots of (31, 0) zigzag black phosphorene nanotube (L = 100 Å)
at an axial compressive strain of: a) ε = 9.15%; and b) ε = 9.20%

4. CONCLUSIONS

The present work uses MDFEM with Stillinger–Weber potential to study the com-
pressive behavior of (0, 24) armchair and (31, 0) zigzag BPNTs. The (0, 24) armchair
nanotube exhibits clearly buckling under uniaxial compression. The failure of the (31,
0) zigzag one under compression is caused by local bond breaking near the boundary.
Young’s modulus and critical stress of the armchair tube are higher than those of the
corresponding zigzag one, while an inverse trend is found for the critical strain. Critical
stress and critical strain decrease with an increase of length-diameter ratio L/D. The me-
chanical behavior of these two tubes under compression are highly different from each
other although their diameters are approximately equal. These issues should be further
studied to get more information for the design and application of BPNTs in nanodevices.
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