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Abstract. This paper is concerned with the propagation of Rayleigh waves in a compress-
ible pre-stressed elastic half-space coated with a thin compressible pre-stressed elastic
layer. The main purpose of the paper is to establish an approximate formula for the H/V
ratio (the ratio between the amplitudes of the horizontal and vertical displacements of
Rayleigh waves at the traction-free surface of the layer). First, the relations between the
traction amplitude vector and the displacement amplitude one of Rayleigh waves at two
sides of the interface between the layer and the half-space are created. From the conti-
nuity condition at the interface and these relations the displacement amplitude vector of
Rayleigh waves at the interface is determined. Then, a third-order approximate formula
for the H/V ratio has been derived by expanding the layer displacement amplitude vector
at its traction-free surface into Taylor series at the interface. It is shown numerically that
the obtained formula is a good approximate one.

Keywords: Rayleigh waves, the H/V ratio, compressible, pre-stressed, approximate for-
mula for the H/V ratio.

1. INTRODUCTION

As addressed by Junge et al. [1], the H/V ratio (the ratio between the amplitudes of
the horizontal and vertical displacements of Rayleigh waves at the traction-free surface of
half-spaces) is more sensitive than the Rayleigh wave velocity as an indicator of the state
of stress, and, in contrast with the Rayleigh wave velocity, it is reference free. Therefore,
the H/V ratio of Rayleigh waves is a convenient tool for nondestructively evaluating
pre-stress of structures before and during loading. For extracting the pre-stress from
the experimentally measured values of the H/V ratio (the inverse problem) we need an
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explicit formula for the H/V ratio which is the mathematical base for solving the inverse
problem.

While a large number of explicit formulas for the Rayleigh wave velocity have been
derived, see for examples, [2–14], a few of formulas for the H/V ratio have been ob-
tained. These are the H/V ratio formulas for an isotropic compressible half-space with
traction-free surface [15], for an isotropic compressible half-space subject to an impedance
boundary condition [15], for an isotropic compressible half-space coated by an isotropic
compressible half-space layer [15] and for an isotropic incompressible half-space coated
by an isotropic incompressible half-space layer [16].

In this paper, an approximate formula for the H/V ratio of third-order in terms of
dimensionless thickness of the layer has been established. This formula is derived by
using the relations between the traction and displacement amplitude vectors of Rayleigh
waves at two sides of the welded interface between the layer and the half-space, along
with the Taylor expansion of the displacement amplitude vector of the thin layer at its
traction-free surface. It is shown numerically that the obtained approximate formula
is a good approximation. As the structures of a thin film attached to solids, modeled
as half-spaces coated with a thin layer, are widely used in the modern technology, the
obtained approximate formula is significant in nondestructively evaluating pre-stress of
structures.

It is also note that the H/V ratio is an important parameter which reflects funda-
mental properties of the elastic material [15], it can be thus used for the nondestructive
evaluation of the elastic constants of material [17], beside its well-known applications in
seismology [18, 19].

2. RELATIONS BETWEEN THE TRACTION AND DISPLACEMENT AMPLITUDE
VECTORS AT TWO SIDES OF THE INTERFACE

2.1. Basic equations for a compressible pre-stressed elastic layer in matrix form
In the deformed configuration, we consider a compressible pre-stressed elastic layer

−h ≤ x2 ≤ 0 of uniform thickness h overlying a compressible pre-stressed half-space
x2 ≥ 0. Both the layer and the half-space are subject to a pure homogeneous pre-strain
(see, Dowaikh & Ogden [3] and Ogden [4]) and the principal directions of pre-strain of
the layer and half-space are aligned, one direction being normal to the planar interface
x2 = 0. Note that a rectangular Cartesian coordinate system x1, x2, x3 is employed with
its axes coinciding with the principal directions of the pre-strain. The principal stretches
of the initial deformation of the half-space and the layer are denoted by λ1, λ2, λ3 and
λ̄1, λ̄2, λ̄3, respectively. They are positive constants. The layer is assumed to be perfectly
bonded to the half-space. Note that quantities related to the half-space and the layer
have the same symbol but are systematically distinguished by a bar if pertaining to the
layer. An incremental (infinitesimal) motion in the x1, x2-plane is now superimposed on
the underlying initial deformations, with its displacement components in the half-space
and the layer being independent of x3 and denoted by u1, u2 and ū1, ū2, respectively.
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For the layer, in the absence of body forces the equations of motion governing infin-
itesimal motion are [3, 4]

s̄11,1 + s̄21,2 = ρ̄ ¨̄u1 ,

s̄12,1 + s̄22,2 = ρ̄ ¨̄u2 ,
(1)

where ρ̄ is the mass density of material at the static deformed state, a superposed dot
signifies differentiation with respect to t, commas indicate differentiation with respect to
spatial variables xk, and

s̄ji = Ājilkūk,l , (2)

Āijkl are components of the fourth-order elasticity tensor defined as follows [3, 4]

J̄ Āiijj = λ̄iλ̄j
∂2W̄

∂λ̄i∂λ̄j
, (3)

J̄ Āijij =


(λ̄i

∂W̄
∂λ̄i
− λ̄j

∂W̄
∂λ̄j

)
λ̄2

i
λ̄2

i − λ̄2
j
, (i 6= j, λi 6= λj)

1
2
( J̄ Āiiii − J̄ Āiijj + λ̄i

∂W̄
∂λ̄i

) (i 6= j, λ̄i = λ̄j)

(4)

J̄ Āijji = J̄ Ājiij = J̄ Āijij − λ̄i
∂W̄
∂λ̄i

(i 6= j), (5)

with i, j ∈ {1, 2, 3} , W̄ = W̄(λ̄1, λ̄2, λ̄3) is the strain-energy function per unit volume in
unstressed state, J̄ = λ̄1λ̄2λ̄3.

In the stress-free configuration (3)–(5) reduce to

Āiiii = λ̄ + 2µ̄, Āiijj = λ̄, Āijij = Āijji = µ̄, (6)

where λ̄, µ̄ are the Lame moduli. For simplicity, we use the notations

ᾱ11 = Ā1111, ᾱ22 = Ā2222, ᾱ12 = ᾱ21 = Ā1122,

γ̄1 = Ā1212, γ̄2 = Ā2121, γ̄∗ = Ā2112,
(7)

(which are different from those defined by [3] by a factor J). In terms of these notations
Eq. (2) becomes

s̄11 = ᾱ11ū1,1 + ᾱ12ū2,2 ,
s̄22 = ᾱ12ū1,1 + ᾱ22ū2,2 ,

s̄12 = γ̄1(ū2,1 + γ̄∗ū1,2) ,

s̄21 = γ̄∗(ū2,1 + γ̄2ū1,2) .

(8)

From the strong-ellipticity condition, ᾱik and γ̄k are required to satisfy the inequalities
[4, 13]

ᾱ11 > 0, ᾱ22 > 0, γ̄1 > 0, γ̄2 > 0. (9)
Substituting (8) into (1) leads

ᾱ11ū1,11 + γ̄2ū1,22 + (ᾱ12 + γ̄?)ū2,12 = ρ̄ ¨̄u1 ,

(ᾱ12 + γ̄?)ū1,12 + γ̄1ū2,11 + ᾱ22ū2,22 = ρ̄ ¨̄u2 .
(10)
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From (8) and (10), we have [
Ū′

T̄′

]
=

[
M1 M2
M3 M4

] [
Ū
T̄

]
, (11)

where Ū =
[
ū1 ū2

]T , T̄ =
[
s̄21 s̄22

]T, the symbol “T” indicates the transpose of a ma-
trix, the prime signifies differentiation with respect to x2 and

M1 =

[
0 −r2∂1
−r1∂1 0

]
, M2 =


1

γ̄2
0

0
1

ᾱ22

 ,

M3 =

[
r3∂2

1 + ρ̄∂2
t 0

0 r4∂2
1 + ρ̄∂2

t

]
, M4 = MT

1 ,

(12)

here we introduce the natations ∂1 = ∂/∂x1, ∂2
1 = ∂2/∂x2

1, ∂2
t = ∂2/∂x2

t .

r1 =
ᾱ12

ᾱ22
, r2 =

γ̄∗
γ̄2

, r3 = − ᾱ11ᾱ22 − ᾱ2
12

ᾱ22
, r4 = − γ̄1γ̄2 − γ̄2

∗
γ̄22

. (13)

Eq. (11) is called the matrix equation for a compressible pre-stressed elastic layer in
plane strain.

2.2. Stroh formalism for a compressible pre-stressed elastic layer
Now we consider the propagation of a plane wave traveling in the x1-direction with

velocity c (> 0) and wave number k (> 0). Then, the displacement components of the
wave in the layer are sought in the form

ūn = Ūn(y)eik(x1−ct), σ̄n2 = ikΣ̄n(y)eik(x1−ct), n = 1, 2, y = k x2. (14)

Substituting (14) into (11) yields

ξ̄ ′ = iNξ̄, y ∈ [−ε, 0], ε = kh, (15)

where the prime signifies differentiation with respect to y and

ξ̄ =

[
Ū
Σ̄

]
, Ū =

[
Ū1
Ū2

]
, Σ̄ =

[
Σ̄1
Σ̄2

]
, N =

[
N1 N2
N3 N4

]
, (16)

in which the matrices Nk are given by

N1 =

[
0 −r2
−r1 0

]
, N2 =


1

γ̄2
0

0
1

ᾱ22

 , N3 =

[
r3 + X̄ 0

0 r4 + X̄

]
, N4 = NT

1 , (17)

where X̄ = ρ̄c2. Eq. (15) is called Stroh’s formalism [20] for an orthotropic elastic layer.
From (15) it follows

ξ̄(n) = inNn ξ̄, Nn :=

[
N(n)

1 N(n)
2

N(n)
3 N(n)

4

]
, y ∈ [−ε, 0], n = 1, 2, 3, . . . (18)
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2.3. Relations between the traction and displacement amplitude vectors at two sides
of the interface
Let ε := kh be small (i.e., the layer is thin), then expanding into Taylor series ξ̄(−ε)

at y = 0 up to the third-order yields

ξ̄(−ε) = ξ̄(0)− εξ̄
′
(0) +

ε2

2
ξ̄
′′
(0)− ε3

6
ξ̄
′′′
(0). (19)

Substituting (18) into (19), we have

ξ̄(−ε) =

[
I − εiN − ε2

2
N2 +

ε3

6
iN3

]
ξ̄(0). (20)

Eq. (20) can be written
Ū(−ε) = AŪ(0) + BΣ̄(0), (21)

Σ̄(−ε) = CŪ(0) + DΣ̄(0), (22)
where

A =

 1− ε2

2
(r6 + X̄/γ̄2) i(εr2 −

ε3

6
(t5 + t6X̄))

i(εr1 −
ε3

6
(t1 + t2X̄)) 1− ε2

2
(r8 + X̄/ᾱ22)

 ,

B =

i
[
− 1

γ̄2
+

ε3

6
(t9 + X̄/γ̄2

2)
] ε2

2
(

r1

γ̄2
+

r2

ᾱ22
)

ε2

2
(

r1

γ̄2
+

r2

ᾱ22
c) i

[
− ε

ᾱ22
+

ε3

6
(t10 + X̄/ᾱ2

22)
]
 ,

C =

i
[
−ε(r3 + X̄)+

ε3

6
(t3+t4X̄+

X̄2

γ̄2
)
] ε2

2
(r7 + r5X̄)

ε2

2
(r7+r5X̄) i

[
− ε(r4 + X̄)+

ε3

6
(t7+t8X̄+

X̄2

ᾱ22
)
]
 ,

D =

1− ε2

2
(r6 +

X̄
γ̄2

) iεr1

iεr2 1− ε2

2
(r8 +

X̄
ᾱ22

)

 ,

(23)

with

r5 = r1 + r2, r6 =
r3

γ̄2
+ r1r2, r7 = r2r3 + r1r4, r8 =

r4

ᾱ22
+ r1r2,

t3 = r1r7 + r3r6, t4 =
r3

γ̄2
+ r1r5 + r6, t7 = r2r7 + r4r8, t8 =

r4

ᾱ22
+ r2r5 + r8,

(24)

At the surface x2 = −h of the layer, the traction is free: Σ̄(−ε) = 0, so that (22) can
written as

CŪ(0) + DΣ̄(0) = 0. (25)
The (25) is the relation between the traction and displacement amplitude vectors at layer-
side of the interface y = 0.
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According to Ogden and Vinh [5], the displacement components of Rayleigh waves
in the half-space are given by

un = Un(y)eik(x1−ct), σn2 = ikΣn(y)eik(x1−ct), n = 1, 2 (26)

where
U1(y) = B1e−b1y + B2e−b2y, U2(y) = i(α1B1e−b1y + α2B2e−b2y), (27)

Σ1(y) = i(β1B1e−b1y + β2B2e−b2y), Σ2(y) = η1B1e−b1y + η2B2e−b2y, (28)
here αk, βk, ηk are defined by

αk =
(α12 + γ∗)bk

α22b2
k − γ1 + X

, k = 1, 2, X = ρc2,

βk = γ2bk + γ∗αk , ηk = α12 − α22αkbk ,
(29)

and b1, b2 are to with positive real parts roots of the equation

γ2α22b4 + {(α12 + γ∗)
2 + α22(X− α11) + γ2(X− γ1)}b2 + (X− α11)(X− γ1) = 0. (30)

From (30), we obtain

b2
1 + b2

2 = − (α12 + γ∗)2 + α22(X− α11) + γ2(X− γ1)

α22γ2
:= S,

b2
1.b2

2 =
(X− α11)(X− γ1)

α22γ2
:= P.

(31)

It is not difficult to verify that if a Rayleigh wave exists (b1, b2 having positive real parts)
then

0 < X < min{α11, γ11}, P > 0, S + 2
√

P > 0, b1.b2 =
√

P, b1 + b2 =

√
S + 2

√
P. (32)

Taking x2 = 0 in (27) and (28) gives

U1(0) = B1 + B2, U2(0) = i(α1B1 + α2B2),

Σ1(0) = i(β1B1 + β2B2), Σ2(0) = η1B1 + η2B2.
(33)

Eliminating B1, B2 from Eqs. (33) we have

Σ(0) = HU(0), H =

i
[α; β]

[α]

[β]

[α]
[α; η]

[α]
−i

[η]

[α]

 , (34)

where
[α, β]

[α]
=

γ2(α11 − X)(b1 + b2)

α11 − X + γ2b1b2
,

[η]

[α]
=

γ2α22b1b2(b1 + b2)

α11 − X + γ2b1b2
,

[β]

[α]
=

γ∗(α11 − X)− γ2α12b1b2

α11 − X + γ2b1b2
,

[α, η]

[α]
= − [β]

[α]
.

(35)

Here, for the seeking of simplicity, we use the notations

[ f ; g] = f2g1 − f1g2, [φ] = φ2 − φ1. (36)
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Eq. (34) is the relation between the traction and displacement amplitude vectors at the
half-space-side of the interface y = 0.

3. AN APPROXIMATE FORMULAS FOR THE H/V RATIO

The layer and half-space are taken to be bonded along the interface y = 0, so that the
displacement and traction are continuous across the interface. Thus,

Ū(0) = U(0), Σ̄(0) = Σ(0). (37)

Substituting (34) into (21), (25) and taking into account (37) leads to

Ū(−ε) = QU(0), Q = A + BH,

ZU(0) = 0, Z = C + DH,
(38)

where

Q11 = 1 + ε
{ 1

γ̄2

[α, β]

[α]

}
+

ε2

2

{
r6 +

X̄
γ̄2
−
(

r1

γ̄2
+

r2

ᾱ22

)
[β]

[α]

}
− ε3

6

{(
t9 +

X̄
γ̄2

2

)
[α, β]

[α]

}
,

Q12 = i
[

ε
{

r2 −
1

γ̄2

[β]

[α]

}
− ε2

2

{( r1

γ̄2
+

r2

ᾱ22

)
[η]

[α]

}
+

ε3

6

{
−t5 − t6X̄ +

(
t9 +

X̄
γ̄2

2

) [β]
[α]

}]
,

Q21 = i
[

ε

{
r1+

1
ᾱ22

[β]

[α]

}
+

ε2

2

{(
r1

γ̄2
+

r2

ᾱ22

)
[α, β]

[α]

}
− ε3

6

{
t1+t2X̄+

(
t10+

X̄
ᾱ2

22

)
[β]

[α]

}]
,

Q22 = 1− ε
{ 1

ᾱ22

[η]

[α]

}
+

ε2

2

{
−r8 −

X̄
ᾱ22

+

(
r1

γ̄2
+

r2

ᾱ22

)
[β]

[α]

}
+

ε3

6

{(
t10 +

X̄
ᾱ2

22

)
[η]

[α]

}
,

(39)
and

Z11 = i
[
[α, β]

[α]
− ε

{
r3 + X̄ + r1

[β]

[α]

}
− ε2

2

{(
r6 +

X̄
γ̄2

)
[α, β]

[α]

}
+

ε3

6

{
t3 + t4X̄ +

X̄2

γ̄2

}]
,

Z12 =
[β]

[α]
+ ε
{

r1
[η]

[α]

}
+

ε2

2

{
r7 + r5X̄−

(
r6 +

X̄
γ̄2

)
[β]

[α]

}
,

Z21 = − [β]

[α]
− ε
{

r2
[α, β]

[α]

}
+

ε2

2

{
r7 + r5X̄ +

(
r8 +

X̄
ᾱ22

)
[β]

[α]

}
,

Z22 = i
[
[η]

[α]
+ ε

{
−r4 − X̄ + r2

[β]

[α]

}
+

ε2

2

{(
r8 +

X̄
γ̄2

)
[η]

[α]

}
+

ε3

6

{
t7 + t8X̄ +

X̄2

ᾱ22

}]
.

(40)
From (38) and (40), it follows

χ :=
∣∣∣∣ ū1(−h)
ū2(−h)

∣∣∣∣ = ∣∣∣∣ Ū1(−ε)

Ū2(−ε)

∣∣∣∣ = ∣∣∣∣Q12Z11 −Q11Z12

Q22Z11 −Q21Z12

∣∣∣∣ , (41)

where Z11, Z12 are defined by (40), elements of matrix Q are defined by (39). Note that,
due to |Z| = 0, therefore χ can be given by an alternative formula

χ :=
∣∣∣∣Q12Z21 −Q11Z22

Q22Z21 −Q21Z22

∣∣∣∣ . (42)



70 Nguyen Thi Khanh Linh, Pham Chi Vinh, Le Thi Hue

After some manipulations, we arrive at the desired approximate formula of third order
for the H/V ratio, namely

χ =

∣∣∣∣∣∣∣∣
A0 + A1ε + A2

ε2

2
+ A3

ε3

6
+ O(ε4)

B0 + B1ε + B2
ε2

2
+ B3

ε3

6
+ O(ε4)

∣∣∣∣∣∣∣∣ . (43)

where

A0 = − [β]

[α]
,

A1 = −r2
[α, β]

[α]
− r1

[η]

[α]
,

A2 = 2r2r3 − r7 + (2r2 − r5)X̄ + 4r1r2
[β]

[α]
+

(
r2

ᾱ22
− r1

γ̄2

)
[β]2 + [α, β][η]

[α]2
,

A3 = 3
[
r2

1r2−
r2(r3 + X̄)

ᾱ22

]
[η]

[α]
+

[
t5 + 3r2r6+t6X̄+3

−r7+(r2 − r5)X̄
γ̄2

]
[α; β]

[α]
,

(44)

B0 =
[α, β]

[α]
,

B1 = −r3 − X̄− 2r1
[β]

[α]
− 1

ᾱ22

[β]2 + [α, β][η]

[α]2
,

B2 = −
[

r6 + r8 + X̄
( 1

ᾱ22
+

1
γ̄2

)] [α, β]

[α]
+ 2

(
r3 + X̄

ᾱ22
− r2

1

)
[η]

[α]
,

B3 = t3 + 3(r3r8 − r1r7) +

(
t4 + 3r8 − 3r1r5 +

3r3

ᾱ22

)
X̄ +

(
3

ᾱ22
+

1
γ̄2

)
X̄2

+3
(
r1

[
r6 +

X̄
γ̄2

]
− r7 + r5X̄

ᾱ22
+r1

[
r8+

X̄
ᾱ22

]
−
[r1

γ̄2
+

r2

ᾱ22

]
(r3+X̄) +

t1+t2X̄
3

) [β]
[α]

+

(
t10 − 3r1

[
r1

γ̄2
+

r2

ᾱ22

]
+

3
ᾱ22

[
r6 +

X̄)

γ̄2

]
+

X̄
ᾱ2

22

)
[β]2 + [α, β][η]

[α]2
.

(45)

In the dimensionless form Eq. (43) is of the form

χ =

∣∣∣∣∣∣∣∣
Ā0 + Ā1ε + Ā2

ε2

2
+ Ā3

ε3

6
+ O(ε4)

B̄0 + B̄1ε + B̄2
ε2

2
+ B̄3

ε3

6
+ O(ε4)

∣∣∣∣∣∣∣∣ . (46)

in which the coefficients Āk, B̄k (k = 0, 1, 2, 3) are given by (63) in Appendix and they
depend on the following dimensionless parameters

e1 =
α11

γ1
, e2 =

α22

γ1
, e3 =

α12

γ1
, ē1 =

ᾱ11

γ̄1
, ē2 =

γ̄1

ᾱ22
, ē3 =

ᾱ12

γ̄1
,

c2 =

√
γ1

ρ
, c̄2 =

√
γ̄1

ρ̄
, rv =

c2

c̄2
, x =

X
c66

, x̄ =
X̄
γ̄1

, x̄ = r2
vx.

(47)
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It is clear that the H/V ratio χ depends on 9 dimensionless parameters: ek, ēk(k = 1, 2, 3),
rµ, rv and ε which are subjected the inequalities [21]

ek > 0, ēk > 0 (k = 1, 2), e1e2 − e2
3 > 0, ē1/ē2 − ē2

3 > 0. (48)

Note that the H/V ratio χ depends on the dimensionless Rayleigh wave velocity x that
is a solution of the secular equation (35) in [21] and it depend also on 9 dimensionless
parameters mentioned above.

When ε = 0, from (43) we have

χ =

∣∣∣∣ Ā0

B̄0

∣∣∣∣ = ∣∣∣∣ [β]

[α; β]

∣∣∣∣ . (49)

On the other hand, from (34) and Σ(0) = 0 we have |H| = 0, i.e.,

[β]2 + [α; β][η] = 0. (50)

Using of (50) we have

χ2 =
[β]2

[α; β]2
= − [η]

[α; β]
=

α22b1b2

α11 − X
=

√
α22

γ2

√
γ1 − X
α11 − X

. (51)

When the half-spaces the half-space is isotropic, formula (51) is simplified to

χ = 4

√
1− x

1− γx
, γ =

µ

λ + 2µ
. (52)

Eq. (52) is Eq. (12) in [15].
When the layer and the half-space are both unstressed isotropic

γ1 = γ2 = γ∗ = µ, α11 = α22 = λ + 2µ, α12 = λ, γ =
µ

λ + 2µ
,

γ̄1 = γ̄2 = γ̄∗ = µ̄, ᾱ11 = ᾱ22 = λ̄ + 2µ̄, ᾱ12 = λ̄, γ̄ =
µ̄

λ̄ + 2µ̄
.

(53)

With the help of (53) and (47) one can show that

x =
ρc2

µ
, e1 = e2 =

1
γ

, e3 =
1
γ
− 2, e4 = e5 = 1, c2 =

√
µ

ρ
, c̄2 =

√
µ̄

ρ̄
,

ē1 =
1
γ̄

, ē2 = γ̄, ē3 =
1
γ̄
− 2, ē4 = ē5 = 1, rµ =

µ

µ̄
, rv =

c2

c̄2
, x̄ = r2

vx,

S = 2− (1 + γ)x, P = (1− γx)(1− x),
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The H/V ratio is defined by Eq. (46) with Ai and Bi (i = 0, 1, 2, 3) are given by

Ā0 = − 1
rµ

1− γx− (1− 2γ)
√

P
1− γx + γ

√
P

,

Ā1 = − 1
rµ

[
(1− γx)

√
S + 2

√
P

1− γx + γ
√

P
− (1− 2γ̄)

√
S + 2

√
P
√

P
1− γx + γ

√
P

]
,

Ā2 = 4(γ̄− 1) + 2γ̄r2
vx− 4(1− 2γ̄)

rµ

1− γx− (1− 2γ)
√

P
1− γx + γ

√
P

+
3γ̄− 1

r2
µ

[1− γx− (1− 2γ)
√

P]2 − (1− γx)(S + 2
√

P)
√

P
[1− γx + γ

√
P]2

,

Ā3 =
1
rµ

[
3(γ̄r2

vx− 1)

√
S + 2

√
P
√

P
1− γx+γ

√
P
+[(5γ̄−1)r2

vx− 4γ̄]
(1−γx)

√
S+2
√

P
1−γx+γ

√
P

]
,

(54)

and

B̄0 =
1
rµ

(1− γx)
√

S + 2
√

P
1− γx + γ

√
P

,

B̄1 = −4(γ̄− 1)− r2
vx− 2(1− 2γ̄)

rµ

1− γx− (1− 2γ)
√

P
1− γx + γ

√
P

− γ̄

r2
µ

[1− γx− (1− 2γ)
√

P]2 − (1− γx)(S + 2
√

P)
√

P
[1− γx + γ

√
P]2

,

B̄2 =
1
rµ

[
[2−(1 + γ̄)r2

vx]
(1−γx)

√
S + 2

√
P

1− γx + γ
√

P
+ 2(1−γ̄r2

vx)

√
S+2
√

P
√

P
1−γx+γ

√
P

]
,

B̄3 = 8(γ̄− 1) + (1 + 3γ̄)r4
vx2 + 4(γ̄2 − 2)r2

vx

+
(−2γ̄2 − 6γ̄ + 1)r2

vx + 4γ̄ + 3
rµ

1− γx− (1− 2γ)
√

P
1− γx + γ

√
P

+
−2γ̄− 2+(γ̄2+3γ)r2

vx
r2

µ

[1−γx−(1−2γ)
√

P]2−(1−γx)(S + 2
√

P)
√

P
[1− γx + γ

√
P]2

.

(55)

4. NUMERICAL RESULTS

We consider the case of isotropic pre-strains (equibiaxial deformation), where (see
[22, 23])

λ1 = λ2 = λ, λ̄1 = λ̄2 = λ̄. (56)
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From (3)–(6), we have

α11 = α22 =
∂2W
∂λ2

1
,

γ1 = γ2 =
1
2

(∂2W
∂λ2

1
− ∂2W

∂λ1∂λ2
+

1
λ

∂W
∂λ

)
,

γ∗ =
1
2

(∂2W
∂λ2

1
− ∂2W

∂λ1∂λ2
− 1

λ

∂W
∂λ1

)
,

(57)

for the half-space and there are similar expressions for the layer. The continuity of the
normal stress (see [22]) implies that

λ̄λ̄3
∂W
∂λ2

= λλ3
∂W̄
∂λ2

. (58)

4.1. A compressible neo-Hookean material
We consider the strain-energy function given by (see [23])

W =
1
2
(λ−2

1 + λ−2
2 + λ−2

3 − 3− 2ln(λ1λ2λ3)), (59)

for the half-space and similarly for the layer.
From (56)–(58) and taking into account (47), we have

e1 = e2 =
λ2 + 1

λ2 , e3 = ē3 = 0, e4 =
1

λ2 , e5 = ē5 = 1, ē1 =
λ̄2 + 1

λ̄2 ,

ē2 =
1
ē1

, ē4 =
1

λ̄2 , λ̄2 =
λ2

λ2 + r(1− λ2)
rµ =

1
r

, rv =
√

R(λ2 + r(1− λ2)).
(60)

4.2. A Blatz–Ko material
We now consider the strain-energy function for the half-space given by (see [23])

W =
1
2
(λ−2

1 + λ−2
2 + λ−2

3 + 2λ1λ2λ3 − 5), (61)

and similarly for the layer.
From (56)–(58) and taking into account (47), we have

e1 = e2 = ē1 = 3, e3 = λ4, e4 = 2− λ4, e5 = 1, , ē2 = 1/ē1, ē4 = 2− λ̄4, ē5 = 1,

λ̄4 =
λ4

λ4 + r(1− λ4)
, r2

v =
R√

λ4 + r(1− λ4)
, r =

µ

µ̄
, R =

µρ̄λ̄2

µ̄ρλ2 .
(62)

Figs. 1, 2 present the dependence on ε ∈ [0, 1] of the H/V ratio that is calculated by
the exact formulas and by the third-order approximate formula (46) for the neo-Hookean
strain-energy function and the Blatz–Ko strain-energy function. It is shown from the
Fig. 1 and Fig. 2 that the obtained third-order approximate formula for the H/V ratio is a
good approximation.
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Fig. 2. Plots of χ calculated by the approximate secular equation of third-order (dashed line) (46),
and by the exact secular equation

5. CONCLUSIONS

In this paper the propagation of Rayleigh waves in a pre-stressed elastic half-space
coated by a thin pre-stressed elastic layer is investigated. An approximate formula for the
H/V ratio of third-order in terms of dimensionless thickness of the layer has been estab-
lished by using the relations between the traction and displacement amplitude vectors of
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Rayleigh waves at two sides of the welded interface between the layer and the half-space.
It is shown numerically that the obtained approximate formula is a good approximation.
It will be employed as theoretical base for extracting the mechanical properties of thin
films from measured values of the H/V ratio.
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APPENDIX
The expressions of Āk, B̄k(k = 0, 1, 2, 3)

Ā0 =
1
rµ

e5e3
√

P− e4(e1 − x)
e1 − x + e5

√
P

,

Ā1 =
1
rµ

e5

√
S + 2

√
P[r1e2

√
P− r2(e1 − x)]

e1 − x + e5
√

P
,

Ā2 = 2r2r̄3 − r̄7 + (2r2 − r5)r2
vx +

4r1r2

rµ

(e4(e1 − x)− e3e5
√

P
e1 − x + e5

√
P

+
r2ē2 − r1ē5

r2
µ

[e4(e1 − x)− e3e5
√

P]2 − e2e2
5(e1 − x)

√
P(S + 2

√
P)

[e1 − x + e5
√

P]2
,

Ā3 =
3(r2ē2[r̄3 + r2

vx]− r2
1r2)

rµ

e2e5
√

P
√

S + 2
√

P
e1 − x + e5

√
P

+
t5 + 3r2r6 − 3ē5r̄7 + (t̄6 + 3r2ē5 − 3ē5r5)r2

vx
rµ

e5(e1 − x)
√

S + 2
√

P
e1 − x + e5

√
P

,

(63)

B̄0 =
1
rµ

e5(e1 − x)
√

S + 2
√

P
e1 − x + e5

√
P

,

B̄1 = −r̄3 − r2
vx− 2r1

rµ

(e4(e1 − x)− e3e5
√

P
e1 − x + e5

√
P

− ē2

r2
µ

[e4(e1 − x)− e3e5
√

P]2 − e2e2
5(e1 − x)

√
P(S + 2

√
P)

[e1 − x + e5
√

P]2
,

B̄2 = − r8 + r6 + (ē2 + ē5)r2
vx

rµ

e5(e1 − x)
√

S + 2
√

P
e1 − x + e5

√
P

+
−2ē2(r̄3 + r2

vx) + 2r2
1

rµ

e2e5
√

P
√

S + 2
√

P
e1 − x + e5

√
P

,

B̄3 = t̄3 + 3r8r̄3 − 3r1r̄7 + (t4 + 3r8 + 3r̄3ē2 − 3r1r5)r2
vx + (ē5 + 3ē2)r4

vx2

+ (
3(r1r6 − r̄7ē2 + r1r8 − r1r̄3ē5 − r2r̄3ē2) + t1

rµ

+
[3(r1ē5 − r5ē2 + r1ē2 − r1ē5 − r2ē2) + t̄2]r2

vx
rµ

).
e4(e1 − x)− e3e5

√
P

e1 − x + e5
√

P
,

+
t̄10 + 3ē2r6 − 3r1(r1ē5 + r2ē2) + (ē2

2 + 3ē2ē5)r2
vx

r2
µ

.
[e4(e1 − x)− e3e5

√
P]2 − e2e2

5(e1 − x)
√

P(S + 2
√

P)
[e1 − x + e5

√
P]2

,

(64)
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and
r1 = ē2ē3, r2 = ē4ē5, r3 = (ē2ē2

3 − ē1)γ̄1 = r̄3γ̄1, r4 = (ē2
4 ē5 − 1)γ̄1 = r̄4γ̄1,

r5 = ē2ē3 + ē4ē5, r6 = (ē2ē2
3 − ē1)ē5 + ē2ē3ē4ē5,

r7 = [ē4ē5(ē2ē2
3 − ē1) + ē1ē2(ē2

4 ē5 − 1)]γ̄1 = r̄7γ̄1, r8 = (ē2
4 ē5 − 1)ē2 + ē2ē3ē4ē5,

t1 = ē2r̄7 + r1r6, t2 =
1

γ̄1
(r5ē2 + r1ē5) =

t̄2

γ̄1
, t3 = (r1r̄7 + r̄3r6)γ̄1 = t̄3γ̄1,

t4 = r̄3ē5 + r1r5 + r6, t5 = r̄7ē5 + r2r8, t6 =
1

γ̄1
(r5ē5 + r2ē2) =

t̄6

γ̄1
,

t7 = (r2r̄7 + r̄4r8)γ̄1 = t̄7γ̄1, t8 = r̄4ē2 + r2r5 + r8,

t9 =
1

γ̄1
([r1r2 + r6]ē5 + r2

2 ē2) =
t̄9

γ̄1
, t10 =

1
γ̄1

(r2
1 ē5 + [r1r2 + r8]ē2) =

t̄10

γ̄1
,

(65)

S =
e2(e1 − x) + e5(1− x)− (e3 + e4)

2

e2e5
, P =

(e1 − x)(1− x)
e2e5

,

b1b2 =
√

P, b1 + b2 =

√
S + 2

√
P,

[α, β]

[α]
= γ1

e5(e1 − x)
√

S + 2
√

P
e1 − x−

√
P

,

[β]

[α]
= −γ1

e1 − x− e3
√

P
x− e1 −

√
P

,
[η]

[α]
= γ1

e2
√

P
√

S + 2
√

P
x− e1 −

√
P

.
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