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Abstract. This paper presents free vibration analysis of functionally graded materials
(FGMs) shell panels with various geometric shapes in thermal environments. The shell
panels are made from a mixture of metal and ceramic. Material properties are assumed to
be temperature-dependent and graded in the thickness direction according to a power
law function. A formulation of eight-nodded middle surface shell elements based on
Reissner–Mindlin assumptions is developed for modeling FGM shell panels under the
effect of temperature, which changes nonlinearly across the thickness. Numerical results
obtained by the proposed model are in good agreement with those available in the litera-
ture. The effects of geometric properties, material composition, boundary conditions and
temperature on the natural frequencies are investigated.

Keywords: functionally graded materials, finite element method (FEM), free vibration, shell
panels, various geometric shapes, thermal environment.

1. INTRODUCTION

Functionally graded materials (FGMs) are classified as novel composite materials.
They are microscopically inhomogeneous and typically made of metal and ceramic. By
gradually changing the volume fraction of constituent materials, their mechanical and
thermal properties vary smoothly and continuously from one surface to the other, thus
eliminating interface problems and reducing thermal stress concentration. The ceramic
component offers thermal barrier effects and protects the metal from corrosion and oxida-
tion, while the metal component provides toughness and strength. Due to their excellent
features, FGMs are now widely used in many engineering applications, especially for
high-temperature environments such as nuclear reactors, spacecrafts, civil engineering,
electronic or chemical energy sources . . .

Panel-type structures are among the most commonly used structural components
in various fields of mechanical and structural engineering. Since most of them usually
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work in high-temperature environments, the designs of these structures have to carefully
consider the thermal effect on structural and material behavior.

Many studies have been conducted in recent years to analyze the thermo-mechanical
behaviors of FG shells. Based on the first-order shear deformation plate theory (FSDT),
Reddy and Chin [1] analyzed the thermoelastic dynamic response of functionally graded
cylinders and plates. Using the element-free kp-Ritz method based on FSDT, Zhao et
al. [2] investigated the thermoelastic vibration of FGM shell panels. Love’s shell the-
ory and Rayleigh–Ritz method were used to study the natural vibration of functionally
graded cylindrical shells by Loy et al. [3]. Using the wave propagation method for solv-
ing the shell dynamical equations, Shah et al. [4] studied the vibration characteristic of
FG cylindrical shells resting on the Winkler–Pasternak foundations. Jabbari et al. [5] pre-
sented the direct method to solve Navier equations for the analysis of a one-dimensional
steady-state thermal stresses in a thick hollow FGM cylinder with general types of ther-
mal and mechanical boundary conditions. Vel [6] presented an analytical solution for
free and forced vibration of simply supported FG cylindrical shells. The transient tem-
perature and related thermal stresses in the FGM cylinder were analyzed numerically for
a model of the mullite-molybdenum FGM system by Awaji and Sivakumar [7]. Different
shear deformation shell theories are used to study the vibration of FG cylindrical shells
by Najafizaded and Isvandzibaei [8]. In their study, the cylindrical shells are supported
by rings and made from a mixture of stainless steel and nickel. Tornabene et al. [9] used
the FSDT to analyze the moderately thick conical, cylindrical, and annular plates made
of functionally graded material. Takezono et al. [10] presented an analytical formulation
based on Sanders elastic shell theory and the finite difference method to examine the ther-
mal stress and deformation for axisymmetrical shells made of FGM and subjected to ther-
mal loading due to fluid. Matsunaga [11] analyzed free vibration and stability of FGM
shallow shell with positive, zero and negative Gaussian curvature by using a 2-D higher-
order deformation theory and taking into account the effects of transverse shear and nor-
mal deformations, and rotatory inertia. The axisymmetric thermoelastic problem of an
FG transversely isotropic cylindrical shell was studied by Ye et al. [12]. Liew et al. [13] ob-
tained solution for analysis of the thermomechanical behavior of hollow FGM cylinders.
Pradyumna and Bandyopadhyay [14] performed free vibration and buckling behavior of
singly and doubly curved of FGM shell panels in thermal environments by using higher-
order shear deformation theory. Alijani et al. [15] used doubly-modal energy approach to
study nonlinear vibration of doubly curved FGM shells subjected to thermal variations
and harmonic excitation. Shen and Wang [16] examined the small and large-amplitude
vibrations of FGM rectangular plate resting on two-parameters (Pasternak-type) elastic
foundation in thermal environments. This work was then extended to the case of nonlin-
ear vibration of shear deformable FGM cylindrical panels resting on elastic foundation
in thermal environment [17]. Wattanasakulpong and Chaikittiratana [18] employed the
FSDT for determining natural frequencies of stiffened functionally graded doubly curved
shallow shells under two types of linear and nonlinear temperature rise throughout the
shell thickness. Based on Reddy’s third-order shear deformation shell theory, Quan and
Duc [19] investigated nonlinear vibration and dynamic response of thick, imperfect FGM
double-curved shallow shells resting on elastic foundations in thermal environments.
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Using FSDT, Bich et al. [20] presented an analytical solution and results on the nonlinear
dynamic response and vibration of imperfect eccentrically stiffened FGM double-curved
shallow shells on elastic foundation. Non-linear axisymmetric response of FG shallow
spherical shells subjected to uniform external pressure in thermal environments have
been investigated by Bich and Tung [21]. The equilibrium and compatibility equations
for shallow spherical shells are derived and specialized for axisymmetric deformation by
using the classical shell theory and taking into account both geometrical nonlinearity and
initial geometrical imperfection. Bich and Long [22] used the thin shell theory consider-
ing geometrical non-linearity and the Lekhnitskys smeared stiffeners technique to solve
dynamic problem of eccentrically stiffened laminated composite shallow shell. Based
on the classical thin shell theory, Anh et al. [23] studied the nonlinear stability of func-
tionally graded material (FGM) annular spherical segment resting on elastic foundations
in thermal environment. Dong and Dung [24] used the first-order shear deformation
theory (FSDT) with von Karman type nonlinearity to investigate nonlinear vibration of
FGM sandwich doubly curved shallow shells reinforced by FGM stiffeners subjected to
mechanical and thermal loading.

From the literature review, it is observed that most of these studies focused on vi-
bration analyses of FGM shell panels with simple geometric shapes such as cylindrical
or spherical shells. There is a limited number of published studies on the vibration anal-
ysis of FG shell panels with complex geometric shapes in thermal environment. Hence,
the objective of the present work is to develop a finite element model based on FSDT
for the vibration analysis of FG shell panels with various geometric shapes. The eight-
nodded middle surface shell element with five degrees of freedom per node is proposed
to carry out the analysis. The surfaces of shell panels are described by a function of
Cartesian coordinates and distribution of temperature across the shell thickness is found
from steady state heat conduction only in the thickness direction. The presented analy-
sis is verified by comparing the numerical results with those in available literature. The
effects of various parameters, such as the volume fraction exponent, side-to-thickness ra-
tio, boundary conditions, curvature and temperature on natural frequencies of various
shell panels, namely, cylindrical panel (CYL), spherical panel (SPH), hyperbolic parabo-
loid panel (HPR), hyper panel (HYP), conoid panel (CON) and parabolic panel (PAR) are
investigated and discussed in details.

2. MATERIAL PROPERTIES

A ceramic-metal functionally graded shell panel as shown in Fig. 1 is considered.
The top surface (z = h/2) is ceramic rich, and the bottom surface (z = −h/2) is metal
rich. It is assumed that the material properties (such as Young’s modulus E, Poisson’s
ratio ν, mass density ρ, coefficient of thermal expansion α, thermal conductivity κ) vary
along the thickness direction according to the following power-law expression

P (z, T) = (Pc − Pm)

(
z
h
+

1
2

)p

+ Pm , (1)

where p is the volume fraction exponent, Pm and Pc represent the properties of metal and
ceramic, respectively.
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It is also assumed that the temperature variation occurs only in the thickness direction and the 
temperature field is constant in the x–y plane. Therefore, the temperature distribution along the thickness 
direction can be obtained by solving the following steady state one-dimensional heat transfer equation. 

                                                                                 (4) 

By imposing the boundary condition: T = Tc at z = h/2 and T=Tm at z = -h/2, the solution of 
Eq. (4) can be obtained by means of polynomial series as [23]: 

       (5) 

with 

                (6a) 

             (6b) 

It can be seen that the temperature distribution in FGMs is a nonlinear function of z, and the 
temperature field is uniform when . 

3. FINITE ELEMENT FORMULATION 

In the present study, the shell panels with constant thickness h are considered. A Cartesian 
coordinate system (x, y, z) with origin on the mid-plane is attached to the panel, assuming (x, y) as the in-
plane coordinates, and z as the coordinate along the thickness. The surface of the shell panels is smooth 
and described by a function  as shown in Fig. 1.  The projection of the panel on the xy-plane 
is a rectangle of length a (in x - direction) and of width b (in y - direction). 

 

 

 

 

 

 

 
 

Fig. 1. Panel geometry and coordinate system. 
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Fig. 1. Panel geometry and coordinate system

The material properties of constituents are assumed to be temperature dependent,
and can be expressed as [25]

P (T) = P0

(
P−1T−1 + 1 + P1T + P2T2 + P3T3

)
, (2)

where P0, P−1, P1, P2 and P3 are the coefficients of temperature T, and are unique for each
constituent. The mass density ρ and thermal conductivity κ depend weakly on temper-
ature change and are assumed to be function of z only. Thus, material properties can be
rewritten as

E (z, T) = Em (T) + [Ec (T)− Em (T)]
(

z
h
+

1
2

)p

,

v (z, T) = vm (T) + [vc (T)− vm (T)]
(

z
h
+

1
2

)p

,

α (z, T) = αm (T) + [αc (T)− αm (T)]
(

z
h
+

1
2

)p

,

ρ (z) = ρm + (ρc − ρm)

(
z
h
+

1
2

)p

,

κ (z) = κm + (κc − κm)

(
z
h
+

1
2

)p

.

(3)

It is also assumed that the temperature variation occurs only in the thickness direc-
tion and the temperature field is constant in the x− y plane. Therefore, the temperature
distribution along the thickness direction can be obtained by solving the following steady
state one-dimensional heat transfer equation.

− d
dz

[
κ(z)

dT
dz

]
= 0. (4)

By imposing the boundary condition: T = Tc at z = h/2 and T = Tm at z = −h/2,
the solution of Eq. (4) can be obtained by means of polynomial series as [26]

T (z) = Tm + (Tc − Tm) η (z) , (5)
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with

η (z) =
1
C

 X− κcm

(p + 1) κm
Xp+1 +

κ2
cm

(2p + 1) κ2
m

X2p+1

− κ3
cm

(3p + 1) κ3
m

X3p+1 +
κ4

cm
(4p + 1) κ4

m
X4p+1 − κ5

cm
(5p + 1) κ5

m
X5p+1

 , (6a)

X =

(
z
h
+

1
2

)
; κcm = κc − κm ,

C = 1− κcm

(p + 1) κm
+

κ2
cm

(2p + 1) κ2
m
− κ3

cm
(3p + 1) κ3

m
+

κ4
cm

(4p + 1) κ4
m
− κ5

cm
(5p + 1) κ5

m
.

(6b)

It can be seen that the temperature distribution in FGMs is a nonlinear function of z,
and the temperature field is uniform when Tc = Tm.

3. FINITE ELEMENT FORMULATION

In the present study, the shell panels with constant thickness h are considered. A
Cartesian coordinate system (x, y, z) with origin on the mid-plane is attached to the panel,
assuming (x, y) as the in-plane coordinates, and z as the coordinate along the thickness.
The surface of the shell panels is smooth and described by a function z = f (x, y) as
shown in Fig. 1. The projection of the panel on the xy-plane is a rectangle of length a (in
x-direction) and of width b (in y-direction).

An eight-nodded middle surface shell element [27] is used. The global coordinates
of arbitrary point in the above shell domain can be expressed using the nodal coordinates
and isoparametric shape functions as x

y
z

 =
8

∑
i=1

Ni (ξ, η)


 xi

yi
zi


mid

+ ζ
h
2

 l3i
m3i
n3i


 , (7)

where (l3i, m3i, n3i) are the direction cosines of the normal to mid-plane at node i, which
is obtained by the cross product of two vectors, which are tangent to the reference surface
at i, Ni are the quadratic serendipity shape functions in (ξ − η) plane.

The displacement field may be defined in terms of three displacement components
(ui, vi and wi) and two rotational components (θxi and θyi) at the mid-surface nodes as
follows  u

v
w

 =
8

∑
i=1

Ni

 ui
vi
wi

+
8

∑
i=1

Niζ
h
2

 l1i l2i
m1i m2i
n1i n2i

{ θxi
θyi

}
, (8)

where the displacement components (ui, vi and wi) are taken along Cartesian coordinate
system (x, y and z) and the rotational components (θxi and θyi) are taken about two mu-
tually perpendicular lines tangential to the mid-surface having unit vectors as follows

{v1i} = [l1i m1i n1i]
T ; {v2i} = [l2i m2i n2i]

T . (9)
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The strains are derivatives of the displacements and can be expressed as

{ε} =


εx
εy

γxy
γyz
γxz

 =


u,x
v,y

u,y + v,x
v,z + w,y
u,z + w,x

 = [B] {q}e = [[B1] , [B2] , . . . , [B8]]



{q1}
{q2}

.

.

.
{q8}


, (10)

where the matrix [B] is called the strain-displacement matrix and {qi} =
{

ui vi wi θxi θyi
}T

is the nodal displacement vector. Here, [Bi] is given by

[Bi] =



∂Ni

∂ξ
0 0 −ζ

h
2

∂Ni

∂ξ
l2i ζ

h
2

∂Ni

∂ξ
l1i

0
∂Ni

∂η
0 −ζ

h
2

∂Ni

∂η
m2i ζ

h
2

∂Ni

∂µ
m1i

∂Ni

∂η

∂Ni

∂ξ
0 −ζ

h
2

(
∂Ni

∂η
l2i +

∂Ni

∂ξ
m2i

)
ζ

h
2

(
∂Ni

∂η
l1i +

∂Ni

∂ξ
m1i

)
0 0

∂Ni

∂ξ
−h

2

(
l2iNi + ζ

∂Ni

∂ξ
n2i

)
h
2

(
l1iNi + ζ

∂Ni

∂ξ
n1i

)
0 0

∂Ni

∂η
−h

2

(
m2iNi + ζ

∂Ni

∂η
n2i

)
h
2

(
m1iNi + ζ

∂Ni

∂η
n1i

)


, (11)

where i= 1÷8 for an eight-nodded shell element.
The above displacement field is defined in the global coordinates (x, y, z) but material

properties are available in the local coordinates (x’, y’, z’). Therefore, the strains need to
be transformed from global to local coordinate. The local strains {ε’} are related to the
global strains {ε} as

{
ε′
}
=


εx′

εy′

γx′y′

γy′z′

γx′z′

 =


u,x′

v,y′

u,y′ + v,x′

v,z′ + w,y′

u,z′ + w,x′

 = [Tε]


εx
εy

γxy
γyz
γxz

 = [Tε] {ε} , (12)

where [Tε] is the strain transformation matrix given by

[Tε] =


l2
1 m2

1 l1m1 m1n1 n1l1
l2
2 m2

2 l2m2 m2n2 n2l2
2l1l2 2m1m2 l1m2 + l2m1 m1n2 + m2n1 n1l2 + n2l1
2l2l3 2m2m3 l2m3 + l3m2 m2n3 + m3n2 n2l3 + n3l2
2l3l1 2m3m1 l3m1 + l1m3 m3n1 + m1n3 n3l1 + n1l3

 , (13)

where, l1, l2, l3, m1, m2, m3, n1, n2, n3 are the corresponding direction cosines between the
global coordinate system and local coordinate system.

The strains in the local coordinates can be written as{
ε′
}
=
[
B′
]
{q}e = [Tε] [B] {q}e , (14)
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where, the strain-displacement matrix corresponding to the local coordinates [B′] is given
by [

B′
]
= [Tε] [B] . (15)

The stress-strain relationship is given as follows


σx
σy
σxy
σyz
σxz

=



E(z, T)
[1− ν2 (z, T)]

νE(z, T)
[1− ν2 (z, T)]

0 0 0

νE(z, T)
[1− ν2 (z, T)]

E(z, T)
[1− ν2 (z, T)]

0 0 0

0 0
E(z, T)

2 [1− ν (z, T)]
0 0

0 0 0
ksE(z, T)

2 [1− ν (z, T)]
0

0 0 0 0
ksE(z, T)

2 [1− ν (z, T)]




εx
εy

γxy
γyz
γxz

 ,

(16)
or

{σ} = [D] {ε} , (17)
where ks is the shear correction factor, and is taken as 5/6.

By using Hamilton’s principle with the help of Eqs. (15) and (17), it is easy to obtain
the stiffness matrix of an element

[Ke] =
∫
V

[B]T [Tε]
T [D′] [Tε] [B] dV =

1∫
−1

1∫
−1

1∫
−1

[B]T [Tε]
T [D′] [Tε] [B] |J| dξdηdζ, (18)

where |J| is the determinant of the Jacobian matrix [J], which can be obtained with the
help of Eq. (7), taking derivatives of x, y and z with respect to ξ, η and ζ.

Following the usual techniques, mass element matrix also can be obtained from
Hamilton’s principle with the help of Eq. (7) and can be written as follow

[Me] =
∫
V

ρ (z) [ND]
T [ND] dV =

1∫
−1

1∫
−1

1∫
−1

ρ (z) [ND]
T [ND] |J| dξdηdζ, (19)

where ρ (z) is the material density and

[ND] = [ND1 ND2 . . . ND8] , (20)

[NDi] =


Ni 0 0

ζhi

2
l1iNi

ζhi

2
l2iNi

0 Ni 0
ζhi

2
m1iNi

ζhi

2
m2iNi

0 0 Ni
ζhi

2
n1iNi

ζhi

2
n2iNi

 . (21)

The governing equation of motion for an element can be given by

[M]e {q̈}e + [K]e {q}e = {0} . (22)
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By assembling element matrices, the general free vibration equation of the structure
is obtained as

[M] {q̈}+ [K] {q} = {0} , (23)
where [M] is global mass matrix, [K] is global stiffness matrix, {q} is global nodal dis-
placement vector, {q̈} is acceleration of motion.

The following four boundary conditions are considered herein
(1) Simply supported (SSSS): u0 = w0 = θy = 0 at x = 0, a and v0 = w0 = θx = 0 at

y = 0, b;
(2) Clamped (CCCC): u0 = v0 = w0 = θx = θy = 0 at x = 0, a and y = 0, b;
(3) Simply supported-clamped (SCSC): u0 = w0 = θy = 0 at x = 0, a and u0 = v0 =

w0 = θx = θy = 0 at y = 0, b;
(4) Clamped-free (CFCF): u0 = v0 = w0 = θx = θy = 0 at x = 0, a;

where u0, v0, and w0 are corresponding displacements of a point on the mid-plane and
θx and θy are the rotations of normal to the mid-plane about the y-axis and x-axis, respec-
tively.

4. RESULTS AND DISCUSSIONS

Consider a shell panel made of ceramic (Si3N4) and metal (SUS304), the proper-
ties of which are assumed to be temperature-dependent and they are obtained by using
Eq. (2). The temperature-dependent coefficients of the material properties of constituents
are shown in Tab. 1 [1].

Table 1. Temperature-dependent coefficients for ceramic and metals

Material Properties P0 P−1 P1 P2 P3

Si3N4
(Ceramic)

Ec (Pa) 348.43× 109 0 −3.07× 104 2.16× 107 −8.946× 10−11

αc (1/K) 5.8723× 10−6 0 9.095× 10−4 0 0
Kc (W/mK) 13.723 0 −1.032× 10−3 5.466× 10−7 −7.876× 10−11

νc 0.24 0 0 0 0
ρc(kg/m3) 2370 0 0 0 0

SUS304
(Metal)

Em (Pa) 201.04× 109 0 3.079× 10−4 −6.53× 10−7 0
αm (1/K) 12.33× 10−6 0 8.086× 10−4 0 0

Km (W/mK) 15.379 0 −1.264× 10−3 2.09× 10−6 −7.223× 10−10

νm 0.3262 0 −2.002× 10−4 3.797× 10−7 0
ρm(kg/m3) 8166 0 0 0 0

4.1. Convergence and validation
After checking convergence, a 12×12 mesh of eight-nodded element has been used in

the computation. In order to validate the accuracy of the present model, non-dimensional
fundamental natural frequencies of a singly curved FG panel (cylindrical shell panel)
and doubly curved FG panel in thermal environments are calculated and presented in
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Tabs. 2 and 3, respectively. The obtained results are compared with results of Shen and
Wang [17], and of Shen et al. [28] based on a higher order shear deformation shell theory
and two-step perturbation approach.

Table 2. Comparison of non-dimensional natural frequencies for a simply-supported
Si3N4/SUS304 cylindrical panel with different values of volume fraction index

in thermal environment

Temperature Source
The volume fraction index (p)

p = 0 p = 0.5 p = 1 p = 2 p = 5

Tc = 400 K,
Tm = 400 K

Shen and Wang [17] 25.5998 17.4628 15.1410 13.3723 11.9620
Present (FEM) 25.4781 17.7689 15.5157 13.7471 12.2930
Difference (%) 0.48 1.75 2.47 2.80 2.77

Tc = 500 K,
Tm = 300 K

Shen and Wang [17] 25.3065 17.4568 15.2093 13.4861 12.0950
Present (FEM) 25.4832 17.7608 15.5045 13.7347 12.2810
Difference (%) 0.70 1.74 1.94 1.84 1.54

Table 3. Comparison of non-dimensional natural frequencies for simply-supported
Si3N4/SUS304 doubly-curved panels with different values of volume fraction index

in thermal environment

Temperature Source
The volume fraction exponent p

p = 0 p = 0.5 p = 1 p = 2 p = 5

Tc = 400 K,
Tm = 400 K

Shen et al. [28] 12.6934 8.6883 7.5899 6.7887 6.1483
Present (FEM) 12.8029 8.929 7.7968 6.908 6.1773
Difference (%) 0.86 2.70 2.65 1.73 0.47

Tc = 500 K,
Tm = 300 K

Shen et al. [28] 12.5478 8.6898 7.6262 6.8414 6.2032
Present (FEM) 12.8055 8.925 7.7912 6.9018 6.1713
Difference (%) 2.01 2.64 2.12 0.88 0.52

The geometrical parameters of cylindrical panel are h = 0.001 (m); a/b = 1; b/h =
20; b/R = 1, whereas the doubly curved panel has h = 0.001 (m); a/b = 1; b/h =
10; a/Rx = 0.1; b/Ry = 0.05 (a, b are the lengths in x, and y directions respectively).
The natural frequencies are calculated for two sets of thermal environmental conditions.
For uniform temperature rise, Tc = Tm = 400 K, and for non-linear temperature gradient
across the thickness, Tm = 300 K and Tc = 500 K. The non-dimensional natural frequency
is defined by Ω1= ω

(
b2/h

)√
ρ0/E0, where ρ0 and E0 are the reference values of ρm and

Em at T0 = 300 K.
These two comparison studies show that the results from the present formulation

are in good agreement with the existing results. The discrepancy between the results is
small (the maximum difference is 2.8% for cylindrical panels with p = 2 under uniform
temperature rise).
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4.2. Parameter studies
In this section, the effects of thickness, curvature, material composition, and bound-

ary conditions on the fundamental natural frequencies of six different types of FG shell
panels (Fig. 2) namely, cylindrical panel (CYL), spherical panel (SPH), hyperbolic parab-
oloid panel (HPR), hypar panel (HYP), conoid panel (CON), and parabolic panel (PAR)
are investigated. The geometry equations of cylindrical, spherical, hyperbolic paraboloid
panels are obtained from the geometry equation of doubly curved shell panel in Tab. 4.
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The non-dimensional natural frequency is defined as Ω2= 100ωh
√

ρ0/E0, where ρ0 and
E0 are the reference values of ρm and Em at T0 = 300 K.

Table 4. The geometry equations of various shell panels

Structures CYL SPH HPR HYP CON PAR

Equation z =
1

2Rx

(
x− a

2

)2
+

1
2Ry

(
y− b

2

)2
z =

4c
ab

xy z = 4
[

hl + (Hh − hl)
x
a

] [ y2

b2 −
y
b

]
z = cx2

Curvatures Rx
(

Ry
)
= 0 Rx = Ry RxRy < 0 - - -

0 ≤ x ≤ a and 0 ≤ y ≤ b

Figure 2a 2b 2c 2d 2e 2 f

4.2.1. Effect of thickness
The effect of side-to-thickness ratio (a/h) on the natural frequency of FG shell panels

(p = 0.5) under influence of nonlinear gradient across the thickness with temperature
conditions Tc = 600 K, Tm = 300 K is considered. The non-dimensional fundamental
natural frequencies of different types of shell panels are examined for side-to-thickness
ratios varied from 10 to 100. Results are plotted in Fig. 3 with two cases of boundary
conditions, including all edges simply-supported (SSSS) and all edges clamped (CCCC).
The geometrical parameters of different shell panels are:

• CYL: a/Rx = 0; b/Ry = 1/3; SPH: a/Rx = b/Ry = 1/3; HPR: a/Rx =
2; b/Ry = −a/Rx;
• HYP: c/a = 0.1; CON: a/Hh = 5; hl = 0.2Hh; PAR: c/a = 0.2.
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From Fig. 3, it can be observed that the non-dimensional frequencies of all shell pan-
els decrease rapidly with increasing a/h ratios. For the SSSS boundary conditions, the
parabolic shell panel has the highest natural frequency and hypar shell panel has the
lowest natural frequency. For the CCCC boundary conditions, the conoid shell has the
highest natural frequency and cylindrical shell panel has the lowest natural frequency.

4.2.2. Effect of curvatures
The simply supported FG shell panels (SSSS) with volume fraction index p = 5,

length-to-thickness ratio a/h = 10, aspect ratio a/b = 1 under influence of nonlinear
temperature field with temperature boundary conditions of Tc = 600 K, Tm = 300 K are
considered. Tab. 5 lists the non-dimensional fundamental natural frequencies of six types
of FG shell panels for various curvature parameters.

It can be seen that the non-dimensional natural frequencies increase as curvature pa-
rameters increase. It implies that shell panels become stiffer as the panels become more
curved for CYL, SPH, CON, HYP and PAR panels, except for hyperbolic paraboloidal
shell panel (HPR), the non-dimensional natural frequencies decrease with increasing cur-
vature parameters.

Table 5. Effect of various curvature parameters on non-dimensional frequencies of FG shell panels

CYL
b/Ry 0 1/10 1/5 1/3

CON
h1/Hh 0 0.05 0.10 0.15

0.6710 0.6812 0.7108 0.7761 1.3470 1.3796 1.3969 1.3998

SPH
b/Ry 0 1/10 1/5 1/3

HYP
c/a 0 0.05 0.10 0.15

0.6710 0.7112 0.8192 1.0270 0.6710 0.8633 1.2602 1.6177

HPR
b/Ry 0 1/10 1/5 1/3

PAR
c/a 0 1.00 2.00 3.00

0.6710 0.6706 0.6695 0.6673 0.6710 0.8885 1.3201 1.6191

4.2.3. Effect of boundary conditions and material composition
In order to understand the effect of material composition and boundary conditions

on the free vibration characteristic of FG shell panels, the non-dimensional fundamen-
tal frequencies of six types of shell panels with various boundary conditions and dif-
ferent values of volume fraction index are determined. Four types of boundary con-
dition, including all edges simply-supported (SSSS), two sides clamped and two sides
free (CFCF), two sides simply-supported and two sides clamped (SCSC) and all edges
clamped (CCCC) are considered. The geometric parameters of FG shells are h = 0.025 m;
a/h = 20; a/b = 1; nonlinear temperature field with thermal environmental conditions
Tc = 500 K, Tm = 300 K.

Non-dimensional frequencies of six types of FG panels with four boundary condi-
tions, and different values of volume fraction index are presented in Tab. 6. As can be
seen from the presented results, the non-dimensional natural frequency of all types of FG
panels decreases with increasing value of volume fraction index p. It is because Young’s
modulus of ceramic is higher than of metal.
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It is also found that the shell panels with CCCC boundary condition have higher nat-
ural frequency than others. This means that an increase in the number of edge restraints
increases the stiffness of the shell panels.

Table 6. Effect of various boundary conditions and volume fraction index (p) on non-dimensional
frequencies Ω2 of FG shell panels

Structures p
Boundary conditions

SSSS CFCF SCSC CCCC

CYL
(a/Rx = 0; b/Ry = 1/3)

0 1.6203 1.7146 2.1697 2.8713
1 0.9858 1.0432 1.3201 1.7470
5 0.7809 0.8263 1.0456 1.3838

SPH
(a/Rx = 1/3; Ry = Rx)

0 2.1441 2.1595 2.6112 3.2039
1 1.3045 1.3139 1.5887 1.9492
5 1.0333 1.0407 1.2583 1.5439

HPR
(a/Rx = 1/3; Ry = −Rx)

0 1.3931 2.1697 2.4918 3.1522
1 0.8476 1.3202 1.5161 1.9180
5 0.6714 1.0457 1.2009 1.5193

HYP
(c/a = 0.1)

0 2.6300 2.2705 2.8133 3.3606
1 1.6004 1.3816 1.7118 2.0448
5 1.2679 1.0944 1.3560 1.6198

CON
(a/Hh = 1; hl = 0.5Hh)

0 2.5168 2.0095 3.1109 3.6084
1 1.5313 1.2227 1.8928 2.1956
5 1.2130 0.9685 1.4993 1.7392

PAR
(c/a = 10)

0 2.8305 2.0303 3.3985 3.9564
1 1.7221 1.2354 2.0678 2.4073
5 1.3641 0.9786 1.6380 1.9069

Therefore, the material composition and boundary conditions play an important role
in the vibration behavior of FG shell panels.

4.2.4. Effect of temperature (Tc)

The effects of non-linear gradient across the thickness (∆T = Tc − Tm) on funda-
mental natural frequencies of FG shell panels are investigated in this section. The nat-
ural frequencies of various types of shell panels are calculated for nonlinear temperature
distribution under temperature condition with Tm = 100 K on the metal-rich surface
(bottom surface) and different values of temperature Tc on the ceramic-rich surface (top
surface). Obtained results with SSSS and CCCC boundary conditions are presented in
Tab. 7. As can be seen from the presented results, the non-dimensional natural frequency
decreases as temperature difference between the bottom surface and the top surface in-
creases. There is a slight effect of non-linear temperature rise on the non-dimensional
natural frequency in this case.
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Table 7. Effect of temperature on non-dimensional frequencies Ω2 of FG shell panels with simply-
supported and clamped boundary conditions

Structures BCs
Tc (K)

200 300 400 500 700

CYL
(a/Rx = 0; b/Ry = 1/2)

SSSS 4.2612 4.2392 4.2184 4.1984 4.1597
CCCC 7.3327 7.2949 7.2591 7.2247 7.1582

SPH
(a/Rx = 1/2; Ry = Rx)

SSSS 5.1677 5.1411 5.1158 5.0916 5.0447
CCCC 7.8695 7.8289 7.7904 7.7535 7.6821

HPR
(a/Rx = 1/2; Ry = −Rx)

SSSS 3.8643 3.8444 3.8255 3.8073 3.7723
CCCC 7.7730 7.7330 7.6950 7.6586 7.5882

HYP
(c/a = 0.1)

SSSS 5.0093 4.9835 4.9591 4.9356 4.8902
CCCC 7.4701 7.4317 7.3952 7.3601 7.2925

CON
(a/Hh = 1; hl = 0.5Hh)

SSSS 5.2110 5.1841 5.1587 5.1342 5.0870
CCCC 7.0027 6.9667 6.9325 6.8996 6.8362

PAR
(c/a = 10)

SSSS 5.6388 5.6098 5.5822 5.5557 5.5046
CCCC 9.3292 9.2811 9.2355 9.1917 9.1072

5. CONCLUSIONS

An eight-nodded middle surface shell element based on first order shear deforma-
tion theory has been developed for vibration analysis of FG shell panels in thermal en-
vironment. The shell’s surfaces of various geometric shapes can be described by a func-
tion of Cartesian coordinates. The material properties are assumed to be temperature-
dependent and graded in the thickness direction according to a power law function.
Convergence and validation studies have been carried out to verify the accuracy of the
present formulation. The influence of various parameters, such as the volume fraction ex-
ponent, side-to-thickness ratio, boundary conditions, curvature and temperature rise on
the free vibration behavior of six different shell panels namely, cylindrical panel (CYL),
spherical panel (SPH), hyperbolic paraboloid panel (HPR), hypar panel (HYP), conoid
panel (CON) and parabolic panel (PAR) were investigated. The following points can be
outlined from the present study:

The middle surface shell element is appropriately used to simulate the FG shell pan-
els with various geometric shapes. This element involves less computation compared to
the solid-type shell element.

An increase in the curvature parameters b/Ry for CYL, SPH and HPR, c/a for HYP
and PAR, and hl/Hh for CON leads to an increase in shell panel stiffness for all six shell
panels, and also increase of non-dimensional fundamental natural frequencies.

The decrease of non-dimensional frequency of all six FG shell panels with increasing
volume fraction index p can be attributed to the fact that Young’s modulus of ceramic is
higher than metal.
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Shell panels with CCCC boundary condition give the highest values of the non-
dimensional frequencies for all six FG shell panels considered. The shell panels become
stiffer with higher number of edge restrains.

The non-dimensional fundamental frequencies of the shell panels also decrease slightly
with a temperature rise.
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