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Abstract. In this paper we propose a variational framework for the modeling of supere-
lasticity in shape memory alloys with softening behavior. This model is valid for a class
of standard rate-independent materials with a single internal variable. The quasi-static
evolution is based on two physical principles: a stability criterion which selects the local
minima of the total energy and an energy balance condition which ensures the absolute
continuity of the total energy. The stability criterion allows to bypass non-uniqueness is-
sues associated to softening behaviour while the energy balance condition accounts for
brutal evolutions at the local levels. We investigate properties of homogeneous and non-
homogenous solutions towards this variational evolution problem. Specifically, we show
how softening behaviour can lead to instability of the homogeneous states. In this latter
case, we show that a stable solution would consist in following the Maxwell line given by
the softening behaviour, then resulting in a non-homogeneous evolution.

Keywords: Shape memory alloys (SMA), superelasticity, softening, one dimensional model,
energetic approach, stability criterion.

1. INTRODUCTION

The property of superelasticity of shape memory alloys (SMA) wires such as NiTi is
now vastly employed in biomedical industry for applications such as orthopedic wires or
stents. It allows, through an austenite to martensite phase transformation, to achieve high
macroscopic strain (up to 6%) with fully recoverable initial state. Due to the dissipative
nature of this phase transformation, the force-displacement response of a loading cycle
shows an hysteresis loop. As a result, SMA are also used as dampers to prevent seismic
vibrations.

The modeling of SMA has shown consistent increased interest during the last twenty
years, both from the experimental and theoretical point of view. In particular, several one
dimensional models have been proposed to account for the “exotic” behaviour of SMA
e.g. superelaticity or shape-memory effect. These fundamental researches on the one-
dimensional case are not only essential for a better understanding of the behavior of SMA
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but are in fact directly related to practical applications such as stent or orthopedic wires
i.e. an assembly of one-dimensional systems. Most of uniaxial experiments that highlight
the superelastic behavior of SMA consists in quasi-static uniaxial tension of NiTi wires
or thin strips at prescribed displacement [1–5]. An important feature of their results is
that the martensitic transformation is inhomogeneous. For sufficiently slow deformation
loading rates (10−4 to 10−5), it usually consists in one or two nucleation martensitic sites
that grow and propagates continuously with the loading. The global response given by
the stress-nominal strain diagram follows a three-steps scenario: i) an elastic phase as-
sociated to the austenite phase, ii) a sudden drop of the stress to a plateau stress which
corresponds to the initiation of the martensite transformation; the stress remains at this
plateau until the transformation is complete, iii) an elastic phase associated to the fully
transformed martensite phase.

We usually distinguish two classes of constitutive models that account for supere-
lasticity of SMA. Firstly, we have those for which the constitutive behavior is derived
from a micro mechanical approach by means of homogenization techniques [6, 7]. An
advantage of these models is to give a direct access to the evolution of the microstruc-
ture during the macroscopic phase transformation and to relate the effective properties
at the macroscopic scale to physical material parameters at the microscopic scale. How-
ever, these multiscale approaches require usually too much computational efforts to be
used for structural engineering calculations. In these latter cases, one would rather rely
on macroscopic phenomenological models. Those models incorporate internal variables
that describe the macroscopic phase transformation such as the martensitic volume frac-
tion or the martensite orientation strain tensor. Starting with one-dimensional models of
SMA [1, 8], these latter have been successively extended to the three dimensional case,
including the shape memory effect (temperature induced transformation) [9, 10].

When the aforementioned models are used in a structural calculation, they pre-
dict a homogeneous or diffuse phase transformation, even in the simplified example of a
one dimensional bar under tension. Indeed, the material parameters of these models are
calibrated in such a way that the intrinsic behavior of the material displays a hardening
response which stabilize homogeneous evolutions. However, homogeneous transforma-
tions is more the exception than the rule as it only occurs experimentally for a very short
nominal strain range (less than 1%) that follows the austenite elastic phase [11]. On the
contrary, localized transformations constitutes the main mode of phase change. To cap-
ture these localized phase transformation that are observed experimentally, one has to
introduce a softening behavior at the local level in the model as it would to loss of el-
lipticity and localization of deformation. This has been confirmed by recent experiments
on NiTi by [12] based on an original idea of [13]. It consists in controlling the strain at
every point of a softening unidimensional specimen by bonding it to a hardening mate-
rial such as stainless steel with the same geometry. As a result, the global behavior of
this sandwich exhibits a structural hardening behavior which is associated to a diffuse
transformation. By subtracting the response of the stainless steel, one has access to the
intrinsic behavior of the softening material. In fact, such idea was used in a different



A one dimensional variational model of superelasticity for shape memory alloys 277

context by [14] to isolate the underlying softening behavior of concrete. All the experi-
mental evidences show that softening is a key ingredient for a correct modeling of phase
transformation in SMA [15].

Introducing softening behavior in SMA models leads to theoretical issues such as
non-convexity and non-uniqueness of the response. Based on Ericksen’s paper [16], it is
widely accepted that the homogeneous response given by a softening model is non-stable
and that a stable response can be obtained by following the corresponding Maxwell line
(equal area rule). However, the qualitative model of Ericksen formulated in a one di-
mensional context is a non-linear elastic model and does not introduce any dissipative
processes that subtend macroscopic phase transformation in SMA. Softening in SMA can
either introduced phenomenologically or through a multi-scale simulation. In this lat-
ter case, the softening is directly incorporated as an ingredient in the microscale behav-
ior [17, 18]. This allows a better characterization of the formation of the microstructure
by taking into account the interface energy between austenite and martensitic variants.
Due to computational effort required in the calculation of the microscale behavior and
its upscaling to the macroscale, these multi-scale approaches are not always suitable for
structural calculations.

In this article, we propose to introduce softening at a phenomenological level by
making use of energetic approaches that have been introduced in the context of rate-
independent processes [19] such as fracture [20], damage mechanics [21] as well as plas-
ticity [22] or phase transformation [23, 24]. They consist in formulating the quasi-static
evolution problem in terms of the total energy of the problem based on two physical
principles: a stability criterion which consists in selecting the local (or global) minima of
the total energy of the system among admissible functional spaces and an energy balance
condition which enforces the (absolute) continuity of the total energy with respect to the
loading parameter. These two energetic principles are fundamental in the view of deal-
ing with softening behavior. Indeed, the classical formulations of the macroscopic phase
transformation in SMA are based on a Kuhn-Tucker formulation. Although such formu-
lation is sufficient to ensure the well-posedness and uniqueness of the evolution problem
for stress hardening materials, it shows some limitations when it comes to stress softening
behavior. The first issue with softening is the non-uniqueness of the response due to the
non-convexity of the model which allows to construct an infinity of solutions including
homogeneous as well as localized responses which satisfy the Kuhn-Tucker conditions.
The introduction of a stability criterion based on minima of the total energy aims to se-
lect only the physically acceptable solutions among those ones. The second issue with
softening is the temporal discontinuities that can occur during a quasi-static evolution.
Indeed, experimental and numerical evidences show that the nucleation of martensite
can be a brutal phenomenon, resulting in a non-smooth evolution of the local strain and
phase transformation fields with respect to time. However, the Kunh-Tucker consistency
condition which involves the rate of the phase transformation variable implies that the
evolution must be sufficiently smooth in time. By introducing an energy balance con-
dition, we aim to generalize the Kunh-Tucker consistency condition to a larger class of
evolution, including non-regular solutions. These two concepts, namely the stability cri-
terion and the energy balance condition, make an extensive use of the total energy of the
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system, hence requiring a rigorous definition of this latter. The standard structure of the
model introduced by [25] is the starting point of such energetic approach: the total energy
of the system is obtained as the sum of the free energy and the dissipated energy. The
goal of this paper is then to propose, in a one-dimensional context, an energetic frame-
work for the quasi-static evolution of superelastic SMA: how this variational approach
compares with previous formulations and what improvements it brings when dealing
with softening SMA will be emphasized throughout the article.

The paper is organized as follows. In Section 2, we derive a one dimensional stan-
dard model of SMA by means of thermodynamic work property. Definitions of harden-
ing and softening behaviors as well as energetic interpretations of material parameters
are given based on the intrinsic response of the model. Section 3 is devoted to the study
of a one dimensional superelastic SMA bar under tension. The evolution problem is for-
mulated in terms of a stability criterion based on the selection of local minima of the total
energy and a balance of energy. Stability of homogeneous states and localized states is
investigated with respect to the intrinsic behavior of the material. Finally, evolution of
localized states along the Maxwell line in the global diagram is shown to be a result of
the energetic formulation of the problem.

The following notations are used: the dependence on the time parameter t is in-
dicated by a subscript whereas the dependence on the spatial coordinate x is indicated
classically by parentheses, e.g. x 7→ ut(x) stands for the displacement field at time t. In
general, the material functions of the phase transformation variable are represented by
sans serif letters, like E, G or R. The prime denotes either the derivative with respect to x
or the derivative with respect to the phase transformation variable, the dot stands for the
time derivative, e.g. u′t(x) = ∂ut(x)/∂x, E′(α) = dE(α)/dα or u̇t(x) = ∂ut(x)/∂t.

2. ONE DIMENSIONAL CONSTITUTIVE MODEL OF SHAPE MEMORY ALLOY

2.1. Derivation of phase transformation laws based on a Drucker-Ilyushin work prop-
erty in Marigo [26]

We will consider only quasi-static mechanical loadings and neglect all inertia and
viscous effects. All the processes are assumed to be isothermal. This is only an approx-
imation since in practice the austenite to martensite phase transformation is an exother-
mic process. However, for sufficiently slow deformation loading rates (10−4 to 10−5),
the isothermal assumption is acceptable since the local change of temperature can be ne-
glected due to the temperature diffusion. The small strain formalism is adopted as it is
usually sufficient, at least in a first attempt, to capture most of the features of SMA e.g.
super elasticity, hysteresis [27–29]. We will focus on the tensile behavior of the SMA in
this paper and thus we will consider only positive strain values. Our one dimensional
SMA model will be built within the class of rate-independent dissipative materials with
internal variables. We start from the simplest assumption by considering two phases, an
austenite phase and a single martensite phase. The transformation from one phase to the
other is modeled by a unique scalar internal variable, called the phase transformation
variable, and which satisfies the following hypothesis:
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(1) The scalar phase transformation variable α lies in the interval [αA, αM] where
αA and αM are two real values such that αA < αM. When α = αA (resp. α = αM),
the material is in a fully austenite (resp. martensite) phase.

(2) For a given α ∈ [αA, αM], admissible strain states are bound to lie in a non-
empty closed and connected subset E(α) in the space of strain R+, the so-
called elastic domain. It is such that the phase transformation variable α does
not evolve as long as the strain path remains in the open subset E̊(α). An evo-
lution of the internal variable occurs only when the strain lies on the boundary
of ∂E(α).

Remark 1. Strictly intermediate values of α between αA and αM describes a fine mixture of marten-
site and austenite phases at a level below the scale of macroscopic observation. As a result, α does
not corresponds necessarily in this model to the volume fraction of one of the micro-constituent.
A direct link between α and the underlying microstructure e.g. volume fraction of austenite or
geometric distribution of phases, is only possible if α is upscaled from a homogenization process.
Here, we rather choose to adopt from the start a purely macroscopic point of view and directly
postulate the existence of α as well as its interval of definition [αA, αM].

[26] derived the constitutive behavior for such class of rate-independent materials
based a thermodynamic principle called Drucker-Ilyushin work property. This thermo-
dynamic principle is more restrictive than first and second thermodynamic principles as
it allows to derive more information on the model. For instance, the author showed by
means of the work property that the evolution of elastoplastic materials obeys to the max-
imal dissipation principle while the evolution of damage materials is ruled by the energy
release rate. Therefore, the standard1 evolution laws of the internal variables become a
consequence of the work property and not a postulate, hence giving a physical justification
to the convenient energetic frameworks. We recall here the definition of the work prop-
erty and their consequences on the formulation of a SMA model. We invite the reader to
refer to [26] for detailed proofs of the main results.

Let us call C a strain cycle performed during the time interval t ∈ [0, T]. The initial
strain and phase transformation variable state at t = 0 reads (ε(0), α(0)) while the final
state at t = T reads (ε(1), α(1)), with the condition ε(0) = ε(1) for cycle’s closure. At
any time t, the strain ε(t) must be admissible i.e. ε(t) must belong to the elastic domain
E(α(t)) at any t. Then the work property can be formulated as follows

Definition 2.1. The material satisfies the work property if and only if for any strain cycle C as
described above, the total strain work in this cycle remains positive:

∀C,
∫
C

σε̇dt ≥ 0. (1)

Equipped with the work property, two fundamental properties are obtained. First, by
considering strain cycles that lie in E̊(α) i.e. reversible cycles, one obtains [30]

1in the sense of [25]
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Proposition 2.2. There exists a potential (ε, α) 7→ φ(ε, α) defined over R+ × [αA, αM] such that
the stress-strain relation derives from this potential

σ =
∂φ

∂ε
(ε, α). (2)

The evolution laws of the internal variable are obtained by considering dissipative strain
cycles for which the internal variable and the elastic domain evolve. The central result
of [26] is that the elastic domain is characterized by an energy release rate inequality.
Specifically we have

Proposition 2.3. There exists a differentiable positive scalar function α 7→ R(α) with R′(α) ≥ 0
defined over [αA, αM] such that the elastic domain E(α) in the space of strain is given by

E(α) =


{

ε ∈ R+ : − ∂φ
∂α (ε, α) ≤ R′(α)

}
if α = αA,{

ε ∈ R+ : −R′(α) ≤ − ∂φ
∂α (ε, α) ≤ R′(α)

}
if αA < α < αM,{

ε ∈ R+ : −R′(α) ≤ − ∂φ
∂α (ε, α)

}
if α = αM.

(3)

Moreover the evolution of the internal variable satisfies the following consistency equation(
− ∂φ

∂α

)
α̇ = R′(α)|α̇| ⇔

{
α̇ > 0⇒ − ∂φ

∂α (ε, α) = R′(α),
α̇ < 0⇒ ∂φ

∂α (ε, α) = R′(α).
(4)

where α̇ stands as the right derivative in time of α.

Note that the second thermodynamics is automatically satisfied with this class of model
as the intrinsic dissipation rate Ḋ, given by

Ḋ = σε̇− φ̇ = −∂φ

∂α
α̇ = R′(α)|α̇|, (5)

is positive. To go further in the characterization of the free potential φ and in accordance
with the small deformation assumption, let us perform a Taylor expansion of φ(·, α) in
ε near 0. Up to the second order ε, the Taylor expansion can be always cast into the
following form

φ(ε, α) =
1
2
E(α)(ε− p(α))2 + G(α), (6)

where E, p and G are material functions which only depend on α. Given the expansion
(6), the stress-strain relation reads

σ = E(α)(ε− p(α)). (7)

The parameters E and p are depicted on Fig. 1 where is represented a typical stress-
strain response of a volume element of shape memory alloys. For a given value α of
the phase transformation variable, the parameter E(α) corresponds to the Young modu-
lus of the transformed material while p(α) is the transformation strain associated to the
macroscopic orientation of the austenite-martensite mixture. As the the austenite phase
is stiffer than the martensite phase, we have E(αA) = EA > E(αM) = EM > 0. Moreover,
since the austenite phase is free of any transformation strain, then p(αA) = 0. Finally, as
φ is determined up to a constant, we will assume that G(αA) = 0.
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Fig. 1. Stress-strain response of a material point

In accordance with the superelastic behavior of SMA, let us now make extra hypothesis
on the material functions E, p, G and R for intermediate values between αA and αM:

Hypothesis 2.4. We assume that all the material functions are twice differentiable. In addition,
we suppose α 7→ E(α) to be a decreasing function while α 7→ p(α), α 7→ R(α) and α 7→
G(α)− R(α) to be increasing functions over [αA, αM] i.e.

E′ < 0, p′ > 0, R′ > 0, G′ − R′ > 0. (8)

The positivity of E′ means that the Young’s modulus of a microstructural mixture of
austenite and martensite is decreasing from EA to EM as the the material is progressively
transformed. The negativity of p′ signifies that the phase transformation strain is increas-
ing during the transformation from 0 to p(1). To explain the assumptions on the mono-
tonicity of R and G− R, let us analyze the stress-strain diagram in which those quantities
have an energetic interpretation. First, let us compute the work of strain throughout a
strain cycle t 7→ ε∗t . The phase transformation variable evolution during this cycle is
denoted t 7→ α∗t . We suppose that the material point is initially at rest and the state of
strain and phase transformation is (0, αA). We then apply a monotonically increasing
strain loading up to the state (ε, α). Finally, we close the cycle by unloading the applied
strain until we reach the initial state (0, αA). For this cycle, we suppose that the phase
transformation variable is increasing during the loading stage and decreasing during the
unloading stage2. The total strain work performed during this cycle C reads∫

C
σt ε̇
∗
t dt =

∫
C

∂φ

∂ε
(ε∗t , α∗t )ε̇

∗
t dt =

∫
C

d
dt
(φ(ε∗t , α∗t ))dt︸ ︷︷ ︸
=0 (cycle)

−
∫
C

∂φ

∂α
(ε∗t , α∗t )α̇

∗
t dt (9)

=
∫
C
R′(α∗t )|α̇∗t |dt = (R(α)− R(αA))︸ ︷︷ ︸

α̇>0 (loading)

− (R(αA)− R(α))︸ ︷︷ ︸
α̇<0 (unloading)

= 2R(α).

2This assumption will be enforced later through the Hypothesis 2.7 on by imposing an strain-
hardening behavior to the SMA.
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Therefore, 2R(α) represents the total energy dissipated by the phase transformation pro-
cess during a cycle where the phase transformation variable reaches the value α. As a
result, it makes physically sense to make the growth assumption on R′. To give more
insight now on G− R, let us compute the total strain work during the loading stage only
i.e. from the initial state (0, αA) to the intermediary state (ε, α)∫ (ε,α)

(0,0)
σt ε̇
∗
t dt =

∫ (ε,α)

(0,0)

d
dt
(φ(ε∗t , α∗t ))dt−

∫ (ε,α)

(0,0)

∂φ

∂α
(ε∗t , α∗t )α̇

∗dt (10)

= (φ(ε, α)− φ(0, αA)) + (R(α)− R(αA))

=
1
2
E(α)(ε− p(α))2 + G(α) + R(α).

Knowing that 1
2E(α)(ε − p(α))2 is the elastic energy stored by the material point in the

state (ε, α), the functions G− R can be directly seen in the stress-strain diagram in terms
of surface area, see Fig. 2.

2R(↵)

G(↵) � R(↵)

1

2
E(↵)("� D(↵))2

�

"

(",↵)

(0, 0)

Fig. 2. Energetic interpretation of the material functions from a partial phase
transformation in the intrinsic stress-strain diagram

Therefore, while 2R was linked to the dissipated energy by the phase transforma-
tion, G− R represents the total latent heat due to the exothermic forward phase trans-
formation and which is fully recoverable upon an endothermic reverse phase transfor-
mation. As a result, the monotonicity assumption on G− R is physically acceptable with
respect to the energetic characteristics of SMA.

2.2. Choice of the internal variable
Up to now, the one-dimensional model of SMA is fully characterized by the knowl-

edge of αA and αM as well as the four material functions E(α), p(α), G(α) and R(α). We
now illustrate how a change of variable on the phase transformation variable α can lead
to further simplifications by reducing the number of material parameters to be identified.
Let us consider two examples of change of variable.

Dissipated energy as the phase transformation variable A first possible choice is to choose the
dissipated energy α 7→ 2R(α) as the new phase transformation variable. This change of
variable is legit since, in virtue of the Hypothesis 2.4, we have R′ > 0. Let us introduce
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2ŘM = 2R(αM) the total energy dissipated by a full phase transformation cycle. Providing
a renormalization by 2ŘM, the new phase transformation variable d reads

d : α 7→ R(α)

ŘM

, d(αA) = 0, d(αM) = 1. (11)

Based on the new phase transformation variable d, the model is now defined by the
free potential φ̌ based on the three material functions Ě, p̌ and Ǧ and the yield material
parameter ŘM

φ̌(ε, d) =
1
2
Ě(d)(ε− p̌(d))2 + Ǧ(d), Ř(d) = ŘMd. (12)

Transformation strain as the phase transformation variable Another convenient choice is to
choose instead the transformation strain p(α) as the new phase transformation variable.
Let us call p1 = p(αM) the transformation strain associated to the orientation of the
martensite phase when the phase transformation is completed. Since p′ > 0 in virtue
of the Hypothesis 2.4, this change of variable is also possible. In this case, the new phase
transformation variable z reads after renormalization by p1

z : α 7→ p(α)

p1
, z(αA) = 0, z(αM) = 1. (13)

Based on the new phase transformation variable z, the model is defined by the following
φ̂ based on the two material functions Ê and Ĝ and the yield function R̂

φ̂(ε, z) =
1
2
Ê(z)(ε− p1z)2 + Ĝ(z), R̂(z). (14)

The model after this change of variable is characterized by three material functions Ê, Ĝ,
R̂ and the yield material parameter p1.
In the rest of the study, we will adopt this change of variable related to the transformation
strain. With this change of variable, the elastic domain in the space of strain reads

Ê(z) =


{

ε ∈ R+ : − ∂φ̂
∂α (ε, z) ≤ R̂′(z)

}
if z = 0,{

ε ∈ R+ :
∣∣∣− ∂φ̂

∂α (ε, z)
∣∣∣ ≤ R̂′(z)

}
if 0 < z < 1,{

ε ∈ R+ : −R̂′(z) ≤ − ∂φ̂
∂z (ε, z)

}
if z = 1.

(15)

while the stress-strain relation and consistency condition are given by

σ =
∂φ̂

∂ε
(ε, z),

(
− ∂φ̂

∂z

)
ż = R̂′(z)|ż|. (16)

2.3. Intrinsic response, strain hardening and stress softening properties
We establish in this section the intrinsic response of the material from which we

will define the hardening and softening properties of the model. Within a strain cycle the
response of the material point during the loading/unloading phase is given by
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Proposition 2.5. Let us introduce the fours functions z 7→ ε̄AM(z), z 7→ σ̄AM(z), z 7→ ε̄MA(z)
and z 7→ σ̄MA(z) on [0, 1] as follows

ε̄AM(z) = zp1 −
p1Ê(z)
Ê′(z)

(√
1 + 2Ŝ′(z)

Ĝ′(z) + R̂′(z)
p2

1
− 1

)
, σ̄AM(z) = Ê(z)(ε̄AM(z)− zp1),

(17)

ε̄MA(z) = zp1 −
p1Ê(z)
Ê′(z)

(√
1 + 2Ŝ′(z)

Ĝ′(z)− R̂′(z)
p2

1
− 1

)
, σ̄MA(z) = Ê(z)(ε̄MA(z)− zp1).

(18)

Then the response of the material point during the loading phase (ε increasing) follows three suc-
cessive stages:

(1) Austenite phase: ε ∈ [0, ε̄AM(0)]. At the onset of the loading, the response of the
material is first elastic. The phase transformation variable is equal to 0 and the stress-
strain relation reads

σ = EAε. (19)
(2) Forward phase transformation: ε ∈ [ε̄AM(0), ε̄AM(1)]. The stress, the strain and

the phase transformation variable are linked during the forward phase transformation
through the relations

ε = ε̄AM(zε), σ = σ̄AM(zε). (20)

(3) Martensite phase: ε ∈ [ε̄AM(1),+∞). The response becomes again elastic. The phase
transformation variable is equal to 1 and the stress-strain relation reads

σ = EM(ε− p1). (21)

By unloading the material point in its martensite phase (ε decreasing), the response of the material
point follows also three successive stages:

(1) Martensite phase: ε ∈ [ε̄MA(1),+∞). At the onset of the loading, the response of
the material is first elastic. The phase transformation variable is equal to 0, while the
stress is given by

σ = EM(ε− p1). (22)
(2) Backward phase transformation: ε ∈ [ε̄MA(0), ε̄MA(1)]. The stress, the strain and

the phase transformation variable are linked during the backward phase transforma-
tion through the relations

ε = ε̄MA(zε), σ = σ̄MA(zε). (23)

(3) Austenite phase: ε ∈ [0, ε̄MA(0)]. The response becomes again elastic. The phase
transformation variable is equal to 1, while the stress is given by

σ = EAε. (24)

Proof. At the onset of the loading, the response of the material is elastic and no trans-
formation occurs as long as the forward phase transformation criterion is a strict in-
equality. This elastic phase ends when the criterion becomes an equality i.e. when ε
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reaches the upper bound of the elastic domain Ê(0) given by − ∂φ̂
∂α (ε, 0) = R̂′(0). This

leads to a second order polynomial equation − 1
2 Ê
′(0)ε2 + Ê(0)p1ε− Ĝ′(0) = R̂′(0) to be

solved. In virtue of the Hypothesis 2.4 and given the change of variable (13), we have
(Ĝ − R̂)′ > 0 and a fortiori (Ĝ + R̂)′ > 0 since R̂′ > 0. The polynomial equation has
then a unique positive solution which corresponds to ε̄AM(0). For ε > ε̄AM(0), the for-
ward phase transformation starts to occur. In virtue of the consistency condition (16), the
forward phase transformation criterion is an equality during the transformation and we
have− 1

2 Ê
′(zε)(ε− p1zε)2 + Ê(zε)p1(ε− p1zε)− Ĝ′(zε) = R̂′(zε). Again, since (Ĝ+ R̂)′ > 0,

this second order polynomial equation in ε has a unique positive root which corresponds
to ε̄AM(zε). When zε = 1, no constraint is imposed by the forward criterion (15) for subse-
quent loading and the response is again elastic.
During the unloading stage, same arguments apply to the backward phase transforma-
tion. It starts when the criterion becomes an equality i.e. when ε reaches the lower bound
of the elastic domain Ê(1) given by − ∂φ̂

∂α (ε, 1) = −R̂′(1). This leads to a second order
polynomial equation − 1

2 Ê
′(1)ε2 + Ê(1)p1ε− Ĝ′(1) = −R̂′(1). This polynomial equation

has a unique positive solution in virtue of the Hypothesis 2.4 and it corresponds to ε̄MA(1).
By releasing the load from ε = ε̄MA(1), the backward phase transformation occurs and in
virtue of the consistency condition (16), the backward phase transformation criterion is an
equality during the transformation i.e.− 1

2 Ê
′(zε)(ε− p1zε)2 + Ê(zε)p1(ε− p1zε)− Ĝ′(zε) =

−R̂′(zε). This polynomial equation in ε has a unique positive root which corresponds to
ε̄MA(zε). When zε = 0, no constraint is imposed anymore by the backward criterion (15)
for further unloading and the response becomes again elastic. �

Knowing the intrinsic response of the material, let us now introduce

Definition 2.6. Hardening and softening phase transformation behavior. The forward
(resp. backward) phase transformation is said to be strain-hardening if ε̄′AM(z) > 0 (resp. ε̄′MA(z) >
0), stress-hardening if σ̄′AM(z) > 0 (resp. σ̄′MA(z) > 0) and stress-softening if σ̄′AM(z) < 0 (resp.
σ̄′MA(z) < 0) for z ∈ [0, 1].

To ensure that no snap-back occurs in the material response during the forward/backward
phase transformation, let us make

Hypothesis 2.7. The forward and backward phase transformations are supposed to be strain-
hardening.

Under this assumption, the response of a material point during a strain cycle is
necessarily unique since ε̄AM and ε̄MA are invertible. In particular, the stress-strain re-
sponse during the forward transformation and backward transformation are given by
ε 7→ σ̄AM((ε̄AM)−1(ε)) and ε 7→ σ̄MA((ε̄MA)−1(ε)), respectively.

2.4. Identification of the material functions
Let us consider the following constitutive law used in the literature [10] for which

the material functions are defined as follows

Ê(z) =
1

z
EM

+ 1−z
EA

, Ĝ(z) = Ĝ0z + Ĥ(z), R̂(z) = R̂0z. (25)
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Specifically, the stiffness of the mixture of austenite and martensite corresponds here
to a model in series, where z plays the volume fraction of martensite. The material
function Ĥ is usually interpreted as an interaction potential between phases that satisfies
Ĥ(0) = Ĥ(1) = 0 while Ĝ0 is the heat density associated to the phase change. Based
on Proposition 2.5, the softening properties will depend on the sign of the second order
derivative of the interaction potential Ĥ. In particular, the forward and the backward
phase transformation have a softening character if and only if Ĥ is concave. Therefore,
the form of the interaction potential plays a keyrole in the hardening/softening properties
of the SMA which in return will dictate the well-posedness behavior of the problem as
we will see in the next section.

3. EVOLUTION PROBLEM OF A ONE DIMENSIONAL BAR

We consider a one dimensional SMA bar (0, L) of length L and axial coordinate
x ∈ [0, L] whose displacements are prescribed at the extremities of the bar. The end
x = 0 of the bar is fixed, whereas the displacement of the end x = L is prescribed to
a value Ut depending on an increasing parameter t which plays the role of the “time”.
The nominal strain is then given by ε̄t = Ut/L. For this one dimensional problem, the
affine space of admissible displacement field Ct and the convex space of admissible phase
transformation variable Z0 read

Ct = {u ∈ H1(0, L) : u(0) = 0, u(L) = Ut}, Z0 = L∞((0, L), [0, 1]), (26)

where H1(0, L) is the space of functions that are square integrable and whose first deriva-
tives are square integrable while L∞((0, L), [0, 1]) is the space of functions which are
bounded by 0 and 1 almost everywhere. For a given z ∈ Z0, let us associate the space of
admissible direction test Z(z)

Z(z) = {β ∈ L∞((0, L), R) : β ≥ 0 where z = 0, β ≤ 0 where z = 1}. (27)

We aim here to provide an energetic formulation of the evolution problem to tackle pos-
sible non-uniqueness and stability issues of the system associated to softening behavior.
Let us first determine the total energy of the body when this latter is loaded from 0 to
time t. Considering a material point of the bar, the total strain work to load this material
point reads

Wt(εt, zt) =
∫ t

0
στ ε̇τdτ =

∫ t

0

(
˙̂φ(ετ, zτ)−

∂φ̂

∂z
(ετ, zτ)żτ

)
dτ (28)

=
∫ t

0

(
˙̂φ(ετ, zτ) + R̂′(z)|ż|

)
dτ

= φ̂(εt, zt) +
∫ t

0
R̂′(zτ)|żτ|dτ,

where the integral term
∫ t

0 R̂′(z)|ż|dτ corresponds to the total dissipated energy during
the whole process. The total energy of the bar Pt(ut, zt) in a displacement configuration
ut ∈ Ct and phase transformation variable zt ∈ Z0 is then defined as the integral over the
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domain of the density of strain work

Pt(ut, zt) =
∫ L

0
Wt(u′t, zt)dx = Et(ut, zt) +

∫ L

0

∫ t

0
R̂′(zτ)|żτ|dτdx, (29)

where

Et(ut, zt) =
∫ L

0
φ̂(u′t, zt)dx, (30)

corresponds to the total free energy of the system. Note that expression (29) is valid
only when the evolution is “sufficiently” smooth in time as it involves the derivative in
time of the phase transformation variable żt. However, smoothness of the evolution does
not always hold as time discontinuities might occur in a quasi-static setting. A more
general expression of the total dissipated energy that encompasses those possible time
discontinuities consists in rewriting the total dissipated energy of the system as

Diss(zt, [0, t]) = sup
(τi)

M

∑
i=1

∫ L

0
|R̂(zτi)− R̂(zτi−1)|dx, (31)

where the supremum is taken over all M ∈N and all discretizations 0 = τ1 < . . . < τM =

t. In particular, Diss(z, [0, t]) coincides precisely with
∫ t

0

∫ L
0 R̂′(zτ)|żτ|dxdτ for smooth

evolutions while keeping a meaning for non-smooth evolutions. Then the final expres-
sion of the total energy of the state (ut, zt) reads

Pt(ut, zt) = Et(ut, zt) +Diss(zt, [0, t]). (32)

3.1. The stability criterion and energy balance condition
An admissible state (ut, zt) will be called a solution of the problem if and only if it

satisfies the two following conditions for any t:

(S) :

{
∀(v, β) ∈ C0 ×Z(zt), ∃r∗ > 0, ∀h ∈ [0, r∗), (ut + hv, zt + hβ) ∈ Ct ×Z0,
Pt(ut, zt) ≤ Et(ut + hv, zt + hβ) +Diss(zt, [0, t]) +

∫ L
0 |R̂(zt + hβ)− R̂(zt)|dx,

(33)

(E) : Pt(ut, zt) = P0(u0, z0) +
∫ t

0
σt∗U̇t∗dt∗. (34)

The first item (S) of the evolution problem is a directional stability condition which con-
sists in selecting the local minimizers of the total energy as the stable states. Indeed, the
right-hand side of (33) can be seen as the total energy of a neighboring state (ut + hv, zt +
hβ) under specific assumptions. Let us assume a virtual evolution of the system at fixed
loading, starting from the state (ut, zt) and ending at the state (ut + hv, zt + hβ). Let us
call t and t + ∆t∗, the starting and finishing time of this virtual evolution. We assume this
evolution is short enough (∆t∗ � 1) so that the phase transformation has a monotonous
evolution. As a result, the dissipated energy due to the phase transformation between t
and t + ∆t∗ reads

∫ L
0 |R̂(zt + hβ)− R̂(zt)|dx. Therefore, the stability criterion consists in

selecting the states that minimize locally the total energy of the system among the neigh-
boring states that can be reached monotonously with respect to the phase transformation
variable.
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The second item (E) is an energy balance condition that enforces the total energy of the
system (the sum of the total free energy and the total dissipated energy) to be an abso-
lutely continuous function of time equals to the sum of the initial total energy and the
total work of external loads from 0 to t. This energetic formulation consisting in (S) and
(E) will be shown to be particularly suited for handling softening behavior as well as
non-smooth evolution.

Given the stability criterion (S), we now characterize further the stable states by
doing a Taylor expansion of the stability criterion around the state (ut, zt) for a given test
direction (v, β) ∈ C0 ×Z(zt). Firstly, the stability criterion is equivalent to

Et(ut, zt)− Et(ut + hv, zt + hβ) ≤
∫ L

0
|R̂(zt + hβ)− R̂(zt)|dx. (35)

Performing a Taylor expansion of the left hand side around the state (ut, zt), we have

Et(ut, zt)− Et(ut + hv, zt + hβ) = −hDEt(ut, zt)(v, β)− h2

2
D2Et(ut, zt)(v, β) + o(h2),

(36)
where DEt(ut, zt)(v, β) and D2Et(ut, zt)(v, β) denote the first and second order deriva-
tives of Et at (ut, zt) in the direction (v, β), respectively. Applying the Taylor expansion
to the right hand side of (33) gives∫ L

0
|R̂(zt + hβ)− R̂(zt)|dx =

∫ L

0
h|β|

∣∣∣R̂′(zt) +
h
2
R̂′′(zt)β

∣∣∣dx + o(h2). (37)

Since R̂′(zt) > 0, we have for sufficiently small h∫ L

0
h|β|

∣∣∣R̂′(zt) +
h
2
R̂′′(zt)β

∣∣∣dx =
∫ L

0
h|β|

(
R̂′(zt) +

h
2
R̂′′(zt)β

)
dx. (38)

Therefore we deduce the state (ut, zt) is stable if and only if for any (v, β) ∈ C0 × Z(zt)
and h sufficiently small

0 ≤
(

DEt(ut, zt)(v, β) +
∫

Ω
R̂′(zt)|β|dx

)
+

h
2

(
D2Et(ut, zt)(v, β) +

∫
Ω

sgn(β)R̂′′(zt)β2dx
)
+ o(h). (39)

Let us introduce the two following quantities

DP∗t (ut, zt)(v, β) = DEt(ut, zt)(v, β) +
∫

Ω
R̂′(zt)|β|dx, (40)

D2P∗t (ut, zt)(v, β) = D2Et(ut, zt)(v, β) +
∫

Ω
sgn(β)R̂′′(zt)β2dx, (41)

that we call the “pseudo” first and second order derivative of the total energy3 in the test
direction (v, β), respectively. We have then shown that

3These are not strictly speaking true directional derivatives of the total energy. Indeed, an admissible
direction of perturbation for the total energy should depend not only on the spatial coordinate but also on
time as the total energy involves the whole history of the process through the dissipated energy. As a result
DP∗t (ut, zt)(v, β) and D2P∗t (ut, zt)(v, β) will be regarded only as “pseudo” derivatives.
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Proposition 3.1. The state (ut, zt) is stable in the test direction (v, β) if (resp. only if) it satisfies
the first order condition of stability

DP∗t (ut, zt)(v, β) > 0 (resps. ≥ 0).

If DP∗t (ut, zt)(v, β) = 0, then the state (ut, zt) is stable in the test direction (v, β) if (resp. only
if) it satisfies the second order condition of stability

DP∗t (ut, zt)(v, β) > 0 (resps. ≥ 0).

3.2. First order condition of stability
Let us first characterize the properties on (ut, zt) implied by the first necessary

order optimality condition

∀(v, β) ∈ C0 ×Z(zt), DP∗t (ut, zt)(v, β) = DEt(ut, zt)(v, β) +
∫ L

0
R̂′(zt)|β|dx ≥ 0, (42)

where the first order derivative of the total free energy DEt(ut, zt)(v, β) reads

DEt(ut, zt)(v, β) =
∫ L

0

(∂φ̂

∂ε
(u′t, zt)v′ +

∂φ̂

∂z
(u′t, zt)β

)
dx. (43)

By putting β = 0 in (42), we obtain the weak form of the mechanical equilibrium

∀v ∈ C0,
∫ L

0
σtv′dx = 0, (44)

where σt =
∂φ̂

∂ε
(u′t, zt) = Ê(zt)(u′t − p1zt) corresponds to the stress field in the bar. Inte-

grating by part the weak form of the equilibrium, we find

−
∫ L

0
σ′t vdx + [σtv]L0 = 0. (45)

Since v ∈ C0, we have v(0) = v(L) = 0. Therefore, we deduce by a classical argument of
calculus of variation that σ′t = 0 for any x ∈ (0, L). Thus, the stress σt is spatially constant
and only depends on time t. Let us now derive the phase transformation laws from the
first order optimality condition (42) and see if they are consistent with the local form of
the elastic domain (15) deduced from the work property. By putting v = 0 in (42), we
obtain the weak form of the phase transformation criterion

∀β ∈ Z(zt),
∫ L

0

(∂φ̂

∂z
(u′t, zt)β + R̂′(zt)|β|

)
dx ≥ 0. (46)

To derive the strong form of the criterion, let us first consider test direction β ∈ Z(zt)
such that β ≥ 0 on (0, L). On the subsets of (0, L) where zt = 1, we have necessarily
β = 0 in virtue of the definition (27) of Z(zt). Injecting β in (46), we find∫

0≤zt<1

(∂φ̂

∂z
(u′t, zt) + R̂′(zt)

)
βdx ≥ 0. (47)

As this variational inequality holds for any β ≥ 0 in Z(zt), we deduce that

− ∂φ̂

∂z
(u′t(x), zt(x)) ≤ R̂′(zt(x)) if 0 ≤ zt(x) < 1. (48)
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Reciprocally, let us consider test direction β ∈ Z(zt) such that β ≤ 0 on (0, L). On the
subsets of (0, L) where zt = 0, we have necessarily β = 0 in virtue of the definition (27)
of Z(zt). Injecting β in (46), we find∫

0<zt≤1

(
− ∂φ̂

∂z
(u′t, zt) + R̂′(zt)

)
(−β)dx ≥ 0. (49)

Since this variational inequality holds for any (−β) ≥ 0 in Z(zt), we deduce that

− R̂′(zt(x)) ≤ −∂φ̂

∂z
(u′t(x), zt(x)) if 0 < zt(x) ≤ 1. (50)

We have then shown that the first order condition of stability is totally consistent with
the local phase transformation criteria deduced from the work property.
Now let us show, for sufficiently smooth evolutions in time, how the energy balance condi-
tion (E) leads to the complementary Kuhn-Tucker consistency condition (16) at the local
level. Deriving (34) in time gives∫ L

0

(∂φ̂

∂ε
(u′t, zt)u̇′t +

∂φ̂

∂z
(u′t, zt)żt

)
dx +

∫ L

0
R̂′(zt)|żt|dx = σtU̇t. (51)

Since the following relation holds in virtue of the mechanical equilibrium∫ L

0

∂φ̂

∂ε
(u′t, zt)u̇′tdx = −

∫ L

0
σ′t u̇
′
tdx + [σtu̇t]

L
0 = σtU̇t, (52)

we deduce that the energy balance condition conversely reads∫ L

0

(∂φ̂

∂z
(u′t, zt)żt + R̂′(zt)|żt|

)
dx = 0. (53)

On the subset of (0, L) where żt = 0, the contribution of the integrand of (53) is zero.
Moreover, since zt is bound to stay in the interval [0, 1], we have 0 ≤ zt < 1 (resp. 0 <
zt ≤ 1) when żt > 0 (resp. żt < 0). But in virtue of (48) and (50), we have

∂φ̂

∂z
(u′t, zt)żt + R̂′(zt)|żt| =

(∂φ̂

∂z
(u′t, zt) + R̂′(zt)

)
|żt| ≥ 0 if 0 ≤ zt < 1, (54)

∂φ̂

∂z
(u′t, zt)żt + R̂′(zt)|żt| =

(
− ∂φ̂

∂z
(u′t, zt) + R̂′(zt)

)
|żt| ≥ 0 if 0 < zt ≤ 1. (55)

Thus, the energy balance condition reads∫
żt>0

(∂φ̂

∂z
(u′t, zt) + R̂′(zt)

)
|żt|︸ ︷︷ ︸

≥0

dx +
∫

żt<0

(
− ∂φ̂

∂z
(u′t, zt) + R̂′(zt)

)
|żt|︸ ︷︷ ︸

≥0

dx = 0. (56)

We deduce that the integrand of each integral is necessarily zero and we have for any
x ∈ (0, L) (

sgn(żt)
∂φ̂

∂z
(u′t, zt) + R̂′(zt)

)
|żt| = 0. (57)

Therefore, we have shown that the solutions of the variational evolution problem (S) and
(E) necessarily satisfy the Kuhn-Tucker conditions (15)-(16) when the evolution is smooth
enough with respect to time. It is no coincidence since standard models first introduced
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by [25] are indeed models whose evolution laws admit a variational formulation. How-
ever, their original formulation which is local does not include stability concepts which
are necessary when it comes to softening materials. On the other hand, the energetic for-
mulation (S) and (E) does introduce such stability arguments which are fundamental as
we will see in the next section.

3.3. The issue of stability for the homogeneous phase transformation
We investigate in this section the stability of spatially homogeneous states under dis-

placement controlled loading. The loading is fixed4, we will omit in this section the sub-
script t related to a time evolution. Let us call (x 7→ (ū(x), z̄(x)) the displacement and
the phase transformation fields defined over [0, L] of such a state. Note that since the
strain field x 7→ ∂ū/∂x is supposed to be homogeneous, it is equal to the nominal strain
ε̄ = U/L where U is the applied displacement at x = L. To investigate the stability is-
sue, we will discriminate different cases, depending if the forward or backward phase
transformation criteria (48) or (50) are activated or not. Note that since the state (ū, z̄)
is homogeneous, the phase transformation criteria do not depend on the spatial coordi-
nate x. The homogeneous states for which the phase transformation criteria remain strict
inequalities will be labelled as elastic states while the states for which the forward (or
backward) phase transformation criterion is an equality will be labelled as phase trans-
forming states.

3.3.1. Elastic states
We first consider elastic states for which the phase transformation criteria are strict

inequalities. The pseudo first order derivative of the total energy calculated in the admis-
sible direction (v, β) ∈ C0 ×Z(z̄) is given by

DP∗(ū, z̄)(v, β) =
∫ L

0

∂φ̂

∂ε
(ε̄, z̄)v′dx +

∫ L

0

(
∂φ̂

∂z
(ε̄, z̄)β + R̂′(z̄)|β|

)
dx. (58)

The first integral is zero since ∂φ̂
∂ε (ε̄, z̄) is homogeneous in [0, L] and v(0) = v(L) = 0. Now

let us discriminate three different cases.

Case 1 If z̄ = 0, then β ≥ 0 over [0, L] in virtue (27) and only the forward phase transfor-
mation criterion needs to be satisfied. The upper criterion reads ∂φ̂

∂z (ε̄, 0) + R̂′(0) > 0 and

we deduce that DP∗(ū, 0)(v, β) =
(

∂φ̂
∂z (ε̄, 0) + R̂′(0)

) ∫ L
0 βdx > 0 for non trivial β in Z(0)

and any v ∈ C0.

Case 2 If z̄ = 1, then β ≤ 0 over [0, L] in virtue (27) and only the backward phase trans-
formation criterion needs to be satisfied. The lower criterion reads − ∂φ̂

∂z (ε̄, 1) + R̂′(1) > 0

4studying energetic stability of a state consists indeed in comparing the total energy of this state to
neighboring states with the same applied loading
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and we deduce that DP∗(ū, 1)(v, β) =
(
− ∂φ̂

∂z (ε̄, 1)+ R̂′(1)
) ∫ L

0 (−β)dx > 0 for non trivial

β in Z(1) and any v ∈ C0.

Case 3 If 0 < z̄ < 1, both the forward and backward phase transformation criterion needs
to be satisfied and ∂φ̂

∂z (ε̄, z̄)β(x) + R̂′(z̄)|β(x)| > 0 whenever β(x) 6= 0. Thus we deduce
again that DP∗(ūt, z̄)(v, β) > 0 for any non-trivial β in Z(z̄) and any v ∈ C0.

To complete the study of the elastic states, it remains to study the case of a test direction
β = 0 in [0, L] for which DP̂∗(ūt, z̄)(v, 0) = 0. In that case, the stability of the state is given
by the sign of the second order derivative D2P̂∗(ū, z̄)(v, 0) according to Proposition 3.1. A
straightforward calculation shows that D2P̂∗(ū, z̄)(v, 0) =

∫ L
0 Ê(z̄)v′2dx and the pseudo

second order derivative is non negative for non trivial v ∈ C0. We have then shown that
homogeneous elastic states are always stable.

3.3.2. Phase transforming states
We are now investigating the case of homogeneous states for which the phase

transformation criteria are reached. Let us assume first that the forward phase trans-
formation criterion is an equality i.e. R̂′(z̄) = − ∂φ̂

∂z (ε̄, z̄) over (0, L). Since the state is
homogeneous, the global response of the bar corresponds to the intrinsic response of the
material. Based on Proposition 2.5, the nominal strain is given by ε̄ = ε̄AM(z̄) while the
stress reads σ̄ = σ̄AM(z̄). Under this assumption, we have

DP∗(ū, z̄)(v, β) =
∫ L

0

∂φ̂

∂ε
(ε̄, z̄)v′dx +

∫ L

0

(
∂φ̂

∂z
(ε̄, z̄)β + R̂′(z̄)|β|

)
dx

=
∫ L

0
R̂′(z̄)︸ ︷︷ ︸
>0

(
|β| − β

)
︸ ︷︷ ︸

≥0

dx ≥ 0. (59)

For forward phase transforming states such as z̄ = 1, then β ≤ 0 over (0, L) and
DP∗(ū, 1)(v, β) = 0 if and only if β = 0 over (0, L). Since D2P̂∗(ū, 1)(v, 0) > 0 for
non trivial v ∈ C0, then we deduce that the homogeneous state is stable when z̄ = 1 i.e. at
the end of the forward homogeneous phase transformation.
Now let us focus on forward phase transforming states such as 0 ≤ z̄ < 1, we have that
DP∗(ū, z̄)(v, β) = 0 if and only if β ≥ 0 over (0, L). Therefore, the sign of D2P̂∗(ū, z̄)(v, β)
must be investigated only in the following test direction space

Z+ = {β ∈ L2(0, L) : β ≥ 0 on (0, L)}, (60)

where D2P∗t (ū, z̄)(v, β) is given after a direct calculation by

D2P∗(ū, z̄)(v, β) =
∫ L

0

(
1
2
Ê′′(z̄)(ε̄AM(z̄)− p1z)2β2 + 2Ê′(z̄)(ε̄AM(z̄)− zp1)(v′ − p1β)β

+ Ê(z̄)(v′ − p1β)2 + Ĝ′′(z̄)β2 + R̂′′(z̄)β2
)

dx. (61)
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Let us rewrite D2P∗t (ū, z̄)(v, β) by introducing the compliance Ŝ and the stress value
σ̄AM(z̄). After some calculations, we obtain the condensed form

D2P∗(ū, z̄)(v, β) =
∫ L

0
Ê(z̄)

(
v′ − (Ŝ′(z̄)σ̄AM(z̄) + p1)β

)2
dx

−
∫ L

0

(
1
2
Ŝ′′(z̄)(σ̄AM(z̄))2 − Ĝ′′(z̄)− R̂′′(z̄)

)
β2dx. (62)

To investigate the sign of D2P∗(ū, z̄)(v, β), let us rewrite the forward phase transforma-
tion criterion in terms of stress, we have

1
2
Ŝ′(z̄)(σ̄AM(z̄))2 − Ĝ′(z̄)− R̂′(z̄) = 0. (63)

By taking the right derivative with respect to z̄ ∈ [0, 1) of this expression, we find(
σ̄′AM(z̄)(Ŝ

′(z̄)σ̄AM(z̄) + p1) +
1
2
Ŝ′′(z̄)(σ̄AM(z̄))2 − Ĝ′′(z̄)− R̂′′(z̄)

)
= 0. (64)

We then deduce that

σ̄′AM(z̄) = −
1
2 Ŝ
′′(z̄)(σ̄AM(z̄))2 − Ĝ′′(z̄)− R̂′′(z̄)

Ŝ′(z̄)σ̄AM(z̄) + p1
, (65)

where the denominator is non negative (Ŝ′ = −Ê′/E2 > 0). Now let us discriminate two
cases. For SMA with a forward stress hardening behavior the stress z 7→ σ̄AM(z) is a non
decreasing function and hence σ̄′AM > 0. In this case, in virtue of (65), we deduce that
1
2 Ŝ
′′(z̄)(σ̄AM(z̄))2 − Ĝ′′(z̄)− R̂′′(z̄) < 0 and we find that D2P∗t (ū, z̄)(v, β) is non negative

for non trivial (v, β) according to (62). We deduce that the forward phase transforming
homogeneous state is stable for SMA with a forward stress hardening character.
Let us consider the converse case of SMA with a forward stress softening behavior. In this
case, we have σ̄′AM < 0 and in virtue of (65), D2P∗t (ū, z̄)(v, β) is now the difference of two
positive integrals. To know its sign, let us first bound D2P∗t (ū, z̄)(v, β) from below by
minimizing it with respect to v in C0 for a given β in Z+(z̄). Let us call v̄β the unique
minimizer over C0 of v 7→ D2P∗t (ū, z̄)(v, β) (it is a linear elastic problem for a fixed β). It
satisfies the first order optimality condition∫ L

0
Ê(z̄)

(
v̄′β − (Ŝ′(z̄)σ̄AM(z̄) + p1)β

)
w′dx = 0, ∀w ∈ C0. (66)

Integrating by parts and making use of the boundary conditions v̄β(0) = v̄β(1) = 0,
we get

x ∈ [0, L], v̄β(x) = −x
∫ L

0

(
Ŝ′(z̄)σ̄AM(z̄) + p1

)
βdy +

∫ x

0

(
Ŝ′(z̄)σ̄AM(z̄) + p1

)
βdy. (67)
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Inserting this optimal displacement test direction in (62) gives

D2P∗t (ū, z̄)(v̄β, β) =(LŜ(z̄))−1(Ŝ′(z̄)σ̄AM(z̄) + p1
)2
( ∫ L

0
βdx

)2

−
(

1
2
Ŝ′′(z̄)(σ̄AM(z̄))2 − Ĝ′′(z̄)− R̂′′(z̄)

) ∫ L

0
β2dx. (68)

Now let us consider a sequence (βn) of piecewise functions such that βn(x) = 1 for x ∈
[0, L/n) and βn(x) = 0 otherwise. For such sequence, we have (

∫ L
0 βndx)2 = (L/n)2 and∫ L

0 β2
ndx = L/n. Therefore, for sufficiently large n, we will have D2P∗t (ū, z̄)(v̄βn , βn) < 0.

The homogeneous forward phase transforming state such that z̄ ∈ [0, 1) is then unstable
for forward stress softening SMA.

The same analysis can be carried for the backward phase transforming states by
assuming that the backward phase transformation criterion is an equality i.e. R̂′(z̄) =
∂φ̂
∂z (ε̄, z̄) over (0, L). This case is analog to the forward phase transformation case and we
will simply show the main steps of the study. Firstly, based on Proposition 2.5, we have
ε̄ = ε̄MA(z̄) and the stress is σ̄MA(z̄). The pseudo first variation of the total energy reads

DP∗(ū, z̄)(v, β) =
∫ L

0
R̂′(z̄)︸ ︷︷ ︸
>0

(
|β|+ β

)
︸ ︷︷ ︸

≥0

dx ≥ 0. (69)

In this case, the stability of the homogeneous state is ensured for z̄ = 0 since
DP∗(ū, 0)(v, β) = 0 if and only if β = 0 over (0, L) and D2P̂∗(ū, 0)(v, 0) > 0 for non
trivial v ∈ C0. As a result the homogeneous state is stable at the end of the backward
homogeneous phase transformation.
For z̄ ∈ (0, 1], DP∗(ū, z̄)(v, β) = 0 if and only if β ≤ 0 over (0, L). In this case, the second
variation of the total energy given by

D2P∗(ū, z̄)(v, β) =
∫ L

0
Ê(z̄)

(
v′ − (Ŝ′(z̄)σ̄MA(z̄) + p1)β

)2
dx

−
∫ L

0

(
1
2
Ŝ′′(z̄)(σ̄MA(z̄))2 − Ĝ′′(z̄) + R̂′′(z̄)

)
β2dx, (70)

must be studied over C0 ×Z− where Z− reads

Z− = {β ∈ L2(0, L) : β ≤ 0 on (0, L)}. (71)

Since by deriving the backward phase transformation criterion we have

σ̄′MA(z̄) = −
1
2S
′′(z̄)(σ̄MA(z̄))2 − Ĝ′′(z̄) + R̂′′(z̄)

Ŝ′(z̄)σ̄MA(z̄) + p1
, (72)

we deduce that the homogeneous state is stable for SMA with a backward stress hard-
ening character i.e. σ̄′MA(z̄) > 0. For SMA with a backward stress softening character i.e.
σ̄′MA(z̄) < 0, by considering the same sequence (βn) than for the forward stress softening
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case, one can show that D2P∗(ū, z̄)(v̄βn , βn) < 0 for sufficiently large n. Therefore the ho-
mogeneous state is unstable in this case. Finally, we can summarize the stability results
as follows

Proposition 3.2. The homogeneous state (ū, z̄) for this SMA model enjoys the following stability
properties:

• The elastic homogeneous states are stable;
• The forward (resp. backward) phase transforming homogeneous states are stable for

materials with a forward (resp. backward) stress hardening character;
• The forward (resp. backward) phase transforming homogeneous states are unstable

if z̄ ∈ [0, 1) (resp. z̄ ∈ (0, 1]) and stable if z̄ = 1 (resp. z̄ = 0) for materials with a
forward (resp. backward) stress softening character.

3.4. A stable evolution path for SMA with a softening behavior
In the previous section, we showed the unstability of homogeneous states during

the phase transformation for materials with a softening behavior. In this case, we have to
investigate the existence non-homogeneous paths that ensures the stability criterion (S)
and the energy balance condition (E). We will assume in the rest of this section that the
material has a forward and backward stress softening character. As a result, the stress
related to the homogeneous response is monotonically increasing from 0 to σ̄AM(0) when
the nominal strain ε̄ goes from 0 to ε̄AM(0), monotonically decreasing from σ̄AM(0) to σ̄AM(1)
when the nominal strain ε̄ goes from ε̄AM(0) to ε̄AM(1) and monotonically increasing from
σ̄AM(1) to +∞ when the nominal strain ε̄ goes from ε̄AM(1) to +∞. Thus, for a given σ̃AM

such that σ̄AM(0) < σ̃AM < σ̄AM(1)), the homogeneous stress-strain response crosses the
horizontal line σ = σ̃AM at the following strain values

ε̃A =
σ̃AM

EA

, ε̃AM = ε̄AM((σ̄AM)
−1(σ̃AM)), ε̃M =

σ̃AM

EM

+ p1. (73)

We are now in measure to construct a non-homogeneous evolution of the bar (t, x) 7→
(ũt(x), z̃t(x)) under an applied increasing nominal strain ε̄t with ˙̄εt > 0. It follows the
three following steps:

Step 1: For 0 ≤ ε̄t < ε̃A, the response is elastic and the whole bar is in the austen-
ite state i.e. z̃t(x) = 0 for x ∈ (0, L). The strain field ε̃t = ∂ũt/∂x is homoge-
neous and its value is given by the nominal strain ε̄t, while the stress σ̃t is
equal to EA ε̄t;

Step 2: For ε̃A ≤ ε̄t < ε̃M, the bar undergoes a non-homogeneous phase transfor-
mation. The stress σ̃t is constant in time and is equal to σ̃AM during the whole
phase transformation. The transformation phase field z̃t is piecewise constant
in the bar while the displacement field ũt is piecewise linear. They are given
by
• ũt(x) = ε̃Ax and z̃t(x) = 1 for x ∈ (0, θtL);
• ũt(x) = ε̃M(x− θtL) + ε̃MθtL and z̃t(x) = 0 for x ∈ [θtL, L),
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where θt corresponds to the volume fraction of the bar that has turned into
martensite

θt =
ε̄t − ε̃A

ε̃M − ε̃A

, (74)

Step 3: For ε̃M ≤ ε̄t, the whole bar has been transformed into martensite i.e.
z̃t(x) = 1 for x ∈ (0, L). The strain field is again homogeneous and is equal to
ε̄t, while the stress is equal to EM(ε̄t − p1).

Stability criterion Let us first examine if the constructed evolution path satisfies the sta-
bility criterion (S). During Step 1, the state (ũt, z̃t) is in a homogeneous austenite state and
hence the bar is stable according to Proposition 3.1. The same argument applies also for
the Step 3 for which the whole bar is in a homogeneous martensite state. It remains then
to check the stability of Step 2. Let us first remark that the forward transformation phase
criterion is, by construction, a strict inequality in the bar during this step. Indeed, the two
strain states ε̃A and ε̃M introduced in (73) are in the interior of the elastic domain Ê(0) and
Ê(1), respectively. Hence satisfies

− ∂φ̂

∂z
(ε̃A, 0) < R̂′(0), −∂φ̂

∂z
(ε̃M, 1) > −R̂′(1). (75)

Since, (ε̃t, z̃t) is equal to (ε̃A, 0) on [θtL, L) and to (ε̃M, 1) on (0, θtL), we deduce that{
0 < − ∂φ̂

∂z (ε̃t(x), z̃t(x)) + R̂′(z̃t(x)) for x ∈ (0, θtL),

0 < ∂φ̂
∂z (ε̃t(x), z̃t(x)) + R̂′(z̃t(x)) for x ∈ [θtL, L).

(76)

The first variation of the total energy (42) reads for such state

DP∗t (ut, zt)(v, β) =
∫ θt L

0

(
− ∂φ̂

∂z
(ε̃t(x), z̃t(x)) + R̂′(zt)

)
|β|dx

+
∫ L

θt L

(∂φ̂

∂z
(ε̃t(x), z̃t(x)) + R̂′(zt)

)
|β|dx, (77)

with β such that β(x) ≤ 0 on (0, θtL) and β ≥ 0 on (θtL, L). Therefore, the pseudo first
variation of the total energy (42) is non negative for non trivial test function β. When
β = 0 in (0, L), the second variation is also non negative for non trivial displacement test
function v ∈ C0. We conclude that the constructed non-homogenous path is stable during
the whole evolution.

Energy balance condition It remains to examine if the non-homogeneous path satisfies the
energy balance condition (E). During Step 1, since the response is linear elastic and ho-
mogeneous, the total energy reads

Pt(ũt, z̃t) =
1
2

∫ L

0
E(0)ε̄2

t dx =
1
2
EA ε̄2

t L = P0(ũ0, z̃0) +
∫ t

0
σt∗(L)U̇t∗dt∗, (78)

with P0(ũ0, z̃0) = 0, σt∗(L) = EA ε̄t∗ and U̇t∗ = ˙̄εt∗L. Thus, the energy balance condition
(E) is satisfied during this step.
During Step 2, the evolution of a material point x∗ ∈ [0, L] is discontinuous in time as
the phase transformation variable t 7→ z̃t(x∗) goes directly from 0 to 1 when the nominal
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strain reaches the value
(
ε̃M(σ̃)− ε̃A(σ̃)

)
x∗/L + ε̃A(σ̃). Due to this time discontinuity, we

cannot calculate the dissipated energy by means of (29) as it involves the rate of the phase
transformation variable. Instead, we have to rely on the more general definition (31) of
the total dissipated energy. For a given time discretization (τi)1≤i≤M with τ1 = 0 and
τM = t, as the phase transformation is time increasing, we have by construction for any i
and any x ∈ (0, L), z̃τi−1(x) ≤ z̃τi(x). Since z 7→ R̂(z) is an increasing function, we obtain
R̂(z̃τi−1(x)) ≤ R̂(z̃τi(x)). Then, the total dissipated energy for the time discretization
(τi) reads

M

∑
i=1

∫ L

0
|R̂(zτi)− R̂(zτi−1)|dx =

M

∑
i=1

∫ L

0
R̂(zτi)− R̂(zτi−1)dx (79)

=
∫ L

0
R̂(zτM)− R̂(zτ1)dx

=
∫ L

0
R̂(zt)dx = R̂(1)θtL.

Therefore the total dissipated energy is independent of the time discretization and we
deduce that

Diss(zt, [0, t]) = R̂(1)θtL. (80)
Let us now compute the total free energy of the state. As ε̃t and z̃t are piecewise constant
over (0, L), we obtain

Et(ũt, z̃t) =
∫ L

0
φ̂(ε̃t, z̃t)dx = θtLφ̂(ε̃M, 1) + (1− θt)Lφ̂(ε̃A, 0). (81)

Combining (80) and (81), we get the value of the total energy of the system

Pt(ũt, z̃t) = θtLφ̂(ε̃M, 1) + (1− θt)Lφ̂(ε̃A, 0) + R̂(1)θtL. (82)

It remains to establish the total work done by external forces during the non-homogeneous
evolution. Since the global stress-nominal strain response of the non-homogeneous path
is piecewise linear, it reads∫ t

0
σt∗U̇t∗dt∗ =

1
2

σ̃AM ε̃AL︸ ︷︷ ︸
=φ̂(ε̃A,0)

+θtσ̃AM(ε̃M − ε̃A)L. (83)

The quantities φ̂(ε̃A, 0) and θtσ̃AM(ε̃M − ε̃A) are associated to the linear austenite part and
phase transformation part occurring at constant stress, respectively. The energy balance
condition (E) requires equality between (82) and (83). Rearranging the expression, it leads
to the following equality

φ̂(ε̃M, 1) + R̂(1) = φ̂(ε̃A, 0) + σ̃AM(ε̃M − ε̃A), (84)

which does not involve any time related quantities anymore. The left hand side of (84)
represents the work of external forces by unit of length of the homogeneous response
from 0 to a nominal strain ε̃M. On Fig. 3 (Left), this quantity is represented by the gray
area under the stress-nominal strain curve associated to the homogeneous response. On the
other hand, the right hand side of (84) represents the work of external forces by unit of
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length of the constructed non-homogeneous response from 0 to a nominal strain ε̃M. On
Fig. 3 (Right), this quantity is represented by the gray area under the stress-nominal strain
curve associated to the non-homogeneous response. Requiring equality between these two

Fig. 3. Stress-nominal strain curves. The plain line and the dashed line represent the homoge-
neous (Left) and non-homogeneous response (Right), respectively. Grey areas corresponds to
the work of external forces done in a homogeneous response (Left) and in a non-homogeneous

response (Right) from ε̄ = 0 to ε̄ = ε̃M

energy areas leads to the Maxwell line associated to the homogeneous softening response
of the SMA. To solve (84) and determine the vertical position of the Maxwell line, let us
first remark that

ε̃M − ε̃A = (SM − SA)σ̃AM + p1. (85)

Since the free energy of the beginning and ending states of the non-homogeneous phase
transformation read

φ̂(ε̃M, 1) =
1
2
SMσ̃2

AM + Ĝ(1), φ̂(ε̃A, 1) =
1
2
SAσ̃2

AM + Ĝ(0), (86)

we then obtain in virtue of (84)

(SM − SA)σ̃
2
AM + 2σ̃AMε0 − 2(Ĝ(1) + R̂(1)− Ĝ(0)− R̂(0)) = 0. (87)

Given the Hypothesis 2.4, we have (G+ R)′ > 0. Then, we deduce that Ĝ(1) + R̂(1)−
Ĝ(0)− R̂(0) > 0 and there exists a unique σ̃AM for which (84) holds. Its value is given by

σ̃AM =

√
ε2

0 + 2(SM − SA)(Ĝ(1) + R̂(1))− ε0

SM − SA
. (88)

Therefore, the non homogeneous phase transformation satisfies the energy balance con-
dition during Step 2 if and only if the phase transformation occurs according to the
Maxwell line.
Finally during Step 3, the response of the martensite bar is again linear elastic and homo-
geneous. Thus, the energy balance condition will hold if and only if it holds at the end
of Step 2, which is ensured if the phase transformation occurs according to the Maxwell
line.
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3.4.1. Non-homogeneous backward phase transformation
The same procedure can be applied for the backward phase transformation to con-

struct a non-homogeneous evolution path in case of a stress softening backward phase
transformation. In particular, the stress σ̃MA of the Maxwell line associated to the back-
ward phase transformation reads

σ̃MA =

√
ε2

0 + 2(SM − SA)(Ĝ(1)− R̂(1))− ε0

SM − SA
. (89)

Remark 2. Note that for the non-homogeneous evolution path, if one unloads elastically the bar
during the forward phase transformation (Step 2), the slope of the unloading in the stress-nominal
strain diagram is (θtSA + (1− θt)SM)−1. The slope (θtSA + (1− θt)SM)−1 is simply a rule of
mixture between the Young modulus of the austenite and martensite phases weighted by the vol-
ume fraction of each constituent in the bar. Therefore, on the contrary of the homogeneous response
for which successive elastic unloadings give access to the Young’s modulus Ê(z) for z ∈ [0, 1],
no such specific information can be retrieved from the non-homogeneous response. As a result,
despite being a stable solution of the evolution problem, the study of the non-homogeneous evo-
lution gives few information for the identification of the SMA model parameters. To get rid of
this non-homogeneous behavior, the experimental technique used by [12] consists in stabilizing
the homogeneous branch by reinforcing the SMA tensile specimen by stainless steel bars. In that
case, the global response exhibits hardening and the intrinsic behavior of the SMA can be indeed
extracted. Note that their experimental results agree with the energetic stability criterion: without
the reinforcements, the SMA specimen has a non-homogeneous evolution and the phase transfor-
mation occurs at a constant stress closed to the Maxwell stress of the softening intrinsic curve.

4. CONCLUSIONS

This paper dealts with the modeling of the superelastic response of SMA in a one
dimensional setting. Departing from the class of rate-independent models with a scalar
internal variable, the derivation of the model of SMA is based on a thermodynamic work
principle. This leads to a standard evolution for which the phase transformation criterion
is of an energy release inequality type. Upon an appropriate change of internal variable,
the model depends on three material scalar functions of the internal variable and one
material scalar parameter.
The quasi-static evolution problem is formulated in terms of a stability criterion (S) and
an energy balance condition (E). The stability criterion consists in selecting, at a given
loading, the states that ensure a local minimality condition. The energy balance conditions
enforces the total energy of the system to be an absolutely continuous function of time.
Based on the stability criterion, it was shown that the homogeneous phase transformation
is stable for stress-hardening materials. However, this stability of the homogeneous states
is lost for stress-softening materials. In this case, a stable evolution path that satisfies both
(S) and (E) consists in a non-homogeneous evolution that follows the Maxwell line of the
softening intrinsic behavior. Specifically, such a phase transformation field consists in a
bar which is partially transformed in martensite with a sharp martensite-austenite front.
In particular, the phase front is moving at the rate of the loading. All these results are
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consistent with those of [16] in the case of non-linear elasticity and hence, this energetic
framework might be a good candidate to study the stability of SMA structures in more
complex cases.
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