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A NUMERICAL METHOD FOR SHALLOW SHELL 
VIBRATION AND STABILITY PROBLEMS 
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Hanoi University of Civil Engineering 

§0. INTRODUCTION 

The stability and vibration problems of shallow shells have been studied by many scientists 
[1, 2]. The usual approaches for those Problems were based on the partial differential equations of 
high order with unknown functions being displacement w and stress ip functions. Integrating these 
equations by analytical method usually are too difficult because of the high order of the differential 
equations even if for bending problems [3]. 

On the base of the integral representation of displacement functions through Green's functions 
the author has proposed a numerical method for solving the differential equations of the problem. 
These equations were solved approximately after producing them into linear algebraic equations 
by finite difference technique. 

§1. GOVERNING EQUATIONS 

Vlasov's governing differential equations for thin shallow shell with variable curvatures in the 
form of the. three displacements (U, V, W) have been employed [4, 5) 

where Ln, £12, ... ,L33 ~linear differential operators of the shell, h- thickness of the shell; X 0 , 

YO, Zo - harmonic surface loads situated ·on the shell, m- density of the mass for an unit- area, E 
- Young's modulus, r; - Poisson's coefficient. 

For convenience in integration and computation, the dimensionless cartesian coordinates are 
used. In the case of free vibration ¥o = Yo = Zo = 0. 

The three displacements in the governing equations are assumed in the form 

u(X, Y, t) = u(X, Y) sinwt, 

ii(X, Y, t) = v(X, Y) sinwt, 

w(X, Y, t) = w(X, Y) sinwt. 
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Substituting the aboves into the governing equations for free vibration of the shells gives 

Lu(u) + L,z(v) + LB(w) = >.u; 

Lz,(u) + Lzz(v) + Lz3(w) = >.v; 

L31(u) + L3z(v) + L33(w) = >.w. 

In the Case of elastic stability the governing equations of the shell are 

Lu(il) + L,z(v) + £,3( w) = o; 
Lz,(il) + L22 (v) + L2o(w) = o; 
£31( il) + £32( v) + £33( w) = >. * £34( tii), 

where operators in dimensional coordinates are [4, 5] 

a2 
1 - v a2 L,z = 1 + v ~ . a2 1 - v a2 

Lu = aP + -2-aY ; 2 axay ' Lzz = ayz + -2-aP ; 
a a a a 

L13 = -(k, + vkz) ax- k,z(l- v) ay; Lza = -(kz +vk,) aY- ktz(l- v) ax ; 

L21 =· L12i £31 = Lt3i L32 = L23i 

£33 = (D/C)'i1 4 + ki + 2vk,kz + k~ + 2(1- v)ki2; 

with 

where Z = Z(X, Y) - the middle surface equation of the shell; 

§2. METHOD OF ANALYSIS 

Eh 
C=--

1- v2 

(1.2) 

(1.3) 

The method to be presented is based on integral representation of displacement functions 
through Green's functions, by which the governing differential equations of the problem are con­
verted .into linear algebraic equations by using finite difference technique. 

According to this method, the region of the shell is divided into a set of orthogonal. lines 
X= Xm (m ~ ·1, ... , M), and Y = Yn (n = 1, ... ,N). The highest derivaties Of u, v, win eqs 
(1.2) and (1.3) are denoted by: 

a2 u 
-=-k(X Y)· ax2 ' ' 

a2u 
-· - = -d(X Y)· 
BY 2 ' ' 

a2 v 
-=-s(X Y)· 
8X2 ' '. 

a2 v 
ay2 = -t(X, Y); 

a•w 
ax• = -p(X, Y); 

a•w 
ay• = -q(X, Y); 

then, along the line Y = Yn> eqs (2.1) can be transformed [6) to 
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' 
U =I f(X, €, Yn)k(€, Yn)d€; 

0 

' 
v =I e(X, E, Yn)s(E, Yn)dE; (2.2) 

0 

' 
w =I a(X, €, Yn)P(E, Yn)de, 

0 

where /, e and a are Green's functions associated with the-homogeneous eqs of (2.1} and the 
boundary conditions assumed for the clamped shell as follow u. = v = w = w1 = 0 at X = 0 and 
X=t. 

The integral equations (2.2) can be reduced to a summation by using Simpson's rule and for 
the numerical integration and by using second degree interpolation £ to relate the functions k, s 
and pat point (e, Yn) to those at points (X, Yn) then eqs (2.2) become 

Un = fncxLnkn = Fn.kn, 

Vn = enetLnSn = En.Sn 1 

Wn = anaLnPn = An·Pn· 

For all the lines paralleled to the X~axis, eqs (2.3) in matrix notation are 

u = Fk, v = Es, w = Ap. 

Similarly, eqs (2.1) can be reduced to 

u = T~ 1 HTd• = Hd; 

v = T~1GHt• = Gt; 

w =T~l BTq• = Bq, 

where * indicates the sequence of the nodal points along the lines paralleled to X·axis; T- a unitary 
transformation matrix to rearrang the nodal poir~ts in the Y - direction to the same order as those 
in the X - direction. 

The required derivatives of u, v and win (1.2) and (1.3) are obtained by using the derivatives 
of Green's functions and the procedure of differential operators. For u, for example, the derivative 
are 

u' = F'k = F' F-1u; 

u" = -k = -F-1u; 

U' = F' F- 1 iJ fi- 1u; 

ti = H H-1u; 

u = -d = -H~1u. 

In the similar way, the derivatives for v and w can be obtained. 
Now, we consider the shallow shell for which the middle surface equation is 
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Z= [(X-a)2 (Y-b)2 _ (X-a)2(Y-6)2 _ 1]. 
c a2 + b2 a2b2 

By using the dimensionless variables (x = X/2a, y = Y/2b), we obtain the differential opera­
tors of the shell as follows 

L;,. = 4a2 L;,., (i,j = 1, 2, 3, 4) 

a2 1 1/ a2 1 + a2 a2 1 - 1/ a2 

L' - - 2 . L' - __ v, __ - L' . L' - ,2_ + ----. 
11 - - + --r - 12 - - 21 22 - ' ax2 2 ay2 , 2 axay , ay2 2 ax2 

L~3 = -4r~{r2 [ 1- (2x- 1) 2
] + v[1- (2y- 1) 2 ]} !_ + 8~r(1- v)(2x- 1)(2y- 1) aa = L~2 ; 

a 8y a X 

' 
L~3 = -4~ { [ 1- (2y- 1)2

] + vr2 
[ 1- (2x- 1)2

]} !_ + 8~(1- v)(2x- 1)(2y- 1)r2 aa = £~1 ; 
a ax a y 

' h
2 (a• 2 a• .a•) '(c) 2

{ 22' L33 =- 48a2 ax• + 2r ax2ay2 + r ay• -16 ;; [1- (2y- 1) ] + 

+ r4 [1- (2x- 1)2
]
2 + 2vr2 

[ 1- (2y- 1) 2
][ 1- (2x- 1)2

] + 8r2(1- v)(2x- 1)2(2y- 1)2; 

I Nx Nxy 8 2 
2 Ny 8 2 

L34 = -+2r---+r -- · 
Ncr Ncr 8x8y Ncr 8y2 ' 

A= -~a2m( 1 ~:
2

)w2 ; X"~ l ;:
2 

Ncr; r = ~ · 

a. Free vibration problem 
Substitution of derivatives of u, v and w in (1.2) and simplification will yield to eigenvalue 

problem 

[C-U]{D'}=O 

where 

L' - F- 1 1 - v 2 fi- 1 · L' = 1 + v rE' E~ 1 iJ a-1 · 11 -- - -
2
-r ' 12 

2 
, 

Li 3 = -4~ { [1- (2y- 1) 2
] + vr2 [1- (2x- 1) 2

] }A'A-1 + 8(1- v)r2 ~(2x- 1)(2y- 1)B ir'; 
. a a 

L' - 1+v F'F-'H" H--1. L' - .. 20--1 1-vE-1· 
21 - --r ' 22 - -r - -- ' 2 . 2 

L~3 = -4r~{r2 
[ 1- (2x- 1) 2

] + v[1- (2y- 1)2
] }.8 jj- 1 + 8~r(1- v)(2x- 1)(2y- 1)A1 A-'; 

a · a 

£~ 1 = 4~ { [ 1- (2y- 1) 2
] + vr2 

[ 1- (2x- 1)2
] }F' r 1

- 8(1- v)~r2 (2x- 1)(2y- 1)H fi-'; 

£;2 =4r~{r2 [1- (2x-1)2
] +v[1- (2y-1)2J}aa-1 -8(1-v)~r(2x-1)(2y-1)E'E- 1 ; 

L~3 =-
4
::2 ( -A- 1 +2r"A"A- 1 il ir 1 -r

4 B- 1
) -16(~)"{[1- (2y-1)2

]
2

+ (2.4) 

+ r4 
[ 1- (2x- 1) 2

]
2 

+ 2vr2 
[ 1- (2y- 1)2

] [ 1- (2x- 1) 2
] +8r2 (1- v)(2x- 1) 2 (2y- 1) 2 }; 
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b. The elastic stability problem 
In the similar way, (1.3) can be solved for determining the buckling loads. The differential 

operators L~i (i, j = 1, 2, 3) are the same as formulated in (2.4}, and: 

£~4 = N, A"A-1 + 2rN'" A' A-1B ir 1 + r 2 Ny B1
ir 1 • 

Ncr Ncr Ncr 

Substituting Li1, .•. , L~4 into {1.3) reduces them to linear algebraic equations: 

[c*->.*I] {w}=o 

For non-trivial Solution of W 

\G*- >.*I\= o 
where 

* L' - 1 L' L' - 1 L' (L' L' L' - 1 L' )- 1 (L' L' - 1 L' L' ) L' - 1 L' - 1£' c = - 34 31 11 12 22 - 21 - 11 12 21 11 13 - 23 - 34 11 13+ 

I -lL' ( I L' L' -lL' )-1 (L' L' -lL' )-1 (L' L' -1 I I ) I -l I + L34 32 £32 - 21 11 12 21 11 12 21 11 L13 - Lz3 + L34 L33· 

§3. RESULTS AND DISCUSSIONS 

The free vibration problem was solved for the shallow shell, the middle surface equation of 
which is 

z _ [(X- a)2 (Y- bJ2 (X- a)2 (Y- b) 2 l 
- c a2 + b2 + a2b2 - 1 

The present results are based on the following dimensions and properties of the shell a = b = 

22.8 em, h = 0.1587 em, E.= 3.3 · 102 KN/cm2 , v = 0.4. The form of Green's functions j, e and a 
was given by Korenev B. G. [6J. · 

The convergence of the solution for free vibrations was shown in Table 1. It is obvious that the 
convergence is more rapid for low ratio (c/h = 5) than for higher ratio (c/h = 16). It is found that 
the main factor affecting on the convergence are the mesh size, the riSe of thickness ratio, boundary 
condictions and the degree of Green's function used in the solution. In Table 2 the comparison of 
the results of minimum natural frequency of the shell with Galerkin's solution was given. 

Table 1 

r = ajb = 1.0 
Mesh 

NxN c/h = 5 c/h = 16 

Mode 1 st mode 2nd mode 1st mode 2nd mode 

3X3 28.031 28.031 70.476 70.476 
5 X 5 57.333 40.419 69.677 72.204 
7x7 41.288 41.822 72.608 73.904 
9X9 40.865 42.171 49.543 81.466 

llxll 40.793 41.924 82.988 83.427 
13 X 13 40.815 42.210 83.526 '84.122 

Remarks : 1 st mode - symmetrical in x and y directions; 2 nd mode - antisymmetrical in x and y 
directions; Multiplier (1/ a2 ) ft/M. 
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Table 2 

Case Method w 

cjh = 0 Present meth. 9.0042 
ajb = 1 G<i.lerkine's meth. [2[ 9.0359 

cjh = 5 Present meth. 22.536 
ajb = 0.5 Galerkine's meth. [2] 26.985 

cjh = 5 Present meth. 40.815 
ajb = 1.0 Galerkine's meth. [2] 42.501 

cjh = 10 Present meth. 61.053 
ajb = 1.0 Galerkine's meth. [2] 81.294 

cjh = 16 Present meth. 83.426 
ajb = 1 G3.lerkine's meth. [2] 133.255 

Multiplier (1ja2)VJ5TM 
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MOT PHUONG PHAP so GIAI BAI TOAN DAO DONG 
. VA 6N D!NH CDA vo THOAI . 

Tren CO' sli bi~u di~n tich phin cac ham chuy~n vi thOng qua d.c ham Green, tic gilt da kie"n 
nghi m9t phucrng ph<i.p sO d~ gilti h~ phucrng trinh vi phin cda bai. toan. cac phrrcrng trlnh nay 
d3. du-qc gi:U gin dUng sau khi d1ra chUng v'e h~ phucrng trinh d~i s5 ·tuye'n tfnh nhCr kY thu~t sai 
phi:p. hfru h~n theo l1rqc d8 Xamarsky A. -A. Da gild m<?t sO vi d~ hang s5 cho bai to<i.n tlm t1in 
st5 dao d(}ng rieng crl.a vO tholti v6i phucrng tr'inh m{l.t d~ng paraboloit va so· sinh v&i nghi%m thu 
bcl-i Onyashvili 0. D. b&ng phmrng phap Galerkin [2]. 
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