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NATURAL FREQUENCY ANALYSIS OF 
CRACKED BEAM 

NGUYEN T!EN KHIEM, DAO NHU MAl 

Institute of Mechanics, Hanoi Vietnam 

Abstract. The model of cracked one-dimensional structure has been treated as two uniform 

beams connected by an equivalent rotation spring at the crack location. The frequency equation in 

bending vibration of the system is obtained in general form for arbitrary boundary conditions at both 

ends used for analysing the natural frequencies as function of crack position and magnitude. This 

investigation allows to carry out general procedure for identification of position as well as magnitude 

of the crack by natural frequencies measured experimentally. 

Introduction 

The crack occurred in vibrating members {one-dimentional structures) can be treated in dif
ferent manners. Yuen [1] characterized the crack by a local change in modulus of elasticity and 
used the FEM to study the eigenprameters of cracked cantilever. Adams et ali2J represented crack 
as change in axial vibration receptance of a bar at the crack location. Dima.roganas et al. [3, 4, 5J 
suggested to model the crack by an equivalent rotation spring, connecting the beam segments on 
both sides of the crack location. The last crack model has been used for studying effect of crack 
on the vibration eigenparameters of beam in particular cases of boundary supports. For example, 
natural frequencies were analyzed in dependence on crack parameters for cantilever in [6] and for 
simply supported beam in [7]. General investigation of cracked beam was done in [9, 10]. 

In present paper the Dimaroganas's crack model is utilized to develop general (independently 
on boundary conditions) procedure for analyzing influence of the crack location and magnitude 
on the natural frequencies. At first, general equation for frequency parameter A is derived inde
pendently upon the boundary conditions of supports, then it is used for studying the dependence 
of the A on the crack parameters: its sit x and magnitude {3 for classical cases of the boundary 
conditions. 

Notation 

E • Young's modulus; 

E - Cross section area; 

J · Moment of inertia; 

p- Density; 

L - Total length; 

1. Model of cracked beam 

v - Torsion stiffness of spring; 

f- Frequency (Hz); 

w=2rrf; 

A - Frequency parameter; 

(3 = EJjvL- Magnitude of dramage; 

Consider a damaged beam with structural parameters: E, F, J, p, L for arbitrary support 
conditions at the ends. Let crack be located at some unknown position y0 , which divides the beam 
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into 2 parts 1, 2 as shown in Fig. 1a. According to [3, 4, 5], the crack may be represented by a 
torsional spring connecting the specimens of beam at the crack position. Stiffness v of the spring 
can be calculated by the formulas 

C = 5.346h I(~) 
EJ h 

here, h. the height of cross section of the beam, a • the depth of the crack and function J{z) has 
the form 

J{z) = 1.8624z"- 3.95z3 + 16.375z4 - 37.226z5 + 76.81z6 -126.9z7 + 172zs -143.97z9 + 66.56z10 • 

Introducing magnitude of the crack by the value: /3" = EJjvL, we have 

Therefore, two limiting cases ca.n be underlined: Undamaged beam: {3 = 0 (or v = oo) because for 
a= 0 function I{a/ h)= 0, and completely damaged one, i.e. a= h, for which 

fJ = {300 = 5.346{h/L)I{1) = 115.15{h/LJ. 

Y=Yo 

1----44~-----:¢ 
I L 

a) b) 

Fig.1. Model of the cracked beam 

2. Frequency equation 

Condidering only the fiexure of the beam, the equation of free bending vibration in the interval 
{0, L), except the ends y = 0, y =Land crack position y = y0 , has the form 

EJa•w(y, t) Fa2W(y, t) _ 
ay• + P at2 - o. (2.1) 

The function W{y, t) satisfies boundary conditions at the ends of beam and compatibility condition 
for displacements, moments and shear forces of both segments at the crack 

W{yo- O, t) = W(x+ 0, t); 

W"(z-O,t) =W"(z+O,t); 

EJW"'(Yo - O, t) = EJW"'{Yo + O, t); 

vW'(Yo - 0, t) + EJW" (Yo- O, t) = vW'(Yo + O, t). 
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The notation y0 - 0 and Yo + 0 mean that they belong to segments 1, 2 respectively in both 
sides of the crack position. 

By the transformation 1 = yf L- 0.5 the equation (2.1) becomes 

EJa•w(,, t) FL• a2w(,, t) = 
a1• + P at2 

0 

with the condition {2.2), now taken the form 

W(x-O,t) =W(x+O,t); 

W"(x-O,t) = W'~(x+O,t); 

W"'(x- 0, t) = W"'(x + 0, t); 

W'(x-O,t)+,BW"(x-O,t) =W'(x+O,t) 

where x =Yo/ L- 0.5 and ,8 = EJ fvL. 

Assuming W(\", t) = ,P(I") sinwt, where w -natural frequency and 4>(1") - mode shape, last 
equation and condition lead to 

and 

.p(IV) (s')- ,\4 ¢(1") = 0; -0.5 :0; i :0; 0.5; 

,P{x- 0) = ,P(x + 0); 4>"(x- o) = ,;"(x + 0); 4>"'(x- o) = 4>"'(x + 0); 

,P'(x- 0) + ,B,P"(x- 0) = ,P'(x + 0). 

Suppose that at the ends of the beam, i = ±0.5, boundary conditions are given as one of the 
well known classical cases, for exaiD.ple, fixed ends. In general, bending vibration mode shape of 
this beam can be written in the form: 

-0.5 :0; i <X 

X < i :0; 0.5. 
(2.3) 

Functions L, (>), i = 1, ... , 4 are determined by boundary condition at the ends and all of 
them satisfy equation (these functions for various boundary conditions are given in Appendix 1): 

C = {C1, C2 , C3 , C4V are constants determined together with so-called frequency parameter,\ 
from compatibility condition at the x 

,P,(x) = .P2(x); ,P~(x) = ,P~(x); ,P~'(x) = ,P~'(x), 
,P~(x) + ,B,P~(x) = ,P~(x), 

where the prime denotes differentiation with respect to ) . 

Substituting (2.3) into (2.4) yields: 

A(A, x, ,B)C = O, 
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where matrix A has the form: 

{ 

L,(e,) 

A _ L~(6) +,BH~(e,) 
- L~(6) 

L~'(6) 

(2.6) 

6 = A(x + 0.5); 6 = A(x- 0.5) 
' 

For existence of C = {G1, C2 , Cs, C4 V, A must satisfy equation: 

det A(A, x, ,B)= F(A, x, ,B) = 0, (2.7) 

called frequency equation. Frequency parameter A, as a solution of (2.7), is a function of damage 
parameters x, {3: 

A= A(x, ,B), 

and the natural frequency of the beam will be: 

or f = 2_ {E.i(~) 2 
· 21ry PF L 

Introducing matrices: 

and 

we get 

{ 

L,(€,) 
L~(e,J 

Ao(A, x) = L~(e,) 
L~'(e,) 

L2(e,J 
L~(6) 
L~(6) 
L~'(6) 

L2(6) 
H~(€,) 

0 

L~'(6) 

-Ls(€2) 
0 

-L~(€2J 
-L~'(e21 

Fo(A, x) = detAo(A, x) = F(,\, x, 0), 

-L.(6) } 
. 0 
-£1(6) , 
-£1'(6) 

F ( ' ) _ d A(' ) _ 8F(A,x,,B) 
1 A 1 X - et 1 A 1 X - a j3 

(2.8) 

(2.9) 

(2.10) 

In fact, the first equality of (2.10) is evident by substituting ,B = 0 into (2.6). The second one can 
be obtained by differentiating determinant det A(,\, x,,B) with respect to ,B. Considering (2.10) as 
a differential equation ofF(,\, x, ,B) with initial condition at ,B = 0, we have: 

F(A, x, ,B) = F1 (,\, x),B + F0 (,\, x). (2.11) 

Thus, the frequency equation (2. 7) can be rewritten as: 

,BF1 (,\,x) + Fo(,\,x) = 0. (2.12) 

From here, particular equations, corresponding limiting cases of damage will take the form: 

Fo(A, x) = det A0 (,\, x) = 0, (2.13) 
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for undamaged beam, and: 
F,(-',x) = detA,(A,x) =0, (2.14) 

for other limiting case. Let -'(.8, x), A a, -'1 (x) be the roots of equl>tions (2.12), (2.13) and (2.14) 
respectively. 

3. Sensitivity of the frequencies 

Let us consider, at first, equation (2.13). Differentiating function Fa(-', x) = det Ao(A, x) with 
respect to x gives 

a Fa~~, x) = 0 or Fa(-', x) =Fa(-'). 

Consequently, as well known the frequencies of undamaged beam do not depend on position x. 

Since A(.8, x) is a solution of (2.12) we have 

.8F![).(.8, x), xj + Fo[-'(.8, x)J = 0, 

consequently 

- - a-' - a-' - a-' - - a;.. 
F,(.B, x) + .8Fv. ap +Fa>. ap ;, o, .8Fu ax+ pF,. +Fa>. ax = 0, 

- - - M -
F 1 = F1 [A(.8,x),xj = F,(p,x), Fu = a-' [-'(,B,x),xj = Fu(.B,x), 

- aF, - - aFa -
F,. = ax [-'(.8, x), xj = F,.(p, x), Fo>. = a;.. [).(.8, x)J = Fo>.(.B, x) 

(with the functions F1>., F1., Fa>. calculated from given functions Fa, F1 ) 

In the end, we get 

F1(.8,x) 
.8Fn(.8,x) + Fa>.(.B,x) ' 

F,.(p, x) 
.BF,>.(.B, x) + Fa>.(.B, x) 

In the case, if .8 == .Bo + 6.8, x = xo +ox, we get approximately 

LlA = Rp(.8a,xa)6.8+ R,(.Ba,xo)6x. 

(3.1) 

(3.2) 

(3.3) 

This equation may be useful for detection of the crack parameters if the changes of the frequencies 
will be given. 

Furthermore, let us consider the position x of crack, at which the change of the frequency 
parameter ..\. (/3, x) in comparison with one of uncracked beam ..\. 0 reaches extremum. 

At first 1 we consider the crack position x*, for which the crack magnitude does not affect the 
natural frequencies of the beam. 

Theorem 1. The critical points x• can be found from the equation 

F1(-'a, x•) = 0, (3.4) 

where A a is the solution of (2.13), i.e. Fa(-'o) = 0. 
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In fact, it means that at such position x* the solution of the equations (2.12) :1(,8, x*) = const 
1/,8 or 

:~ ;; R.p(,B, x*) = ~~-=-F-=.1 ,_(,8-'-, ~x*d-)~~.,.. = 0 
,BF,.(,B,x*) + Fo>.(,B,x*) ' 

1/ ,8. 

From here it follows that Fl[:\(,8, x*), x*J = O, 1/,8 and due to (3.2) it yields F 0 [:1(,8, x*)J = 0. 
Therefore, it must be :1(,8, x*) = :1°. Thus, we have . · · 

:I(,B,x*) = :1 1(x*) = :1°, 1/,8. 

So, at the position x* equations (2.13), (2.14) have the same solution :1°. The position x*, if 
it exists, is called critical point for given A 0 . Certainly, critical point is related with every solution 
:1° separately, i.e. various solution :1° of the equation (2.13) may have different critical points. In 
addition, a given solution may have either no or more than one critical point. On the other hand, 
critical points are that, at which corresponding bending moment is equal to zero. Because of this, 
damage occurred at the critical points of a mode has no in:H.uence on the corresponding natural 
freq1.1ency. 

Now we investigate those points in the beam, at which the change of frequencies is a maximum 
for a value of crack magnitude ,8 ;i 0. Such a position denoted by xm will be called the most 
sensitive. 

Theorem 2. The most sensitive position xm of a crack is that, where for given f3 > 0 the equations 
(2.12} and 

F1.(:1, x) = 0 (3.5) 

have the common solution with respect to A. 

As shown in the Theorem 1, minimal change of natural frequencies, which are equal to zero, has 
appeared at the critical points and corresponds to f3 = 0, while common solution of the equations 
(2.12) and (3.5) may contain the critical points only in the case of uncracked beam (,8 = 0). When 
beam has cracked (,8 > 0) the common solution of the mentioned equations consist of only the 
most sensitive points. 

Likely to the critical crack position, the most sensitive crack position is also related to each 
frequency differently. Every frequency has itself most sensitive to the crack position, so that 
knowing these positions may be helpful for crack detection. 

4. Numerical examples 

For illustration, here three wellknown cases of boundary supports (simply supported, clamped 
both ends and cantilever) are investigated numerically. Solutions of equations (2.13), (3.1) are 
calculated and given in the Table 1. In particularity, for simply supported beam analytkal solutions 
of the equations are 

AZ=k1f' 1 k=1,2, ... ; Xkm=-0.5+m/k, m=l, ... ,k-1. 

General solution of the equation (2.12) and functions (3.2) have been calculated as a function 
of x for different values of ,8. Graphics of the obtained functions are presented in Fig. 2, 3, from 
which one can make the following conclusions: 

-Straight lines corresponding zero crack magnitude (undamaged) really show the independence 
of the frequencies on the position x, 

~ Frequencies decrease with the growth of the crack magnitude at any position of the crack. 
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a) Simply supported beam 
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c) Cantilever 

8.0 
4.8 r,o 
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4.4 
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6.5 

3.6 
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3.2 

3.0 
-a.s -0.3 -0.1 0.1 0.3 

6'.5 
-0.5 -0.3 -0.1 0.1 

Fig. 2. The dependence of three frequencies on the crack position X for different values of 
crack magnitude (from 0.0 to 4.0) in different cases of the boundary conditions 
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a) Simply supports 
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- The existence of the critical and most sensitive points is clearly shown in the figure, they 
validate the theorem 1, 2 and given in Table 1. 

- In addition, graphics in Fig. 3 show also the positions of crack, at which for given f3 the 
change of the frequencies will be maximum and the more crack magnitude the lower frequencies. 

Table 1. Three first frequencies of undamaged beam and corresponding 
their critical points in different cases of boundary supports 

Type of Value of the Critical points Total 
boundary freq. parameters quan-
condition of intact beam 1 2 3 4 tity 

1. Simply A~= 3.14159 0 
supported Ag = 6.28319 0.9 1 

beam Ag = 9.42478 - 0.1666 + 0.1666 2 

A~= 1.87510 0 
2. Cantilever Ag = 4.69409 - 0.2836 1 

Ag = 7.85474 - 0.3673 - 3.9E-3 2 

3. Beam A~= 4.73004 - 0.2759 + 0.2759 2 
with Ag = 7.85318 - 0.3674 0.0 + 0.3674 3 

fixed ends >.g = 10.9954 - 0.4046 - 0.1432 + 0.1432 + 0.4046 4 

5. Conclusion 

The main results obtained in this study can be underlined as follows: 

1. While the previously published papers have dealt with the cracked beam in particular 
cases of the boundary support{3, the present work gives general equations for analyzing natural 
frequencies in dependence on the crack parameters. These equations can be efficiently used to 
detect the position and magnitude of the crack by measurements of natural frequencies. 

2. The equations established have been used for investigating the natural frequencies aS 
function of crack parameters in the classical cases of boundary conditions. Here, there have been 
carried out the positions of the crack, at which the crack magnitude does not influence on the 
natural frequencies. This fact is useful for detection of the crack position if a changeless of some 
measured frequencies in comparison with those of the undamaged beam will be recognized. 

3. The numerical results confirm the efficiency of the equations and exactness of the theoretical 
results. One shows also that the change of the frequencies is more considerable at the small values 
of crack magnitude. 

4. The crack detection problem using the equations will be investigated in an other paper. 

This publication is completed with financial support from the National Basic Research Pro
gramme in Nat ural Sciences. 
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Appendix 1. Functions L3(x), j = 1, ... , 4 

Introducing functions 

satisfying 

K,(E) =sinE- sh €; K3(€) =sinE+ sh €; 

Kz(e) =cos E- ch€; K.(e) = cos€ + ch€; 

K; = Kz, K~ = -K3, K~ = K., K~ = -K, 

the functions L, (E), Lz (E), £3( E), £4 (E) in matrices A,, Ao for different cases of boundary condi
tions have the following form 

1. Simply supported beam 

L,(E) = L3(e) =sin €; Lz(E) = L.(e) =shE 

L~(E) = L~(E) =cos €; L;(E) = L~(e) = ch E 

L'{(E) = L~(e) =-sin €; L~(e) = L~(e) =shE 

L1'W = L~'(E) = -cos€; L~'(E) = L~'(e) = ch€ 

2. Beam with fixed ends 

L,(E) = L3(e) = K,(€); 

L~(€) = L~(e) = Kz(€); 

L1(E) = L~(e) = -K3(E); 

Lz(E) = L.(E) = Kz(€); 

L;(e) = L~(E) = -K3(€); 

. L~(e) = L~(E) = -K.(€); 

In this case, we have a symmetrical function F1 (>., x) with respect to x. 

3. Cantilever beam 

L,(E) = KI(E); 

L~(E) = Kz(E); 

L~(e) = -K3(€); 

L~'(e) = -K.(€); 

Lz(e) = Kz(€); 

L;(e) = -K3(€); 

L~(€) = -K.(E); 

L~'(e) = K,(€); 

L.(E) = K3(€); 

L;(e) = K•(€); 

L~(€) = -K,(€); 

L~'(E) = -Kz(€); 
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PHAN TicH TAN s6 RIENG cDA DAM c6 VET NUT 

Tren c& s& m8 hinh ve't nu-t dtrg-c m8 t.i b~ng m{it 10 xo xo£n ngi hai phln d'am rna ve't nti-t 
t~o nen: 

- Xay dvng dU"qc cac phrrong trlnh tin so tling quat cho cac di~u ki~n bien khic nhau va phv 
th u{lc vao ca.c tham s5 v~t mrt nhtr vi tri va m-6.-c d9 mi-t; 

- Ph3n tiCh sv phv, thu9c cda t'an si5 rieng dOi v&i ccic di~u ki~n hie~ kh<i.c nhau vao ccic tham 
s5 v€t nu-t; 

- Sv phv thui)c nay drrqc nghien CtrU bbg so va dlX<;YC minh hga b~ng cac hac tranh d"ay du 
qua cac dl> thj va b<l.ng bi~u. 

Nhii-ng ke't qua nay Ia ca sa quan trqng cho vi~c phit hi~n va xtl- ly cac v~t ntrt trong cac k~t 
c£u cOng trlnh thl!c nhll c'a.u, c{>t di~n hay c<i.c nha cao t'S.ng v.v ... 
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