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Abstract. A seismic fragility curve that shows the probability of failure of a structure in
function of a seismic intensity, for example peak ground acceleration (PGA), is a powerful
tool for the evaluation of the seismic vulnerability of the structures in nuclear engineering
and civil engineering. The common assumption of existing approaches is that the fragility
curve is a cumulative probability log-normal function. In this paper, we propose a new
technique for construction of seismic fragility curves by numerical simulation using the
Probability Density Evolution Method (PDEM). From the joint probability density func-
tion between structural response and random variables of a system and/or excitations,
seismic fragility curves can be derived without the log-normal assumption. The valida-
tion of the proposed technique is performed on two numerical examples.

Keywords: Seismic fragility curve, probability density evolution method, log normal prob-
ability law, reliability, failure.

1. INTRODUCTION

A seismic fragility curve expresses the probability of failure or damage of a struc-
ture or a mechanical system due to earthquakes as a function of a ground motion index;
for instance, peak ground acceleration (PGA), peak ground velocity (PGV), spectral ac-
celeration at a period of interest (PSa), and so on.

Let A be a chosen ground motion index. The fragility curve Fr(a) is seen as the
conditioned probability of failure or a damage state given that A = a

Fr(a) = P[X ≥ x0|A = a], (1)

where the failure or the specific damage state is reached when the structural response
X exceeds a critical limit x0. Seismic hazard, fragility curves and dominant accident
sequences which lead to core damage in a plant are three ingredients for a seismic proba-
bilistic risk assessment (PRA) in nuclear engineering application [1]. Fragility curves are
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also applied to different structural types in the civil engineering field e.g. buildings [2],
bridges [3, 4], special structures: chimney [5], piping systems [6], tunnels [7], highway
and railway embankments and cuts [8], etc. They are useful for the design of a new
structure, and for an existing one they are helpful for seismic retrofitting decisions, dis-
aster response planning and quick loss estimation [9].

Fragility curves can be obtained using one of three approaches: (i) engineering
judgment, (ii) empirical approach, (iii) numerical simulation. These approaches can also
be used conjunctively. This paper focuses on the ways of constructing seismic fragility
curves using numerical simulations, where there are three popular methods (i) scaled
seismic intensity (SSI) [3,9,10], (ii) maximum likelihood estimation (MLE) [11–13] and (iii)
probabilistic seismic demand model/probabilistic seismic capacity model (PSDM/PSCM)
[4,14]. A comparative study on these methods can be found in reference [15]. It should be
noted that most of existing methods are based on the common assumption of log-normal
shape of the curves

Fr(a; Am, β) = Φ
[

ln (a/Am)

β

]
, (2)

where Φ(.) is the standard Gaussian cumulative distribution function while Am and β are
respectively median and logarithmic standard deviation. The log-normal assumption
given in Eq. (2) greatly simplifies the original problem defined in Eq. (1). All existing
methods lead therefore to identify two parameters: Am and β.

Recently, the probability density evolution method (PDEM) has been developed
by Li and Chen [16–20], which was used for dynamic response analysis of structures in-
volving random parameters and stochastic excitations. In this paper, based on PDEM,
we propose a new method for the development of seismic fragility curves. The proposed
method allows to derive the fragility curves without log-normal shape assumption. A
brief background of the PDEM is first described in Section 2. Section 3 is then devoted
to the development of the method for building fragility curves. From analytical formula-
tions, a step-by-step practical procedure of the method is deduced. The validation of the
proposed method is followed in Section 4 with two numerical examples. Finally, some
conclusions on the obtained results and perspectives of this work are given.

2. PROBABILITY DENSITY EVOLUTION METHOD

For the sake of completeness, this section gives a basic presentation of the probabil-
ity density evolution method together with the most relevant properties to the proposed
method for constructing seismic fragility curves. More details of the PDEM can be found
in references [16–20].

A mechanical system after a discretization (by the finite element analysis for in-
stance) can be represented by an equivalent system of n degrees of freedom. Its response
is governed by the following equation

M(Z)ẍ(t) + C(Z)ẋ(t) + K(Z)x(t) = f(Z, t), (3)

where ẍ, ẋ, x are n × 1 acceleration, velocity and displacement vectors while M, C, K
are n× n mass, damping and stiffness matrix, respectively. f is n× 1 load vector and Z
is nZ × 1 vector of nZ random parameters that reflect the uncertainty in excitations, in
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geometry and mechanical properties of structures. In the case of earthquake excitation,
the load vector in Eq. (3) is substituted by

f(Z, t) = −M(Z)iag(Z, t), (4)

where i is the influence vector and ag(Z, t) is ground acceleration.
Assume that random parameters Z are represented by a known probability den-

sity functions pZ (z), where Z = (Z1, Z2, . . . , ZnZ). For a deterministic value of z (a trial
of Z), the corresponding responses x(z, t),ẋ(z, t), ẍ(z, t) of the mechanical system are eas-
ily obtained by a structural dynamic analysis. Li and Chen [16–20] show that the joint
probability density function pXZ(x, z, t) is the solution of the following partial differential
equation

∂pXZ(x, z, t)
∂t

+ ẋ(z, t)
∂pXZ(x, z, t)

∂x
= 0, (5)

where ẋ(z, t) is the velocity obtained by structural dynamic analysis and the initial con-
dition is written as

pXZ(x, z, t) = δ(x− x(t0))pZ(z) pour t = t0, (6)

with δ(·) is the Dirac function. The numerical resolution of Eq. (5) gives the joint prob-
ability density function pXZ(x, z, t) and from this result, it can deduce the probability
density pX(x, t) of the response X(t).

pX(x, t) =
∫

ΩZ
pXZ(x, z, t)dz, (7)

where ΩZ is the domain of distribution of random variables Z.
For the dynamic reliability assessment, it can be treated in associating Eq. (5) with

the boundary condition reflecting the failure domain Ω f

pXZ(x, z, t) = 0 si x ∈ Ω f , (8)

Ω f is in general defined via a limit-state function

G(z, t) = (x0 − |x(z, t)|) ≤ 0. (9)

The resolution of Eq. (5) with the initial condition in Eq. (6) and the absorbing bound-
ary condition in Eq. (8) provides the joint probability density of X and Z, denoted as
p̆XZ(x, z, t). It should note that the joint probability p̆XZ(x, z, t) is defined by X and Z, in
which X is limited in the safety domain Ωs. So p̆XZ(x, z, t) can be called the joint proba-
bility density in safety domain and the dynamic reliability can be deduced by

R(t) =
∫

Ωs

∫
ΩZ

p̆XZ(x, z, t)dxdz. (10)

3. SEISMIC FRAGILITY CURVE BASED ON PDEM

3.1. Analytical development
To facilitate the writing of formulas, the vector of random parameters defined in

section 2 is separated into two parts (i) a random variable characterizing the seismic
intensity (the peak ground acceleration (PGA) used in this study), denoted by A and
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(ii) other random variables Z. This new notation implies the unknown of the problem in
Eq. (5) is pXZA(x, z, a, t).

The joint probability density function conditioned by safety domain p̆XZA(x, z, a, t)
is determined by the resolution of the problem in Eq. (5) with the initial condition in
Eq. (6) and the absorbing boundary condition in Eq. (8).

The probability density of the seismic intensity A in the safety domain Ωs is eval-
uated by the integral

p̆A(a, t) =
∫

Ωs

∫
ΩZ

p̆XZA(x, z, a, t)dzdx. (11)

As the failure domain Ω f and the safety domain Ωs are disjoint, the probability density
in failure domain p̂A(a, t) can be obtained by

p̂A(a, t) = pA(a)− p̆A(a, t), (12)

where pA(a) is the initial probability distribution of random parameter A that is assumed
invariable in time. Note that p̂A(a, t) means the joint probability density of the event
X ≥ x0 and the event a ≤ A ≤ a + da at time t. The joint probability is evaluated by
its density

P [X ≥ x0, a ≤ A ≤ a + da, t] = p̂A(a, t)da, (13)

and

P [a ≤ A ≤ a + da] = pA(a, t)da. (14)

According to the definition in Eq. (1), instantaneous fragility curve Fr(a; t) is the
conditional probability P [X ≥ x0|A = a, t]. It can be calculated through the Bayes’s rela-
tion as

Fr(a; t) = [X ≥ x0|A = a, t] ≈ P [X ≥ x0|a ≤ A ≤ a + da, t]

=
P[X ≥ x0, a ≤ A ≤ a + da, t]

P[a ≤ A ≤ a + da]
.

(15)

In substituting Eq. (13) and Eq. (14) into Eq. (15), instantaneous fragility is thus
obtained by

Fr(a; t) =
p̂A(a, t)da
pA(a, t)da

=
p̂A(a, t)
pA(a, t)

= 1− p̆A(a, t)
pA(a)

. (16)

From Eq. (16), it is possible to build a fragility surface Fr(a, t). Because the fragility curve
is considered for the whole earthquake duration, thus we propose to take the maximum
value of Fr(a, t) in time t

Fr(a) = max
t

Fr(a; t). (17)

3.2. Practical procedure
To facilitate the application, the proposed method is presented by a step-by-step

practical procedure. It consists in two main steps bellow:
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Step 1. Determine the joint probability density function p̆XZA(x, z, a, t)
• Discretize the random variables Z and A from their known probability density

functions, to obtain representative points z and a.
• Analyze the dynamic response of structures (by finite element method for in-

stance), for each pair of values z and a. The response velocity ẋ(z, a, t) is to
retrieve.
• Solve the partial differential equation in Eq. (5) with the initial condition in

Eq. (6) and the boundary condition in Eq. (8) to obtain p̆XZA(x, z, a, t). The
numerical scheme TVD (Total Variation Diminishing) can be used as suggested
by Li and Chen [16, 18].

Step 2. Build the fragility curve Fr(a)
• Compute p̆A(a, t) by the integral given in Eq. (11).
• Deduce the fragility surface Fr(a, t) according to Eq. (16).
• Obtain the fragility curve Fr(a) according to Eq. (17).

4. APPLICATIONS

The practical procedure is now applied for two numerical examples: non-linear
oscillators and a non-linear steel frame. Time ground accelerations were either synthetic
or real data. In the case of oscillators they were generated using the Boore’s model [21]
while they were real records in the case of frame example.

4.1. Synthetic ground motion histories
The stochastic method proposed by Boore [21] assumes that ground motion is dis-

tributed with random phase over a time duration related to earthquake size and propa-
gation distance. The ground motion is characterized by its spectrum - this is where the
physics of earthquake process and wave propagation are contained, usually encapsu-
lated and put into the form of simple equations. The total spectrum of the motion at a
site S(M0, R, f ) is considered as a combination of earthquake source (E), path (P), site (G)
and type of motion (I).

S(M0, R, f ) = E(M0, f )P(R, f )G( f )I( f ), (18)

where M0 is the seismic moment that is related to the seismic magnitude M by

M =
2
3

log M0 − 10, (19)

R is the distance from source to site and f is frequency. The source E(M0, f ): is based on
the source spectral shape AS00 [22]. The path P(R, f ) accounts the effects of geometrical
spreading, attenuation and the increase of duration with distance due to wave propaga-
tion and scattering. The site G( f ) accounts the effects due to local site geology and is
separated to amplification A( f ) and attenuation D( f ): G( f ) = D( f )A( f ). The motion
type I( f ) for acceleration is defined as I( f ) = (2π f )2.

Given the spectrum motion at a site, Boore [21] suggest the simulation of ground
motions by 6 steps: (i) white noise (Gaussian or uniform) is generated for a duration
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given by the duration of the motion; (ii) this noise is then windowed; (iii) the win-
dowed noise is transformed into frequency domain; (iv) the spectrum is normalized by
the square-root of the mean square amplitude spectrum; (v) the normalized spectrum
is multiplied by the ground motion spectrum S(M0, R, f ); (vi) the resulting spectrum is
transformed back to time domain to obtain a time history of ground motions.
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Fig. 1. Simulated ground acceleration with Boore’s model (M = 7 and R = 9 km)

In order to generate time acceleration series for the numerical examples, we imple-
mented the stochastic method in Matlab software [23]. Fig. 1 shows an acceleration time
series of the model for magnitude M = 7 and R = 9 km.

4.2. Non-linear oscillators
A Bouc-Wen non-linear oscillator used in reference [10] and a Coulomb non-linear

oscillator were considered here.

Bouc-Wen : ẍ(t) + 2ζω0 ẋ(t) + ω2
0(αx(t) + (1− α)w(t)) = −a(t), (20)

with ẇ(t) = C1 ẋ(t)− C2 |ẋ(t)| |w(t)|nd−1 w(t)− C3 ẋ(t) |w(t)|nd .

Coulomb : ẍ(t) + µgSgn (ẋ(t)) + ω2
0x(t) = −a(t), (21)

where ω0 (rad/s) is the natural angular frequency; ζ is the damping ratio; for Bouc-
Wen behavior: w(t) is the hysteretic displacement and α, C1, C2, C3, nd are constants; for
Coulomb’s model: µ is the damping fiction coefficient, a(t) is ground acceleration and g
is gravitational acceleration. Fig. 2 shows the two models. Numerical parameter values
were inspired by Kafali et Grigoriu [10]: ω0 = 5.9 rad/s, ζ = 2%, C1 = 1, C2 = C3 =
0.5 cmnd , α = 0.1, nd = 1 for the Bouc-Wen oscillator; µ=0.01 and g = 9.81 m/s2 for the
Coulomb oscillator.

Oscillator responses under seismic excitations were obtained with the Runge-Kutta
algorithm in Matlab software [23]. The failure of an oscillator was verified by comparing
displacement x(t) with a displacement limit x0 i.e., X = max

t
|x(t)|. The displacement

limit x0 = 7 cm was chosen in this example.
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Fig. 2. Bouc-Wen oscillator (a) and Coulomb oscillator (b)
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Fig. 3. Reliability of Bouc-Wen oscillator (a) and Coulomb oscillator (b)

0.4 log(m/s2). In order to apply the proposed method, the parameter A was discretized
in 30 values and combined with 20 ground acceleration histories. A total of 30× 20 = 600
simulations was thus used for structural analysis. For comparison purpose, the Monte
Carlo Simulation method with 105 simulations was also performed.

The reliability R(t) of the oscillators were determined by the PDEM and MCS
methods. The obtained results in the time interval [0, 20 sec] are shown in Fig. 3. There
is a good agreement between the results of two methods. The validation of PDEM and
its numerical implementation were verified.

Fragility curves obtained by the proposed method and also the existing MLE method
are given in Fig. 4. Note that 600 simulations were used for the PDEM and MLE methods
while 105 simulations for the MCS method in which accelerations were organized in PGA
intervals aj : [aj − 0.15; aj +0.15] m/s2. It can be noted that the fragility curves obtained
by the proposed method are very close to the MCS results. In comparison with the
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The probability density function pA(a) is log-normal with mean value equal to
1.4 m/s2 and logarithmic standard deviation equal to 0.4 log(m/s2). In order to apply
the proposed method, the parameter A was discretized in 30 values and combined with
20 ground acceleration histories. A total of 30× 20 = 600 simulations was thus used for
structural analysis. For comparison purpose, the Monte Carlo Simulation method with
105 simulations was also performed.

The reliability R(t) of the oscillators were determined by the PDEM and MCS
methods. The obtained results in the time interval [0, 20 sec] are shown in Fig. 3. There is
a good agreement between the results of two methods. The validation of PDEM and its
numerical implementation were verified.
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Fig. 4. Fragility curves of Bouc-Wen oscillator (a) and Coulomb oscillator (b)

Fragility curves obtained by the proposed method and also the existing MLE me-
thod are given in Fig. 4. Note that 600 simulations were used for the PDEM and MLE
methods while 105 simulations for the MCS method in which accelerations were orga-
nized in PGA intervals aj : [aj − 0.15; aj + 0.15] m/s2. It can be noted that the fragility
curves obtained by the proposed method are very close to the MCS results. In compari-
son with the MLE method, the proposed method is better because superior with the same
number of simulations their fragility curves are closer to the MCS results than those de-
rived from the MLE method.

4.3. Non-linear frame structure
In this example, a 3-storey 3-span steel frame structure that was used in refer-

ence [24], was considered. The frame model is presented in Fig. 5 with the dimension val-
ues : storey-height H = 3 m, span-length L = 5 m. The steel material has a non-isotropic
non-linear behavior following the Giuffre-Menegotto-Pinto model. The initial elastic tan-
gent of steel is equal to E0 = 205, 000 MPa, and the yield strength is Fy = 235 MPa, the
strain hardening ratio (ratio between post-yield tangent and initial tangent) is 0.01. 20
ground acceleration histories were used among the set of 60 ground motion histories
selected by FEMA from the 1994 Northridge earthquake [25]. These accelerations are
corresponding to the subset of 10 % exceeding probability for 50 years. They were then
scaled with the PGA that was assumed to be log-normal distribution with mean value
equal to 2.4 m/s2 and logarithmic standard deviation equal to 0.4 log(m/s2). Structural
responses were obtained using the OpenSees finite element software [26]. In order to
apply the proposed method based on PDEM, the probability density function pA(a) was
discretized in 50 points. It is thus necessary to perform 20× 50 = 1000 mechanical sim-
ulations. The accuracy of the proposed method is verified in comparing to the results of
the MCS method with 105 simulations. The failure of the frame depends on the inter-
storey drift i.e the relative horizontal displacement of two adjacent floors. Under the
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Fig. 5. Steel frame structure (a) and nonlinear material behavior(b)

excitation of a ground acceleration ag(t), the inter-storey drift of the kth storey is defined
as δk(t) = xk(t) − xk−1(t), k = 1, 2 . . . 3. In comparison with the definition in Eq. (1),
the failure happens if X = max

t,k

∣∣∣δk(t)
∣∣∣ ≥ x0 = δ0, where δ0 is the seismic resistance in

terms of the inter-storey drift limit of the frame. Three cases were considered: threshold
1: δ0 = H/300, threshold 2: δ0 = H/200 and threshold 3: δ0 = H/100.
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Fig. 6. Steel frame structure: reliability (a) and probability of failure (b)

Fig. 6 presents the reliability R(t) in the time interval [0, 40 sec] by the PDEM and
MCS methods. Similar to the previous example, a good agreement is observed between
the PDEM results and those of the MCS.

Fragility surfaces of the frame, corresponding to three critical thresholds δ0 ob-
tained by the proposed method, are presented in Fig. 7. Three fragility curves Fr(a) were
then derived by using Eq. (17). These curves depicted in Fig. 7, are close to the MCS re-
sults. For comparison purpose, the fragility curves derived from the MLE method with
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1000 simulations are also given. They are however less close to the MCS results than
those of the proposed method.
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5. CONCLUSIONS

The fragility curves are an efficient tool for seismic design, probabilistic seismic
risk assessment and quick loss estimation after an earthquake. Based on the assumption
of log-normal probability cumulative function for the shape of fragility curves, classical
methods aimed to identify two parameters of log-normal distribution from numerical
simulation or real observation data. Therefore, they can be denoted as parametric meth-
ods.

In this study, a novel non-parametric method for constructing fragility curves,
was proposed. Based on the probability density evolution method, the proposed method
allows to build fragility curves without the log-normal assumption. It is a novelty of
the proposed method compared to existing methods. Moreover, instantaneous fragility
curves (or fragility surface) considered as useful complementary information were also
available. Based on analytical formulations, a practical step-by-step procedure was pro-
posed.

Two non-linear oscillators and a steel frame were used for validation of the pro-
posed method by comparing its results to those of the MCS method when a high number
of simulations was used. In all examples, a very good agreement was noted. It is note-
worthy that the proposed method needs much less simulations than the MCS method
(600 or 1000 vs. 105). For comparison purpose, the MLE method was also used with
the same number of simulations as the proposed method. Fragility curves derived by
the proposed method are closer to the MCS results than those of the MLE method. This
shows a good efficiency of the proposed method in the two treated examples. In addi-
tion, the fragility surfaces provided by the proposed method can give useful information
of safety/failure level of structures during earthquakes.

Finally, it should be noted that in the numerical examples, only uncertainty in
earthquake excitations was considered. More random parameters in excitations and in
mechanical system properties should be further studied to verify the efficiency of the
proposed method.
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https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154294/eth-
7983-01.pdf?sequence=1&isAllowed=y.

[25] J.-H. Yi, S.-H. Kim, and S. Kushiyama. PDF interpolation technique for seismic
fragility analysis of bridges. Engineering Structures, 29, (7), (2007), pp. 1312–1322.
doi:10.1016/j.engstruct.2006.08.019.

[26] S. Mazzoni, F. McKenna, M. H. Scott, G. L. Fenves, and B. Jeremic. Open system for earth-
quake engineering simulation (OpenSees). User Command Language Manual, Version, 1, (3),
(2006).

http://dx.doi.org/10.1785/0119990064
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154294/eth-7983-01.pdf?sequence=1&isAllowed=y
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/154294/eth-7983-01.pdf?sequence=1&isAllowed=y
http://dx.doi.org/10.1016/j.engstruct.2006.08.019

	1. INTRODUCTION
	2. PROBABILITY DENSITY EVOLUTION METHOD
	3. SEISMIC FRAGILITY CURVE BASED ON PDEM
	3.1. Analytical development
	3.2. Practical procedure
	Step 1. Determine the joint probability density function XZA(x,z,a,t) 
	Step 2. Build the fragility curve Fr(a)

	4. APPLICATIONS
	4.1. Synthetic ground motion histories
	4.2. Non-linear oscillators
	4.3. Non-linear frame structure

	5. CONCLUSIONS
	REFERENCES

