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ON THE SIMULATION TECHNIQUE OF 

STOCHASTIC PROCESSES AND NONLINEAR VIBRATIONS 
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SUMMARY. In this paper the procedure and program for simulation of stochastic processes 

are represented. The program is applied to nonlinear mechanical systems subjected to stochastic 

stationary excitation. The results obtained are compared with the ones from other methods which 

are used for estimating the exactitude of simulation technique. 

§1. INTRODUCTION 

The investigation of random vibration of non-linear dynamical systems is usually carried 
out by some following methods: the method of Fokker-Planck-Kolmogorov equation(FPK) gives 
equations for the probability density function of solutions of the systems, which are excited directly 
or indirectly by white noises. In proper cases it is possible to find stationary solutions of FPK 
equation. Therefore, it is diffieult to apply this method to general dynamical systems [3]. 

The statistiCal linearization method is widely used for nonlinear dynamical system but at 
greater nonlin~arity tht; exactitude of this method is worse [3, 4]. 

The perturbation method is also used widely but in practice it is able to find solution in the 
first approximation order [1, 3, 4, 6]. 

In order to overcome above-mentioned difficulties for more general dynamic systems it is 
necessary to use numerical method for siiuulation of stochastic p~ocesses and looking for solutions of 
nonlinear stochastic systems. The main difficulties of the method are to create a reliable computer 
program for obtaining quite exact results. 

In this paPer the justification. and procedure of simulation: of stochastic processes are repre
.sented. This is 'the basis of creating the program for simulation and solving random differential 
equation. 

§2. SIMULATION OF A STOCHASTIC PROCESS 

2.1. Simulation formula 
Suppose that {x(t)} is a stationary Gaussian stochastic process with zero mean value 

(< x(t) >= o) and Sx(w) is its power spectral density function. 
It is necessary to create sample functions of the above process in the numerical and graphic 

forms so that from the sample functions it is able to find again the power spectral density function 
Sx(w) and other probability characteristics ofthe given process {x(t)}. 

At fi:rst, assume that x(t) is a sample of the stochastic process {x(t)} given by the numerical 
series x0 , x1 , ... , XN, which are corresponded to the regular points of time 0 = to, t1, ... , tN _ 1 = T. 
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The number N is selected in the form N = 2t, where tis a positive integer number. Using the 
finite Fourier transform it is possible to obtain the following results: 

T N-1 

X(w,) =X,= -N "\' x,-exp(-i27rjkfN) (2.1) 27r L., 
J=O 

where i = H and 
N-1 N-1 

x,- = :; L X, exp (i21rki/ N) = L A, exp (i21rkj/N} 
k=O . k=O 

(2.2) 

A, = 
2
; X, . The coeficients satisfy the following properties: 

At-k = Af+k 

here (*) denotes the complex conjugate1 and 

(2.3) 

The spectral density function is determined by the following formula [5]: 

(2.4) 

Therefore in a formula for calculating spectra it yields: 

(2.5) 

From the formula (2.4) it is able to write: 

(2.6) 

Hence x; can be found from (2.2) where A, satisfies (2.6). 
As the stochastic process {x(t)} has the zero mean value, from (2.2) we have: 

Therefore it is necessary to take Ak so that 

(2. 7) 

Thus, A, have to satisfy two conditions (2.6) and (2.7), and therefore it can be selected as follows: 

A, =a, exp (ifi,); k = 0, 1, 2,.,., N- 1, (2.8) 

where fik are independent random variables identically distributed with the uniform density (1/27r) 
between 0 and 21r, and 

2 27rSx (w<) 
a,= T (2.9) 

It is easy to verify that A, satisfy (2.6) and (2.7). 
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Thus the sample function in the numerical form of stochastic process {x{t)} is as follows: 

N 1 -
~ 2r.S x (wk) 

x(t1 ) = ~ V T exp(i8k)exp(i2.-k}/N) 
k:-::::0 

J. = o, 1, 2, ... , N - 1 (2.10) 

where the frequency domain of the given function Sx(w) is divided into N /2 + 1 points. We take 

Sx(wk) = Sx(w.) with k = 0, 1,2, ... ,N/2, 

Sx("'"'+k) = Sx(wK_k) with k=0,1,2, ... ,Nj2- L 
' ' . 

In order to use the FFT (Fast Fourier Transform) [5] formula (2.10) has to be rewritten as 

N-l ·2. k' 
x(t,)= I;xc.exp(' ~ 1 );}=0,1,2, ... ,N-1, (2.11) 

k:o=:O 

where 

k = 0, 1, 21 , •• , N /2, (2.12) 

fhsx(wK_.) 
XC'f+k = v ~ T' exp (i8.); k = o, 1, 2, ... , N /2 - 1. 

2.2. Steps of realization 
( 1) Discrete domain of frequencies. 

Suppose that the function Sx(w) is given, because the random processe {x(t)} has a finite 
variance then with a number c > 0, which is given as a. sufficently small number, we can find WMax 

so that Sx(wMax) <c. In practice 1 when the process is a white noise process, we can take the 

enough large WnH~~· 
We take N = zk (k is a positive integer number), Which is the number of divided points, the 

step of frequencies is the following: 

( 2} Discrete domain of time. 

A _ 2Wmax 
t...J.W- N l Wk = kb.w. 

k = 0, 1,2, ... ,N/2 

,. 'A ' N ~t=-- 1 tj=Jut,J=0 1 l 1 2 1 ,.,, -1. 
Wma.x 

271' 
T =Ni'>t,t.w = T't.wt.t = 211'/N. 

(3) Calculate f3k = 21rf3k, k = 01 1, 2, ... , N/2, where {jk are the independent random variables 
identically distributed with the uniform density 1 between 0 and 1. 
(4} Calculate: XGk from (2.2) and use XCk as inputs for the FFT, it's outputs are x(ti) according 
to (2.11). 

2.3 Examples 
Example 1. 
Sx (w) = canst = l/21f. We take Wmax = 200, N = 512. The 10-th sample is shown in 

Fig. L The spectral density function is calculated from 10 sambles and is compared with the 
initial spectral density function Sx (w) _ Their graphics are shown in Fig. 2. The exact variance 
O"~ = 64.1503, the variance is calculated by the simulation method cr;!Jim = 63.6620. The error of 
standard mean square between two spectra] density functions-c,. 0.000133985. The graPhics of 
the probability density function is shown in Fig. 3. 
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Fig. 2. Exact and simulating SDFs N = 256, dy = 2.132E- 0001 
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Example 2. 
The spectral density _function Sx (w) of a stationary Gaussian random process is given by 

a [ 1 1 ] Sx w =- + 
( ) 21r a2 + (w + wo) 2 a2 + (w - w0 )2 

a = 3, w0 = 10. The graphic of Sx (w) is shown in Fig. 4, the 10-th sample is shown in Fig. 5. The 
graphics of the initial spectral density function and of the simulation spectral density function are 
shown in Fig. 6. 

The exact variance CT2x = 0.959449 and the simulation variance u 2 . = 0.940795.The error of 
:E.~trn. 

standard mean square between two spectral density functions Cr = 0.000002041. 
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Fig. 4. Initial spectral density function N = 256, dy = 1.246E- 0002 
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Fig. 5. 10-th Sample from spectral density N = 279, dy = 5.747 E- 0001 
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Fig. 6. Exact and simulation SDFs N = 256, dy = 1.3:3-4E --0002 

§3. APPLICATION TO DUFFING EQUATION 

Les us apply the simulation technique to Duffing equations v.rith d. white noise excit<ttion in 
order to compare the results of the simulation program and the program for solving non-li118tl.f 
differential equations with the exact solution, which has been found before from the T:oeU:wd of 
FPK equations and the statistical linearization method with the change of the non-linear i.:OE:fficent. 
Therefore it is able to estimate the computer program for solving the non-linear random 8.ystems 

3.1. Example 1 
Consider the dynamic·al system governed by Duffing equation: 

.. 2h . 2 3 <( ) x+ .x+w0 x+J-ix ="' t {.l.l) 

where h, J.L 1 w 0 are constants 1 ~(t) is a white noise process with intensity D (i.e. 8~ = D/2,r ). 
This problem will be solved by three methods: FPK eqnation, statistical linea.r1zZ1t.ion <.~nJ 

simulation. 
{1) Use FPKequation 

It is easy to find the following results [ 1]. 

= 

c = 1/ I px(x)dx 

-= 

and < x >= 0. Therefore 
= 

"'ic = I x2 px(x)dx 

-= 
will also be found by using a numerical integral computer program. 
{2) Use simulation technique 

( ·.( ') - " 

(3.3) 

{14) 

After the samples of a white noise process has been created the equation (3.1) has become 
deterministic one with respect to each sample. The fourth-order Runge-Kutta formula can he u~ed 
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for solving this equation. The solution corresponds only one sampleo Therefore using the prograni 
for spectra it is able to find Sxsim(w),O';sim and probability density function Px8im.(x). 
{3) Use statistical linearization method 

From equation (3.1), according to the statistical linearization method we have 

(3.5) 

where 

After solving the linear equation (3.5) one can find u2 depend on A2 (i.e. it had become a equation 
of 0'

2). After solving the obtained equation the result is as follows: 

where 
2 D 

O'o = 4hw2 
0 

is the variance of the solution of system (3.1) with I"= 0. 

(3.8) 

After using all three above method for solving equation {3.1) with Se(w) = 2/1f (i.e. D = 4), 
h = 1, w5 = 1 and J.L takes the following values 0.001; 0.1; 1.0; 10.0; It is possible to obtain the 
results described in the table 1, according to the three above methods. From the table one finds 
the results of the simulation method are rather close to a exact ones. Therefore 1 the computer 
program for simulating and solving random differential equations can be acceptable. 

Table 1 

I" a2 
X a;sim O";linz 

0.01 0.972143572 0.972561427 0.971675407 
0.1 0.817567495 0.817133622 0.805399495 
1.0 0.467924062 0.460545075 0.434258545 

10.0 0.188904231 0.188416542 0.166666667 

It is possible to find that the solution which has been found according to the simulation 
method quite closes to the exact one. Therefore the computer program for simulation and solution 
of random differential equation can give the reliable results. 

FOr random non-linear dynamical systems subjected to non-white noise excitation the method 
of FPK equation cannot be used. In this case the spectral density function of solution process could 
be found by the methods of simulation and statistical linearization. The reliability of the simulation 
computer-program is describecl in the previous part, the difference of the rusults obtained by the 
two methods with various values of non-linear coefficient estimates the effect of the simulation 
technique. 

3.2. Example 2 
Let us consider the equation (3.1), e(t) is a Gaussian stationary random process with zero 

mean value, and the spectral density function Sx(w) is given by 

a 
s,(w) = 1f(w2 + w5) (a> 0) (3.9) 
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The graphics of the function S((w) are given in Fig. 7. According to the statistical linearization 
method the equation which defines the variance has the following form: 

= 

0"2 = ! (3.10} 

-= 

where 
(3.11} 

Equation (3.10) had been solved by means of a numerical method, variance cr2 is found, and 
we have the following spectral density function Sx(w) of the solution processes 

(3.12} 

If the above simulation computer program is used for solving equation (3.1}-(3.9} then we can find 
the spectral graphics of the solution process and the corresponding variance. 
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F£g. 7. SDF of random excitation N = 256, dy = 3.252E- 0002 

The graphic of the spectral density function from two above-mentioned methods are given in 
Fig. 8 and Fig. 9 with h = 1, w~ = 1, a= 2 and with p = 0.1 for the Fig. 8, with p = 10 for Fig. 9. 

The values of variance, correspond to different values of ,_,, are calculated by mean of the two 
above methods, are given in table 2. 

Table 2 

,. a; aim a;linz 

0.01 0.221473099 0.220598963 
0.1 0.215265430 0.207746310 
1.0 0.177855675 0.147007730 

10.0 0.097373894 0.063299285 

Thus, the resuits which had been found by the statistical linearization method have quite a great 
difference wit~ those of the simulation method when the non-linear coefficient J.L is not smalL 
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Fig. 8. (1-' = 0.04) Lin. and sim. SDFs ofresponm N = 256, dy = 3.973E- 0002 
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Fig. 9. (J..t = 10.0} Lin. and sim. SDFs of responses N = 256, dy = 9.243E- 0003 

CONCLUSIONS 

On the basis of above presented results it is able to find that 
- The simulation technique can be applied to wider class of the dynamical systems, which are 

subjected to both white noise excitation and arbitrary stationary stochastic one. 
- The computer program presented in previous sections for solving random differential equa-

tions give ~he results with high exactitude. · 
In these cases one can obtain power spectral_ density function, probability density and other 

probability characteristics such as variance, mean value, ... of solution process. 
This publication is completed with financial support from National Basis Research Program 

in Natural Science. 
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