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PARAMETRIC VIBRATION OF THE PRISMATIC SHAFT 
WITH HEREDITARY AND NONLINEAR GEOMETRY 

HOANG VAN DA 
Hanoi Technical University of Geology and Mining 

INTRODUCTION 

Parametric vibration of the prismatic shaft with regard of physical and geometrical nonlinear
ity has been inves~igated in some publications (see for example [1, 2, 4, 5]. However, that vibration 
in the case of hereditary has not, to ·author's knowledge, been examined hitherto. In this paper it 
will be studied by means of the asymptotic method for high order systems. . 

1. FORMULATION OF THE PROBLEM. THE EQUATION OF MOTION 

Let us study parametric vibration of shaft of the length l supported in horizontal position as 
shown in fig. 1 and acted on the longitudinal periodic force. Supposing that the nondeformed axis 
of the shaft coincides with axis Ox, while the symmetric axes of the cross-section are parallel to 
the fixed axes Oz and Oy. In addition the origin of the coordinates is selected on the shaft's left 
end, see. fig. 1. 
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Fig. 1 

Transferences at points of the axis Ox in the direction of axes Oz, Ox are expressed by 
functions W(x, t), U(t). Neglecting the inertia of rotatory motion and the displacement, the 
equations of the consid-ered boundary value problem are 

aN_ ~(Qaw) _ pFa2u = o, 
ax ax ax at2 

a2
M a ( aw) a2W ax2 + ax N ax - pF at2 = 0 

(1.1) 

(1.2) 

Here M(x, t) is bending moment of cross-section, F-its area, p- specific mass, N .. normal 
force, Q - cross force. 

The equation of state is accepted in [ 11] 
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where a1 , a2 are the constant cha.racteristing the properties of material [10], K(t- r) -function 
of hereditary, 

•.=au +!(aw)2 -za
2
w. 

ax 2 ax ax2 

Bending moment M and normal force N are determined by the following expressions 

M= If uzdF, 
F 

N= If udF, 
F 

t 

3 (a
2
W)2 J ae0 

N = a,Feo + a2Fe0 + Sa2loeo ax2 + F K(t- r) at dr. 

Here Io, /2 are the cross~section moments of inertia 

Io =If z2
dF, 

F 

eo is the lengthener of the shaft's axis [10J 

•o= au +!(aw)2. 
ax 2 ax 

0 

(1.4) 

(1.5) 

(1.6) 

Neglecting the longitudinal inertial force pF~
2

t~ and influence of the cross force Q, we have 

from the equation (1.1) and (1.6) the expression N = N(t) 

t 

3 (a2W)21 J ae0 a,Feo + a2Fe0 + Sa2loeo --2 + F K(t- r)-dr = -P(t). 
8x :t:=O,l 8T 

(1. 7) 
0 

Supposing that the nonlinear terms in (1.7) are small enough and applying the successive 
approximate method [12J we get 

t 
p a2 p3 3a2 I0 (a2W)21 1 J dP 

eo=--F+4Fs+ 2F2p -a 2 - + 2F K(t-r)-d dr. 
a1 a 1 a 1 x :~:-e a 1 T 

0 

(1.8) 

By substuting (1.8) into the expression (1.5) and then into (1.2), after simple calculations we 
obtain the equation of motion of the boundary value problem 
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The boundary condit.ions are approximately of the form 

a2wi -- =0, 
8x2 :t=O 

wj =o, 
~=0 

wj =o, 
.:t=l 

a2wl - -o a,.2 •=t- · (1.10) 

2. CONSTRUCTION OF SOLUTION 

We shall find the solution of the given boundary value problem by the help of the asymptotic 
method. In the first approximation the partial solution of the equation {1.9) with the boundary 
conditions {1.10) is found in the following forms: 

W (,., t) = y(t) sin 7 · {2.1) 

Puting (2.1) into (1.9) and applying Galerkin-Bubnovs method, we receive 

where 

t 

<fly 2 • I ( ) dy . 
dt2 + w y = p,y + P2 K t- r dr dr + fi3 Py+ 

0 

t 

[ 
P a2P

3 
1 I dP ]2 

P• - a
1
F + afF3 + a~F K(t- r) dr dr y. 

0 

p, = 
,.2 

f3s = pFI? , 

{2.2) 

It is noted worthy that the term 
8
8

2

: in the equation {1.9) vanishes when the coordinate ,. 

is equal to t or zero. 
It is supposed that the function K(t- r) and the force P(t) are of the following forms 

K(t- r) = Qoe-a(t-•), 

P(t) = Po sin "{t, 

{2.3) 
{2.4) 

here Qo, Po, "' are positive constants Putting the expressions (2.3), (2.4) into equation (2.2) we 
have 

2 t 

d Y 2 3 "'-Q I -a(t-•) dyd • dt2 +w Y = P1Y + n o e dr r + PoPosm"{ty+ 
0 

t 

(3 [ 
Po . a2l'g . 3 QoPo"{l -a(t-•) ] 2 

+ 4 - a,F Sm"{t + afF" sm "{t + ~ e COS"{TdT y. 
0 (2.5) 

Differentiating the equation (2.5) with respect to argument t we get affter simple calculations 
the differential equation of third order 

d" y <fly 2 dy 2 3 2 dy { [ ] 
dt• + "'dt2 + w dt + aw Y = aPt y + ap, y dt + fJo a Po sin "{t + Po"{ cos "{t + 

+ f3• [aCo(aC2 + 2"fb2) cos 2"{t + (ab2 - 2"{02) sin 2"{t + (aC4 + 4"{b4) cos 4"{!+ 

+ (ab4- 4"{0•) sin4"{t+ <>Cacos6"{t- 6Cs"{sin6"{t] }y+ {P2Q0 + (33 P0 sin"{t+ 

+ fJ• [co+ C2cos21t + b2 sin2"1t + C4 cos4"{t + ~4 sin4"{t + C6 cos6"ft]} ~~, (2.6) 
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where 

This equation will be solved by the asymptotic method [2]. Let's consider the case, when {31 , 

fJ2, f3s, f34 are small quantities of first order so that 

fJ1 = e/31, fJ2 = e/32, f3s = e/33, f34 = e/34• 

We shall deal with the oscillation in the resonance case, when there exists the following relation 
·between the frequencies 

(2.7) 

p, q are integers, o is detuning. The partial solution of the equation (2.6) is found in the form of 
series 

y =a cos~+ eU1 (a,tj>,9) + e2 U2(a,tj>, 9) + e3
, ••• , (2.8) 

here ~ = ( ~'Yt + .p), 9 = 7t, a, .p are the functions satisfying the following differential equations 

d; = eA,(a,tj>) +e2 A2 (a,tj>) +e3
, .•• , 

~~ = (w- ~'Y) + eB,(a, .P) + e2 B2 (a, .P) + e3 
•••• 

It is easy to prove that the resonance occurs when 

p 1 
-=-·1·2·3 q 2 I I I ' 

First of all, let's investigate the oscillation in the case 

p 1 
- =-
q 2 

In the first approximation we have 

y =a cos~= a cos (i-rt + t/>), 

'Y ~: =a [h1a-y- P1 cos2tj>], 

a7 ~~ = a [ (w2 
- ·~) - S1a2 

- 2h1w2 
- R1 + P1 sin 2¢]. 
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(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 



where 
p _ 6{i3Po 
1- 4 ' 

R, = 6fi.co . 
2 

Stationary solution a0 , .Po of the system of the equations (2.13) is determined from relations 

ao(h,a1- P, cos 2t/>o) = 0, 

ao[ (w2 - ~)- S,a5- 2h,w2
- R, + P, sin2t/>o] = 0. 

(2.14) 

Eliminating the phase in (2.14), we get the equation of resonance curve for non-trivial sta
tionary oscillation 

(2.15) 

From here we obtain 

~· A5 = (1- 2h1)--- D ± yC2 - B2a2~ 2 , 
4 

(2.16) 

where 
A2 = S,a5 ~· _ 1 2 c• = P{ D _ R, B 2 = hr . 

o w2 ' - w2 ' w4 ' - w2 ' w2 

To study the stability of the stationary oscillation, we set in (2.13} a= a0 +Sa, t/> = t/>o + St/>, 
where Sa, St/> are small pertubations. Substituting these expressions into equations (2.13} and 
neglecting the small quantities of high order, we receive the following variational equations 

(2.17) 

Using the Routh- Hurwi's criteria we get the following stability condition of stationary solution 

- 2a0 h112 a > O, 
2 

A5 + !L + (2h,- 1} + D > o. 4 . 

{2.18) 

(2.19) 

The first inequality is always satisfied because a > 0, h1 < 0. The second one will be realized, 
when the amplitude A5 takes the values greater than A2 lying on the backbone line corresponding 
to the equation 

2 

A2 + ~ + (2h1 - 1) + D = 0. (2.20) 

The relation (2.15} is plotted in Fig. 2 for the case: 
C2 = 0.1, B2 = 0.05, h, = -0.025, D = 0.05, 
a 2 = 0.6 (curve 1}; a 2 = 0.7 (curve 2); .,;• = 0.8 (curve 3). 
The fat plots correspond to the stable state of the oscillation where the stability condition 

(2.19) is valid. 
For the stationary solution ao = O, the variational equations are of the form 

d(Sa) 
1-;jt = (h,a1- P, cos 2t/>o)Sa, 

2 

0 = ( ( w2 
- : ) - 2h,w2 

- R, + P, sin 2t/>o). 

(2.21) 
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The stability condition of this solution is 
2 2 

[: + {2h,- 1) + D] + d2B 2
17

2
- 0 2 > 0. (2.22) 

From the equation of resonance curve (2.15) when A~ = 0, we have 

M(O, 17 2
) = [: + {2h, - 1) + D ]

2 
+ a 2 B 2 YJ 2 

- 0 2
• (2.23) 

H 

{1- 2h1 - D)- y(1- 2h1 - D)•- 0 2 
2 {1- 2h1 - D)+ y(1 2h1 D)2 02 

2B2 <"' < 2B2 

the equation (2.23) has not solution, the condition {2,2~) always is realized. In this case, the 
resonance curve, expressed by the equation (2.16) will be upon or under the axis (0'72 ) and the 
stationary solution (A~ = 0) is always stability. 

Now let's consider the parametric oscillation for the case pfq = 1. In this case we have the 
averaging equation in the form 

& [ - . l 2'"(dt =a h,a'"(-,84 (B2 cos2,P+c2 sin2,P), 

2a'"( ~~ = a[(w2 
- 72

) - S,a2 
- h,w2

- P4 ( Co- B2 sin 2,P + c2 cos 2,P) ]. 

where we denote 

C 
_ eco 

o--. 
2 

(2.24) 

From (2.21) we obtain the following equation for the amplitude of the nontrivial stationary 
oscillation 

where 

A2- S,a~ "• ·- '"12 
o-~, ., - w2' 

Cf = ~(B~ + C~) 
w2 

It is seen that the amplitude A5 decreases 
and the stability region of the stationary os
cillation is also narrow in comparison with the 
case q = 1/2 [4]. 

3. CONCLUSION 

1. Where taking into account the leng
thener eo of the shaft's axis in the system 
investigated there exist three resonance cases, 
they are not observed for system having lin
ear geometric character. The ultraharmonic 
(pjq = 1/2) oscillations are not studied, how
ever, it may be seen that their amplitude and 
the stability zone become less in comparision 
with the examined case. 

2. From the figures presented, we can see 
that the nonlinear hereditary of material de
creases the amplitude of the parametric oscil
lation, that can be disappeared when value of 
a 2 is sufficiently great. 
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DAO D6NG TH6NG s6 ctrA DAM LANG TRU KE DEN 

Tf~m DI TRUYEN vA. PHI TUYEN HlNH.HQc 

Trang b8.i bio nay, tci.c gill, nghien clhl dao d9ng thOng s5 cUa d'a.m lang trlJ c6 k~ d~n tinh di 
truy"en cda v~t li~u va bie'n d<ptg dai e:0 cUa trvc d5i xU:-ng c~a d3.m. 

Ke't quit cho thiiy rhg xuilt hi~n them bache' d(> c\)ng hrrlrng pfq = 1, 2, 3 rna trtr&c d6 chrra 
dll'qc xem xet. 

Khi pfq = 1/2 drrirng cong ci)ng hrrlrng da drr7c xay d1p1g, •'! iin djnh ctl.a nghi~m dirng da 
dlr\YC kh/w sat va CO th~ cho;m 0<

2 dd. lan th\ dao d\)ng thOng sc5 bie'n milt. 
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