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§0. INTRODUCTION

The stability and vibration problems of shallow shells have been studied by many scientists
[1, 2]. The usual approaches for those problems were based on the partial differential equations of
high order with unknown functions being displacement w and stress  functions. Integrating these
equations by analytical method usunally are too difficult because of the high order of the differential
equations even if for bending problems [3].

On the base of the integral representation of displacement functions through Green’s functions
the author has proposed a numerical method for solving the differential eqnations of the problem.
These equations were solved a.pproxmlateiy after producmg them into linear algebraic equations
by finite difference technigue.

§1. GOVERNING EQUATIONS

Vlazov’s governing differential equations for thin shallow shell with variable curvatures in the
form of the three displacements (¥, 7, w) have been employed [4, 5]
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where Li1, L1a,..., Las - linear differential operators of the shell, & - thickness of the shell; X,
Yo, 25 - ha.rmomc surfa.ce loads situated on theé shell, m - density of the mass for an unit- area, F
- Young’s modulus, v - Poisson’s coefficient. '

For convenience in integration and computation, the dimensionless cartesian coordinates are

used. In the case of free vibration Xg =Yy = Zp = 0.

The three displacements in the governing equations are assumed in the form
X, Y, t) = u(X,Y)sinwt,

(X, Y,t) = (X, Y) sinwt, : (1.1)
w(X,Y,t) = w(X,Y)sinwt.



Substituting the aboves into the governing equations for free vibration of the shells gives .

Lyi{u) + Lya{v) + Liafw) = du;
Lgl (u.) + ng(v) + L23(w) = ,\v;
Lal(u) + ng(U) + L33(w) = Aw.

In the case of elastic stability the governing equations of the shell are

L-ll{ﬁ) + L1a(8) + 513(15) =0
Lzl(ﬁ)_ + L22(5)7+ Lys{td) = 0;
L31(ﬁ) -+ L32(6) + L83(71}) = ’\¥L34(i")!

where operators in dimensional coordinates are [4, 5]
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where Z = Z(X,Y) - the middle surface equation of the shell;
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§2. METHOD OF ANALYSIS

(1.2)

(1.3)

The method to be presented iz based on integral representation of displacement functions
through Green’s functions, by which the governing differential equations of the problem are con-

verted into linear algebraic equations by using finite difference technique.

According to this method, the region of the shell is divided into a set of orthogonal lines
X=X, (m=1....M),andY =Y, (n=1,...,N). The highest derivaties of u, v, w in eqs

(1.2) and (1.3) are denoted by:

32 3% a4
L= —k(X,Y); 2= -s(X,Y); o= = —p(X,Y);

X< axX2 X4
3%y %y tw
5y = —-d{X,Y); 377 = —t(X,Y); Sy = -g{X,Y);

then, along the line ¥ = Y,,, eqs (2.1) can be transformed [6] to
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where f, ¢ and @ are Green’s functions associated with the homogeneous eqs of {2.1) and the
boundary conditions assumed for the clamped shell as follow u = v = w =w' =0 at X = 0 and
X=¢ :

The integral equations {2.2) can be reduced to a summation by using Simpson’s rule and for
the numerical integration and by using secon_d degree interpolation [ to relate the functions k, s
and p at point (£, Y,) to those at points (X, Yy) then eqs (2.2) become

Up = fnaLnkn. = F,.ky,
v, = epal,s, = E,.5,,

Wy, = 0p0L,py = Ap.pa.

For all the lines paralleled to the X-axis, eqs (2.3) in malrix notation are

u=Fk wv=Fs, w=Ap.
Similarly, egs (2.1) can be reduced to

u=T"1HTd" = Hd,
v=T 'GHt* = Gt
w=T"1BTq = Bqg,

where * indicates the sequence of the nodal points along the lines paralleled to X-axis; T - a unitary

transformation matrix to rearrang the nodal points in the ¥ - direction to the same order as those
in the X - direction.

The required derivatives of #, v and w in (1.2) and (1.3) are obtained by using the derivatives
of Green’s functions and the procedure of differential operators. For u, for example, the derivative
are ' ‘

W =Fk=FF 1ty

U =~k = —F_j‘u;
o= F’F‘lﬁI ﬁ"lu;
a=H J o
=—d= —I;T_lu.

In the similar way, the derivatives for v and w can be obtained.
Now, we consider the shallow shell for which the middle surface equation is
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By using the dimensionless variables (z = X/2a, y = ¥/2b}, we obtain the differential opera-

tors of the shell as follows

=
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a. Free vibration problem

Substitution of derivatives of u, v and w in (1.2} and simplification will yield to eigenvalue
problem

[C-A]{D*} =0

where
Ly Ly Lis : u
[C:F = L’21 ng’ L’23 H {D*} == v f
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' = _'42{[1 ~ (2y— 1)%] + vr?[1 ~ (22 — 1)?] }A'A‘l +8{1— y)rzi(m —1){2y '1)f? B,
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I, = ~4r§{r2[1 ~ (22— 1)?] + v[1~ (25 - 1)2]}§'é‘_1 + 821’(1 — )2z~ 1)(2y — 1)A*A-1;
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c ok
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+r4[1 - (22 — 1)?]° 4+ 20 [1~ (29 - 1)?][L - (22 — 1)?] +8r%(1 - 2)(22 ~1)*(2y - 1)2};

(-4t +224"4* B B - 45"1) —-16(5)2{ [1— 2y — 1]+ (2.4)
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b. The elastic stability problem

In the similar way, (1.3) can be solved for determining the buckling loads. The dlfferentlad
operators LY (1,7 = 1,2,3) are the same as formulated in (2.4), and:

. N N, ™ N, ~t.
o= ——A"AT 4 r A ATIB B 2B B
L34 Ner + TNcr ’ T Nch
Substituting L, ..., L%, into (1.3) reduces them to linear algebraic equations:

[c* =1 {@} =0

For non-trivial golution of &

= xIl=0
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§3. RESULTS AND DISCUSSIONS

The free vibration problem was solved for the shallow shell, the middle surface equation of
which is '

X—-a)? (Y- (X-—-a)* (Y —-5)°
CER VSN S TE

The present results are based on the following dimensions and properties of the shell a = b =
22.8cm, h = 0.1587cm, E = 3.3 - 10?2 KN/cm?, v = 0.4. The form of Green’s functions f, ¢ and a
was given by Korenev B. G. [6]. ‘

The convergence of the selution for free vibrations was shown in Table 1. It is obvious that the
convergence is more rapid for low ratio {c/h = 5) than for higher ratio {c/h = 16). It is found that
the main factor affecting on the convergence are the mesh size, the rise of thickness ratio, boundary
condictions and the degree of Green’s function used in the solution. In Table 2 the comparison of
the results of minimum natural frequency of the shell with Galerkin’s solution was given.

2=

Table 1
r = a./b = 1.0
- Mesh
NxN ¢/h=5 c/h=16
Mode 1 st mode 2 nd mode 1 st mode 2 nd mode
3x3 28.031 - 28.031 . 70.476 70.476
Ex5 57.333 40.419 69.677 72.204
Tx7 41.288 41.822 72.608 73.904
9% 9 40.865 42.171 49.543 B1.466
it x 11 40.793 41.924 82.988 83.427
13 x 13 40.815 42.210 " 83.526 "84.,122
Remarks : 1 st mode - symmetrical in # and y directions; 2 nd mode - antisymmetrical in = and y

directions; Multiplier (1/a%)/D/M.
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Table 2

Case ‘ Method LW

. ¢/h=0 Present meth. 9.0042
| afb=1 Galerkine’s meth. [2] 9.0359
| . .
¢/h=5 " Present meth. 22.536
i ) a/b=0.5 Galerkine’s meth. {2] 26.985
‘ ‘ ¢e/h=25 Present meth. 40.815
a/b=1.0 - Galerkine’s meth. [2] 42.501
o c/h =10 Present meth. '61.053
; ' a/b=1.0 Galerkine’s meth. {2} 81.294
b : :
o c/h=16 Present meth. 83.426
afb=1 Galerkine’s meth. [2] 133.255

Multiplier (1/a%?)y/D/M
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MOT PHUONG PHAP 5O GIAI BAI TOAN DAO DONG
VA ON PINH CUA VO THOAI

Trén co s& bidu dién tich phin cic him chuyén vi thong qua cic haim Green, tic gid di kién
nghi m&t phuong phdp s8 d¢ gii hé phwong trinh vi phin cda bii todn. Céc phwong trinh nay
da dwere gidi gin ding san khi dwa chiing v& hé phwong trinh dai s8 tuyén tinh nhd k§ thujt sai
phan hitu han theo lwge 45 Xamarsky A, A, D3 giti mbt 8 vi du bing 8 cho bii todn tim thn
6 dao ddng ritng cda vd thodi véi phwong trinh mit dang paraboloit vi so-sdnh v&i nghiém thu
bé&i Onyashvili O. D. bing phwong phdp Galerkin [2].
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