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_ON THE DEPHASE ANGLE IN A VARIATIONAL SYSTEM
OF THE EQUILIBRIUM REGIME

NGUYEN VAN DINH
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SUMMARY. In the quasi-lnear theory of vibraticns, the initial variable Z is transformed either
to the variables (ﬁ'., b] or to the amplitude-phase ones (r, 9) respectively by the formulae

z=oqgcoswt+bhsinwt, = -wesinwt+wbcoswt (0.1)

z = rcos(wt — §), &= —wrsin(wt — 6) (0.2}

where w is near the natural frequency of the system under consideration.

These two types of variables are equivalent if the oscillatory regime is concerned However, for
the equlhbr:um regime, the situation is more complicated. .

In [1] {pp. 211-213), to study the stability of the equilibrium regime, the variables (T,e) are
transformed into the ones (a,, b). The equilibrium i'e_gime corresponds to the couple of determinate
values ag = 0, by = 0 so that the signification of the perburbations §a = @ — ag, b =b— by is
evident and the variational system can be easily established.

Other author [2} (pp. 617-624) has used the amplitude-phase variables (r, ) for séeking the
stability condition of the equilibrium regime which coresponds to the "zero” amplitude rg = 0. The
dephase angle § remains indeterminate. A certain constant {unknown) value BQ is assigned to the
equilibrium regime. By this manner, the “clasgical” process of studying the stability by introducing
the perfurbations 67 = r — rg, 0 == # — 3 and the veriational equations can be applied. As it
will be seen below, the variational system obtained has an “anarmal” form.

In the present paper, the signification of the mentioned dephase anglé 8, will be discussed and -
another process for studying the stability of the equilibrium regime will be proposed.

§1. METHOD OF STUDYING THE STABILITY OF
THE EQUILIBRIUM REGIME -

) Let us cons1der a qua.m-lmea.r parametrically-excited system descnbe& by the differential equa-
tion:

ﬁ‘;+w2xﬂg{ —h:i:-i—(wﬂ—wg)i—qza+2pg:c032wt} (1.1}

where overdot denotes derivative with respect to time t; wy is the natural frequency of the gystem
considered; 2p > 0 and 2w are the intensity and the frequency of the parametric excitation,
respectively, w &~ wg, h > 0 is the damping linear coefficient; ~ is.the coeflicient of the cubic
non-linearity, ¢ > 0 is a small parameter.

-+ In the phase plane Oz, the solution z = 0 (equilibrivm regime) corresponds to the origine O.
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Using the variables (a, ), in the first approximation, we obtain the averaged system:

a= _Z,W {hwa + {(w - w}) - }b - _7('1 + bz)b} (1.2)

b= ;;{[[wz ~wi) +p|a — hwb - Zy(a + bz)a}

_ The equilibrium. regime corresponds to the solution a9 = bp = 0 which is assumed to be
isolated i.e, the following condition is imposed:

p? # Bw? + (W* — wi)? (1.3}

Introducing the pertubations 6o =a —ag, §b=15 — bg we can easily establish:
- the variational system: ' :

(6a) = -.2%{ (hw)sa + [(* ~ wB) - p]6b}

(s8) = 55;—{[ w? —wd) + plba -~ (hw}ﬁb}

which coincides with the linear part of the averaged system (1.2) - then, the characteristic equation:

{1.4)

~5é—p - _i[(wg;”wg)_p] g? .
¢ 2w =p2+6hp+-5{h2w +(w?-wd)?—p } 0 (1.5)
LTI DR R z
2w 0 i 2

Since h > 0, the stability condition is:

PP < h? + (WP - wi)? {1.6)

If the second type of variables - the amplitude-phase va.nables {r, 0) is used, in the ﬁrst approxi-
mation, the averaged system is;

i-f——;:—r{hw-Fp'sin-Zﬁ} :
w! (17)
2w 4
It is noted that the system (1.7) can be transfonﬁed into (1.2} by formulae:

- 7 g
rd = Ei{ — —r? + {w? — wl) + pcos 29}

a=rcosf, b=rsinf . (L8}

The equilibriam regime corresponds now to the “zero” amplitude ro = 0. The dephase angle
¢ in an indeterminate value, :

Assuming that the equilibrium regime corrersponds to a certain comstant {unknown) value
fo and following the classical process of studying the siability we introduce the perturbations
dr=1r—ry, 8§ =8 — g and obtain the variational system:

(Jr) :-_%{hw + psin 230}61' ' (1.92)
O:E%{(wz—wg)+pt.:05260}5r | (1.9b)

Since §r # 0, the second equation .'(I.Qb) leads to the trigonometrical equation:
{w? —w?) + pcos2fp =0 (1.10}
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ﬁom which, the uni{nown vilue f5 can be calculated

2_ 2
cos 20g = . (1.11a)
P
sin 28y = :i:1 p? — (w? - wi)? : {1.11h)
p VP ‘

Substituting (1.11b} into {1.9a), we obtain:

(6r) = = { o # /o2 — (w2 —uB)? Jor (L12)

The solution ro = 0 of (1.7) (equilibrium regime} is stable if:

Re.{ —72—1(; [hw * 1pr2 — (w? —w%)zl} <0 | (;.13)

This inequality coincides with {1.6).
It is noted that, in {1.11)- (1.13), 4; and ér may be either real-or complex.

§2. THE DEPHASE ANGLE OF THE VARIATIONAL SYSTEM
IN AMPLITUDE-PHASE VARIABLES

Let us remark that, in the second method presented above, the dephase angle fy is introduced
without interpretation. Otherwise, the variational system {1.9) has an “anormal” form: the per-
turbation §6 does not present in the system, the second equation (1.9b) cannot be considered as
a differential equation. Some questions are arisen: Is it “logical” to assigne any constant dephase
angle g to the equilibrinm regime? What pictures of motion can be obtained from the variational
system (1.9)7 Are these pictures analogous with those corresponding to center, nodal, focus or

.saddle points? To obtain a necessary answer, let us return to the variables {a,5). Doing this, we

have replaced the phase plane Ozt by the plane Ocb.
1-If p? > {w® — wg), there are two separated real characteristic values:

- P12 = %{—hu:!:\/pz'—— (w2 —w?)? } {(2.1)

corresponding to two families of characteristic motions:

aj = Aje"", by = &, AyePit {2.22)
b . r + w? —
gJ.:a%_:t —-*—((—WH% (j = 1,2) i {2.21)}
i

where A; are constants, depending on initial (smtable) conditions.

_ In the Oab the or]gm O is either an unstable saddle point if p? > h%w? + [w - wd)? (fig.1)
or a stable nodal one if p? < h%w?® + (w — w?)? (fig. 2). In both cases, there exist two straight
trajectories A ; whose slopes §, , are given by formulae:

tgfy = & (2.3)

According to (1.8), f; 2 are just the dephase angles of characteristic motions.
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Ftlg. 1 ' Fig. 2

2 - If p? = (w® — w2)?, the characteristic equation (1.5} admits a double real solution:

4, A, \ 4z

p==—7 (2.4)

The oi'igine O becomes a stable nodal point with only one straight trajectory which coincides
either with Ob if p = w? — w? (Fig. 3) or with Oa if p = w — w? (fig. 4).

b i

S b
\ , .

g N aq

g3
Fig. § ' C Fig. 4
-3 - If p? < (w? — wi)?, there are two conjugate complex characteristic values:
eh .«
Pr2= ‘—"E*izﬁ (w2 --wg)z —p? (2.5)

The origine O is a stable focus point whose spirals turn round O either in the direction from
Oa to Ob if p < w? — w} (fig. 5) or in the inverse one if p < w3 —w? (6ig. 6).

3b : : }a

Fig. § Fig. 6
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In the last case, the straight trajectories are complex since the ratio Ej' becomes immaginary.

by w? — w?)? -~ p?
tgﬂj-ﬁ—"—”{;' = F1 { o)’ =
& {w? —wf)—p
Fi _______(wg—wu)—l-p if p<w?—wi
B (w? - wi) ~p o 2.6)
2 _ 2y _
N A Rl Bl IS S

- (W —w?)+p

We compare now the values of §; with those of §; determined by the second equation of the
variational system (1.9). For the first and third cases, according to (2.2b) and (2.6), respectively,
it is easy to prove that;

' 1— to24. 1 - £2 2_..2 .
cos 26, = gz L= .’;’; =T s 28y (2.7)
1+g20; 1+ & P
For the second case, p? = (w? — wi)?, we obtain:
T : — w2 2
3 + kv f p=w?—uw)
cos20g = Flordp = { kr i p=wd - w? ‘ (2.8)

(k=0,41,%2,...)

1.e. the straight trajectory is either Ob or Oa.

Thus, the dephase angles fy of the variational system in amplitude-phase variables coincide
with those of characteristic motions. Consequently, after substituting sin 26, by formula {1.11b),
the first equation of the mentioned variational system becomes the differential one, governing the
amplitude variation of characteristic motions.

§3 ANOTHER PROCESS FOR STUDYING THE STABILITY
OF THE EQUILIBRIUM REGIME

The analyses presented permit us to propose another process for studying the stability of the
equilibrium regime.

First, as in {2], we establish the averaged system (1.7) whose trivial solution ro = 0 corresponds
to the equilibrium regime.

To study the stability of this regime, the motion with small amplitude must be considered.

. 3 . :
Hence, the term of hight power of r - the term ~+r° - can be neglected and since r # 0, the second
equation of the system {1.7} can be divided by r. We obtain thus the following equations:

. Er . :
r-——-é;{hw-l-psm%} _ (3.1a)
§ = (w2 —w?

g = " {(w wg) + peos 29} ‘ (3.1b)

which play the role of the variational system.

Secondly, we consider the characteristic motions, defined as those corresponding to constant
dephase angles. Let ¢ = 0, the equation (3.1b) leads to the trigonometrical equation (1.10) giving
us #g. : ‘



Then. substituting fo into (3.1a), we obtain the differential equation governing the amplitude
! - . - -
variation of characteristic motions:

Er

2w
Finally, the stability condition is obtained:

;=

{hw + psin 260} ' (3.2)

Ref - =L [hw +.psin 2]} <0 (3.3)

The process proposed can be applied for more general oscillatory system. For instance, let us
consider the system described by the differential equation: '

F+w?z = ef(z)z,wt) - ' (3.4)

J=1

) N
flz, #,wt) = z{A +-E [Bj cos jut + C; sinjwt]} _

N
+a':{D+Z [E_,-cquwt+F,-sinjwt]} +... (3.5)

i=1

where f{0,0,wt} =0, f(z,,wt) is 21 - periodic function with respect to wt; A, B;, C;, D, E;, Fy
are constants; {...) denotes the terms of high power with respect to z, .

Using the transformation (0.2), in the first approximation, the averaged system in amplitude
phase variables is of the form: ‘

. —wF E ;
F= -—i’:{ -—Dw+f—g—*2—"sin23+ M—COSZB}-{-(...)
- 2w 2 2 ‘ (3.6)
. ar C+uwE | B—wF ’
ré = EJ{A_ ——~sm25+—~»é—wc0529} +{...)

where B{C, E, F) is B;(Cy, E;, F3); (...) denotes the terms of high power with respect to r.
The equilibrium regime corresponds to the solution ryp = 0. To study the stability of this
regime, we use the “simplified” system:

. &r B-wlF | C+wkE

r= —Zw{ —Dw+ 5 sin 26 + —5—cos 26} (3.7a)
. € [ C+wlE . B —wF .
B—Z—w{fi———_sm29+~—2~—c0826‘} ~ (3.7p)

Setting the right-hand side of the differential equation (3.7b) equal to zero, we obtaip a
trigonometrical equation giving us the constant dephase angies of characteristic motions:

C+wE | —wF
*ﬂ—sin%——b v

cos2d =4 (3.8)

Let: :
Msin 20 + g—tzﬁgcos%:.ﬁ {38.9)

Squaring and adding (3.8) and (3.9), we obtain:

C+wEN2 (B-wP\2 11/2
2 )+ (3 ) - 4]
Hence, the equation (3.72) takes the form:

a=xf( (3.10)
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Finally, the stability condition is found:

Re{ﬂDw:i:[(C+WE)2+(B_MF)ZAAZ]}/E}:»O (3.12)

2 2
Remark. The method presented cdn be applied if:

B - 2 C+wEy2
( wF) +( to ) #0 (3.13)
2 2
The existence of constant solutions §, (real or immaginary simple or double] of the differential
equation (3.7b) is affirmed by the analysis analogous of that, realized in §2 on the variational system
in Decartesian variables.
In the case where (3.13) is not satisfied i.e. if B =wF, C = —wE, we have:
eD . A

r= f“z—r, B-E . [3.14)

The oscillating system considered, in the first approximation, becomes autonomouns the de-

.phase ¢ = ;—t+ const and the stability condition is given by the inequality D < 0.
()

CONCLUSION

The variational system {1.9) of the equilibrium regime in amplitude-phase variables has been
examined. It has been shown that the values #y, determined by the second equation (1.9b) of the
mentioned system are just those of the dephase angles of characteristic motions. Consequently,
substituting 0 by o, the first equation {1.92) becomes the differential one, governing the amplitude
variation of these motions. Based on the results obtained, another process for studying the stability
of the equilibrium regime has been proposed. _

This publication is completed with financial support from the National Basic Research Pro-
gram in Natural Sciences. '
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VE GOC LECH PHA & MOT HE PHUONG TRINH
e A o ~ ~ Y
BIEN PHAN cUA CHE PO CAN BANG

Trong [2], céc bién bién d3 - pha dwoc s dung ¢ khio sit &n dinh cda ché 45 cin bing, xem
nhe mét ché d6 dao ddng véi bign dd ro == 0 va v&i gbc 1éch pha hing, thy ¥ 4,. Bii bdo nay xét
mét thi dw don gidn, sit dung céc bidn D2 cic va phwong phip trung binh & xdp xi thi nhit cho
thiy 6, la goc Yech pha cila chuyen d8ng goi 1a dfc trung, Nhin xét nay din dén trinh tw mai aé
khio s4t 8n dinh cda ché d3 cin bing khi st dung céc bién bién d§ - pha; trinh tw niy khong ring
budc ché d5 cin bing vé&i géc lch pha no.
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