INTERACTION BETWEEN THE ELEMENTS CHARACTERIZING THE FORCED AND PARAMETRIC EXCITATIONS

Nguyen Van Dao
Vietnam National University, Hanoi,

Abstract

In nonlinear systems, the first order of smallness terms of nonresonance forced and parametric excitations have no effect on the oscillation in the first approximation. However, they do interact one with another in the second approximation.

Using the asymptotic method of nonlinear mechanics [1] we obtain the equations for the amplitudes and phases of oscillation. The amplitude curves are drawn by means of a digital computer. The stationary oscillations and their stability are of special interest.

1. Construction of approximate solutions

The nonlinear system under consideration in this paper is governed by the differential equation

$$
\begin{equation*}
\ddot{x}+\omega^{2} x=\varepsilon[q \cos (2 \omega t+\chi)+p x \cos \omega t]+\varepsilon^{2}\left(\Delta x-2 h \dot{x}-\beta x^{3}\right), \tag{1.1}
\end{equation*}
$$

where $\varepsilon^{2} \Delta=\omega^{2}-1$ and 1 is natural frequency. The terms with q and p represent the forced and parametric excitations, respectively. Both of them are in nonresonance. The forced excitation will be in resonance when it has frequency ω instead of 2ω. In contrary, the parametric excitation will be in the principal resonance when it has frequency 2ω instead of ω.

The solution of the equation (1.1) is found in the form

$$
\begin{equation*}
x=a \cos \theta+\varepsilon u_{1}(a, \psi, \theta)+\varepsilon^{2} u_{2}(a, \psi, \theta)+\varepsilon^{3} \ldots, \quad \theta=\omega t+\psi, \tag{1.2}
\end{equation*}
$$

where a and ψ must be determined from the following differential equations

$$
\begin{align*}
\frac{d a}{d t} & =\varepsilon A_{1}(a, \psi)+\varepsilon^{2} A_{2}(a, \psi)+\ldots \tag{1.3}\\
\frac{d \psi}{d t} & =\varepsilon B_{1}(a, \psi)+\varepsilon^{2} B_{2}(a, \psi)+\ldots
\end{align*}
$$

The functions $u_{i}(a, \psi, \theta)$ are periodic with period 2π with respect to both angular variables ψ and θ and do not contain the first harmonics $\sin \theta, \cos \theta$ and $A_{i}(a, \psi)$, $B_{i}(a, \psi)$ are periodic functions with period 2π with respect to the angular variable ψ. For determination of these functions, we will use the procedure of direct differentiations and substitutions into the original equation (1.1) and subsequently equating firstly terms with equal powers of ε and then terms with equal harmonics $\sin \theta, \cos \theta$.

Comparing the coefficients of ε^{1} in (1.1) we obtain

$$
\begin{align*}
-2 \omega A_{1} \sin \theta-2 a \omega B_{1} \cos \theta & +\omega^{2}\left(\frac{\partial^{2} u_{1}}{\partial \theta^{2}}+u_{1}\right)=q \cos [2(\theta-\psi)+\chi] \\
& +a p \cos (\theta-\psi) \cos \theta \tag{1.4}
\end{align*}
$$

Comparing the harmonics in (1.4) gives:

$$
\begin{align*}
A_{1}= & B_{1}=0 \tag{1.5}\\
u_{1}= & \frac{p a}{2 \omega^{2}} \cos \psi-\frac{1}{3 \omega^{2}}\left[q \cos (2 \psi-\chi)+\frac{p a}{2} \cos \psi\right] \cos 2 \theta \\
& -\frac{1}{3 \omega^{2}}\left[q \sin (2 \psi-\chi)+\frac{p a}{2} \sin \psi\right] \sin 2 \theta \tag{1.6}
\end{align*}
$$

Comparing the coefficients of ε^{2} in (1.1) we get

$$
\begin{align*}
-2 \omega A_{2} \sin \theta-2 \omega a B_{2} \cos \theta & +\omega^{2}\left(\frac{\partial^{2} u_{2}}{\partial \theta_{2}}+u_{2}\right)=p u_{1} \cos \omega t+\Delta a \cos \theta \\
& +2 h \omega a \sin \theta-\beta a^{3} \cos ^{3} \theta \tag{1.7}
\end{align*}
$$

Equating the coefficients of the first harmonics $\sin \theta$ and $\cos \theta$ in (1.7) we obtain

$$
\begin{align*}
& A_{2}(a, \psi)=-h a-\frac{p^{2} a}{8 \omega^{3}} \sin 2 \psi+\frac{p q}{12 \omega^{3}} \sin (\psi-\chi) \tag{1.8}\\
& B_{2}(a, \psi)=-\frac{\Delta}{2 \omega}-\frac{p^{2}}{12 \omega^{3}}+\frac{3 \beta}{8 \omega} a^{2}-\frac{p^{2}}{8 \omega^{3}} \cos 2 \psi+\frac{p q}{12 \omega^{3} a} \cos (\psi-\chi) .
\end{align*}
$$

So, in the second approximation one has:

$$
\begin{align*}
x=a \cos \theta & +\varepsilon\left\{\frac{p a}{2 \omega^{2}} \cos \psi-\frac{1}{3 \omega^{2}}\left[q \cos (2 \psi-\chi)+\frac{p a}{2} \cos \psi\right] \cos 2 \theta\right. \\
& \left.-\frac{1}{3 \omega^{2}}\left[q \sin (2 \psi-\chi)+\frac{p a}{2} \sin \psi\right] \sin 2 \theta\right\} \tag{1.9}
\end{align*}
$$

with a and ψ determined by the equations

$$
\begin{align*}
\frac{d a}{d t} & =-\frac{\varepsilon^{2}}{2 \omega}\left[2 h a \omega+\frac{p^{2} a}{4} \sin 2 \psi-\frac{p q}{6} \sin (\psi-\chi)\right] \tag{1.10}\\
a \frac{d \psi}{d t} & =-\frac{\varepsilon^{2}}{2 \omega}\left[\left(\Delta+\frac{p^{2}}{6}\right) a-\frac{3}{4} \beta a^{3}+\frac{p^{2} a}{4} \cos 2 \psi-\frac{p q}{6} \cos (\psi-\chi)\right]
\end{align*}
$$

2. Stationary solutions

By putting $R=\frac{p^{2}}{4}, E=\frac{-p q}{6}$, we have the following equations for stationary solutions:

$$
\begin{equation*}
f_{0}=0, \quad g_{0}=0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{0}=2 \omega h a_{0}+R a \sin 2 \psi_{0}+E \sin \left(\psi_{0}-\chi\right) \\
& g_{0}=\left(\Delta+\frac{p^{2}}{6}\right) a_{0}-\frac{3}{4} \beta a_{0}^{3}+R a_{0} \cos 2 \psi_{0}+E \cos \left(\psi_{0}-\chi\right)
\end{aligned}
$$

or equivalently

$$
\begin{aligned}
& f_{0} \cos \psi_{0}-g_{0} \sin \psi_{0}=0 \\
& f_{0} \sin \psi_{0}+g_{0} \cos \psi_{0}=0
\end{aligned}
$$

From here we obtain

$$
\begin{align*}
& 2 \omega h a_{0} \sin \psi_{0}-\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{2}+R\right)\right] a_{0} \cos \psi_{0}+E \cos \chi=0, \\
& {\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}-R\right)\right] a_{0} \sin \psi_{0}+2 \omega h a_{0} \cos \psi_{0}-E \sin \chi=0 .} \tag{2.2}
\end{align*}
$$

Note. The equations (2.2) have the form

$$
\begin{equation*}
A \sin \psi_{0}+B \cos \psi_{0}=C \tag{1}
\end{equation*}
$$

From (1) it follows

$$
\begin{equation*}
A^{2} \sin ^{2} \psi_{0}=C^{2}+B^{2} \cos ^{2} \psi_{0}-2 B C \cos \psi_{0} \tag{2}
\end{equation*}
$$

Substituting $\sin ^{2} \psi$ by $1-\cos ^{2} \psi$ we obtain the quadratic equation with respect to $\cos \psi$:

$$
\begin{equation*}
\left(A^{2}+B^{2}\right) \cos ^{2} \psi_{0}-2 B C \cos \psi_{0}+C^{2}-A^{2}=0 \tag{3}
\end{equation*}
$$

The reality condition of $\cos \psi$ is

$$
\Delta_{*}=B^{2} C^{2}-\left(A^{2}+B^{2}\right)\left(C^{2}-A^{2}\right)=A^{2}\left(A^{2}+B^{2}-C^{2}\right) \geq 0,
$$

or

$$
\begin{equation*}
A^{2}+B^{2} \geq C^{2} \tag{2.3}
\end{equation*}
$$

Applying the reality condition (2.3) to the equations (2.2) we have:

$$
\begin{equation*}
a_{0}^{2}\left\{4 \omega^{2} h^{2}+\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}+R\right)\right]^{2}\right\} \geq E^{2} \cos ^{2} \chi \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{0}^{2}\left\{4 \omega^{2} h^{2}+\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}-R\right)\right]^{2}\right\} \geq E^{2} \sin ^{2} \chi \tag{2.5}
\end{equation*}
$$

3. System without friction ($\mathbf{h}=\mathbf{0}$)

In this case, the equations (2.2) take the form

$$
\begin{align*}
& {\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}+R\right)\right] a_{0} \cos \psi_{0}=E \cos \chi} \tag{3.1}\\
& {\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}-R\right)\right] a_{0} \sin \psi_{0}=E \sin \chi}
\end{align*}
$$

The following subcases should be identified:
a) Subcase 1.

$$
\begin{equation*}
\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}+R\right)\right]\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}-R\right)\right] \neq 0 \tag{3.2}
\end{equation*}
$$

Eliminating the phase ψ_{0} from (3.1) we obtain the equation for the resonance curve C_{1} :

$$
\begin{equation*}
W\left(\omega^{2}, a_{0}^{2}\right)=0 \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
W\left(\omega^{2}, a_{0}^{2}\right)=\frac{E^{2} \cos ^{2} \chi}{\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}+R\right)\right]^{2}}+\frac{E^{2} \sin ^{2} \chi}{\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}-R\right)\right]^{2}}-a_{0}^{2} \tag{3.4}
\end{equation*}
$$

b) Subcase 2 .

$$
\begin{equation*}
\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}+R\right)=0 \tag{3.5}
\end{equation*}
$$

So, the resonance curve C_{2} is given by the equation

$$
\begin{equation*}
\frac{3}{4} \beta a_{0}^{2}=\omega^{2}-1+\frac{p^{2}}{6}+R . \tag{3.6}
\end{equation*}
$$

In this case, the equations (2.2) become

$$
\begin{aligned}
0 . a_{0} \cos \psi_{0} & =E \cos \chi, \\
2 R a_{0} \sin \psi_{0} & =E \sin \chi,
\end{aligned}
$$

and therefore,

$$
\begin{gather*}
\cos \chi=0 \Rightarrow \chi=\frac{\pi}{2}, \frac{3 \pi}{2} \\
\sin \chi= \pm 1 \text { and } \psi_{0}= \pm \arcsin \frac{E}{2 R a_{0}} \\
\left(\frac{E}{2 R a_{0}}\right)^{2} \leq 1 \Rightarrow a_{0}^{2} \geq \frac{E^{2}}{4 R^{2}} \tag{3.7}
\end{gather*}
$$

c) Subcase 3 .

$$
\begin{equation*}
\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}-R\right)=0 \tag{3.8}
\end{equation*}
$$

The resonance curve C_{3} has form:

$$
\begin{equation*}
\frac{3}{4} \beta a_{0}^{2}=\omega^{2}-1+\frac{p^{2}}{6}-R . \tag{3.9}
\end{equation*}
$$

From the equations (2.2) we obtain

$$
\begin{aligned}
O . a \sin \psi_{0} & =E \sin \chi \\
2 R a_{0} \cos \psi_{0} & =-E \cos \chi,
\end{aligned}
$$

and therefore,

$$
\begin{align*}
& \sin \chi=0 \Rightarrow \chi=0, \pi \\
& \cos \chi= \pm 1, \quad \psi=\arccos \frac{ \pm E}{2 R a_{0}} \Rightarrow a_{0}^{2} \geq \frac{E^{2}}{4 R^{2}} \tag{3.10}
\end{align*}
$$

Last two subcases show that, if $\chi \neq 0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}$, the resonance curves C_{2}, C_{3} do not exist. If $\chi=\frac{\pi}{2}, \frac{3 \pi}{2}$, then beside the resonance curve C_{1} there is still
a semi-straight line C_{2} in the plane (a^{2}, ω^{2}) with $a_{0}^{2} \geq \frac{E^{2}}{4 R^{2}}$. If $\chi=0, \pi$, then beside the curve C_{1} there is still a semi-straight line C_{3} in the plane (a_{0}^{2}, ω^{2}) with $a_{0}^{2} \geq \frac{E^{2}}{4 R^{2}}$.

4. System with friction ($h \neq 0$)

Now, we consider the equations (2.2), denoting

$$
\begin{align*}
D & =4 \omega^{2} h^{2}+\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}\right)\right]^{2}-R^{2} \\
D_{1} & =\left\{\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}+R\right)\right] \sin \chi-2 \omega h \cos \chi\right\} E \tag{4.1}\\
D_{2} & =\left\{2 \omega h \sin \chi+\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}-R\right)\right] \cos \chi\right\} E
\end{align*}
$$

a) Subcase 1. $D \neq 0$

In this subcase we have

$$
\begin{gather*}
a_{0} \sin \psi=\frac{D_{1}}{D}, \quad a_{0} \cos \psi=\frac{D_{2}}{D} \\
W=D_{1}^{2}+D_{2}^{2}-a_{0}^{2} D^{2}=0 \tag{4.2}
\end{gather*}
$$

For $\chi=0$, the equation (4.2) takes the form

$$
\begin{align*}
& \left\{4 \omega^{2} h^{2}+\left[\Delta+\frac{p^{2}}{6}-\frac{3}{4} \beta a_{0}^{2}-R\right]^{2}\right\} E^{2} \\
& -a_{0}^{2}\left\{R^{2}-\left[\frac{3}{4} \beta a_{0}^{2}-\left(\Delta+\frac{p^{2}}{6}\right)\right]^{2}-4 \omega^{2} h^{2}\right\}^{2}=0 \tag{4.3}
\end{align*}
$$

To solve this equation on digital computer, it is convenient to write it in the form of an algebraic equation relatively to the variable δ :

$$
\begin{align*}
& a_{0}^{2} \delta^{4}-3 \beta a_{0}^{4} \delta^{3}+\left[-E^{2}+a_{0}^{2}\left(\frac{27}{8} \beta^{2} a_{0}^{4}+8 h^{2} \omega^{2}-2 R^{2}\right)\right] \delta^{2} \\
& +\left[2 E^{2}\left(\frac{3}{4} \beta a_{0}^{2}+R\right)+3 \beta a_{0}^{4}\left(R^{2}-\frac{9}{16} \beta^{2} a_{0}^{4}-4 h^{2} \omega^{2}\right)\right] \delta \tag{4.3a}\\
& +a_{0}^{2}\left(R^{2}-4 h^{2} \omega^{2}-\frac{9}{16} \beta^{2} a_{0}^{4}\right)^{2}-E^{2}\left[4 h^{2} \omega^{2}+\left(\frac{3}{4} \beta a_{0}^{2}+R\right)^{2}\right]=0
\end{align*}
$$

where $\delta=\Delta+\frac{p^{2}}{6}, \omega^{2} \approx 1$.

The relation (4.3a) gives the dependence of the amplitude a on the frequency ω (through δ) and is presented for the parameters: $h=10^{-3}, R=0.02, E=10^{-2}$, $\beta=0.08$ (Fig. 1), $\beta=-0.08$ (Fig. 2) and $h=0, R=0.02, E=10^{-2}, \beta=0.08$ (Fig. 3), $\beta=-0.08$ (Fig.4). When $h=0$, the equation (4.3) degenerates into a double equation $\delta-\frac{3}{4} \beta a_{0}^{2}-R=0$ (curve 2, Fig. 3, 4) and $E^{2}-a_{0}^{2}\left(\delta-\frac{3}{4} \beta a_{0}^{2}+R\right)^{2}=$ 0 (curve 1, Fig. 3, 4).

Fig. 1. Amplitude curves for the case $\beta>0, h>0$.
Curves 2 serve as the boundary of stability zone $M=z_{0}^{2}+u_{0}^{2}-v_{0}^{2}=0$.

Fig. 2. Amplitude curves for the case $\beta<0, h>0$.
Curves 2 serve as the boundary of stability zone $M=z_{0}^{2}+u_{0}^{2}-v_{0}^{2}=0$.

Fig. 3. Amplitude curves in absence of friction and for the case $\beta>0$.

Fig. 4. Amplitude curves in absence of friction and for the case $\beta<0$.
b) Subcase 2. $D=0$

In this subcase we have the following equation for the resonance curve:

$$
\begin{equation*}
\frac{3}{4} \beta a_{*}^{2}=\omega^{2}-1+\frac{p^{2}}{6} \pm \sqrt{R^{2}-4 \omega^{2} h^{2}} . \tag{4.4}
\end{equation*}
$$

The expressions (4.2) give $D_{1}=D_{2}=0$, or equivalently,

$$
D_{1} \cos \chi-D_{2} \sin \chi=0, \quad D_{1} \sin \chi+D_{2} \cos \chi=0
$$

Substituting here the values of D_{1} and D_{2} from (4.1) we get

$$
\begin{equation*}
\omega_{*}=-\frac{R}{2 h} \sin 2 \chi, \quad \frac{3}{4} \beta a_{*}^{2}=\omega_{*}^{2}-1+\frac{p^{2}}{6}-R \cos 2 \chi . \tag{4.5}
\end{equation*}
$$

Taking into account these values of a and ω, the condition (2.4) takes the form

$$
a_{*}^{2} \geq \frac{E^{2}}{4 R^{2}}
$$

5. Stability of Oscillations

We now consider the stability of stationary oscillations with the amplitude a and phase ψ determined by the equation (1.10):

$$
\begin{align*}
\frac{d a}{d t} & =-\frac{\varepsilon^{2}}{2 \omega}[z+v \sin 2 \psi+E \sin (\psi-\chi)] \\
\frac{a d \psi}{d t} & =-\frac{\varepsilon^{2}}{2 \omega}[u+v \cos 2 \psi+E \cos (\psi-\chi)] \tag{5.1}
\end{align*}
$$

where

$$
\begin{equation*}
R=\frac{p^{2}}{4}, E=\frac{-p q}{6}, \delta=\Delta+\frac{p^{2}}{6}, z=2 h \omega a, \quad v=R a, \quad u=\delta a-\frac{3}{4} \beta a^{3} . \tag{5.2}
\end{equation*}
$$

Stationary values a_{0}, ψ_{0} of equations (5.1) are determined from the equations: $f=0, g=0$, where

$$
\begin{align*}
f & =z_{0}+v_{0} \sin 2 \psi_{0}+E \sin \left(\psi_{0}-\chi\right) \\
g & =u_{0}+v_{0} \cos 2 \psi_{0}+E \cos \left(\psi_{0}-\chi\right) \tag{5.3}\\
z_{0} & =2 h \omega a_{0}, \quad v_{0}=R a_{0}, \quad u_{0}=\delta a_{0}-\frac{3}{4} \beta a_{0}^{3}
\end{align*}
$$

The following equations are equivalent to $f=g=0$:

$$
\begin{aligned}
& f \sin \left(\psi_{0}-\chi\right)+g \cos \left(\psi_{0}-\chi\right)=0 \\
& f \cos \left(\psi_{0}-\chi\right)-g \sin \left(\psi_{0}-\chi\right)=0
\end{aligned}
$$

which give:

$$
\begin{aligned}
& \left(z_{0}-v_{0} \sin 2 \chi\right) \sin \left(\psi_{0}-\chi\right)+\left(u_{0}+v_{0} \cos 2 \chi\right) \cos \left(\psi_{0}-\chi\right)=-E \\
& \left(-u_{0}+v_{0} \cos 2 \chi\right) \sin \left(\psi_{0}-\chi\right)+\left(z_{0}+v_{0} \sin 2 \chi\right) \cos \left(\psi_{0}-\chi\right)=0
\end{aligned}
$$

r

$$
\begin{align*}
& \left(v_{0}^{2}-z_{0}^{2}-u_{0}^{2}\right) \cos \left(\psi_{0}-\chi\right)=E\left(u_{0}-v_{0} \cos 2 \chi\right) \tag{5.4}\\
& \left(v_{0}^{2}-z_{0}^{2}-u_{0}^{2}\right) \sin \left(\psi_{0}-\chi\right)=E\left(z_{0}+v_{0} \sin 2 \chi\right)
\end{align*}
$$

rr $v_{0}^{2}-z_{0}^{2}-u_{0}^{2} \neq 0$.
Eliminating the phase ψ_{0} we obtain

$$
\begin{equation*}
W=0 \tag{5.5}
\end{equation*}
$$

there

$$
\begin{equation*}
W=\left(z_{0}^{2}+u_{0}^{2}-v_{0}^{2}\right)^{2}-E^{2}\left[\left(u_{0}-v_{0} \cos 2 \chi\right)^{2}+\left(z_{0}+v_{0} \sin 2 \chi\right)^{2}\right] . \tag{5.6}
\end{equation*}
$$

Denoting $\tilde{a}=a-a_{0}, \tilde{\psi}=\dot{\psi}-\psi_{0}$ we have the following equations in variations:

$$
\begin{align*}
\frac{d \tilde{a}}{d t} & =-\frac{\varepsilon^{2}}{2 \omega}\left\{\left(z_{0}^{\prime}+v_{0}^{\prime} \sin 2 \psi_{0}\right) \tilde{a}+\left[2 v_{0} \cos 2 \psi_{0}+E \cos \left(\psi_{0}-\chi\right)\right] \tilde{\psi}\right\}, \\
a_{0} \frac{d \tilde{\psi}}{d t} & =-\frac{\varepsilon^{2}}{2 \omega}\left\{\left(u_{0}^{\prime}+v_{0}^{\prime} \cos 2 \psi_{0}\right) \tilde{a}-\left[2 v_{0} \sin 2 \psi_{0}+E \sin \left(\psi_{0}-\chi\right)\right] \tilde{\psi}\right\}, \tag{5.7}
\end{align*}
$$

vhere

$$
z_{0}^{\prime}=\left(\frac{d z}{d a}\right)_{a=a_{0}}, \quad v_{0}^{\prime}=\left(\frac{d v}{d a}\right)_{a=a_{0}}, \quad u_{0}^{\prime}=\left(\frac{d u}{d a}\right)_{a=a_{0}}
$$

The characteristic equation of this system of equations is

$$
\begin{equation*}
a_{0} \lambda^{2}+\varepsilon^{2} h \lambda-\frac{\varepsilon^{4}}{4 \omega^{2}} S=0 \tag{5.8}
\end{equation*}
$$

vhere

$$
\begin{align*}
S= & \left(z_{0}^{\prime}+v_{0}^{\prime} \sin 2 \psi_{0}\right)\left[2 v_{0} \sin 2 \psi_{0}+E \sin \left(\psi_{0}-\chi\right)\right] \\
& +\left(u_{0}^{\prime}+v_{0}^{\prime} \cos 2 \psi_{0}\right)\left[2 v_{0} \cos 2 \psi_{0}+E \cos \left(\psi_{0}-\chi\right)\right] \\
= & 2 v_{0} v_{0}^{\prime}+2 z_{0}^{\prime} v_{0} \sin 2 \psi_{0}+2 u_{0}^{\prime} v_{0} \cos 2 \psi_{0} \tag{5.9}\\
& +E\left[\left(z_{0}^{\prime}+v_{0}^{\prime} \sin 2 \psi_{0}\right) \sin \left(\psi_{0}-\chi\right)+\left(u_{0}^{\prime}+v_{0}^{\prime} \cos 2 \psi_{0}\right) \cos \left(\psi_{0}-\chi\right)\right]
\end{align*}
$$

Substituting here the expressions for $v_{0} \sin 2 \psi_{0}, v_{0} \cos 2 \psi_{0}$ from equations $f=0, g=0(5.3)$ we have
$S=2 v_{0} v_{0}^{\prime}-2 z_{0}^{\prime} z_{0}-2 u_{0}^{\prime} u_{0}+E\left[v_{0}^{\prime} \cos \left(\psi_{0}+\chi\right)-z_{0}^{\prime} \sin \left(\psi_{0}-\chi\right)-u_{0}^{\prime} \cos \left(\psi_{0}-\chi\right)\right]$
or

$$
\begin{align*}
S= & 2 v_{0} v_{0}^{\prime}-2 z_{0} z_{0}^{\prime}-2 u_{0} u_{0}^{\prime}+ \tag{5.10}\\
& E\left[\left(v_{0}^{\prime} \cos 2 \chi-u_{0}^{\prime}\right) \cos \left(\psi_{0}-\chi\right)-\left(v_{0}^{\prime} \sin 2 \chi+z_{0}^{\prime}\right) \sin \left(\psi_{0}-\chi\right)\right] .
\end{align*}
$$

Taking into account expressions (5.4) we can write
$S=\frac{d}{d a}\left\{v_{0}^{2}-z_{0}^{2}-u_{0}^{2}\right\}-\frac{E^{2}}{2\left(v_{0}^{2}-z_{0}^{2}-u_{0}^{2}\right)} \cdot \frac{d}{d a}\left\{\left(u_{0}-v_{0} \cos 2 \chi\right)^{2}+\left(z_{0}+v_{0} \sin 2 \chi\right)^{2}\right\}$
or from (5.6):

$$
\begin{equation*}
S=\frac{1}{2\left(v_{0}^{2}-z_{0}^{2}-u_{0}^{2}\right)} \frac{\partial W}{\partial a_{0}}, \quad v_{0}^{2}-z_{0}^{2}-u_{0}^{2} \neq 0 \tag{5.11}
\end{equation*}
$$

Thus, the stability condition takes the form:

$$
\begin{equation*}
M \cdot \frac{\partial W}{\partial a_{0}}>0 \tag{5.12}
\end{equation*}
$$

where $M=z_{0}^{2}+u_{0}^{2}-v_{0}^{2}$.
The resonance curve ($W=0$) divides the plane (a_{0}, ω) into regions, in each of which the expression W has a define $\operatorname{sign}(+$ or -). If moving up along the straight line parallel to the axis a_{0}, we pass from a region $W<0$ to a region $W>0$, then at the point of intersection between the straight line and the resonance curve the derivative $\partial W / \partial a_{0}$ is positive. So, this point corresponds to a stable state of oscillation if $M>0$ and to an unstable one if $M<0$. On the contrary, if we pass from a region $W>0$ to a region $W<0$, then the point of intersection corresponds to a stable of oscillation if $M<0$ and to an unstable one if $M>0$.

In Figs 1 and 2 equations $M=0$ are presented by curves 2 and in the stippled region the expression M is negative. The heavy lines correspond to a stable state of oscillations, where the stability conditions (5.12) are satisfied.

6. Conclusion

The interaction between the elements characterizing the forced and parametric excitations has been studied. The first order of smallness terms of nonresonance forced and parametric excitations have no effect on the oscillation in the first approximation. The equations (1.10) show that these terms are not in equality. The effect of forced excitation (q) exists only with the presence of parametric excitation
(p), while the effect of parametric excitation will exist even with the absence of forced one ($q=0$). The stationary oscillations and their stability in the system with and without friction are of special interest.

Acknowledgment

The author is grateful to Dr Tran Kim Chi for numerical calculations on the digital computer. This work was financially supported by the Council for Natural Sciences of Vietnam.

References

1. Mitropolski Yu. A., Nguyen Van Dao. Applied asymptotic methods in nonlinear oscillations. Kluwer Academic Publishers, 1997.
2. Nguyen Van Dinh. Interaction between parametric and forced oscillations in fundamental resonance. J. of Mechanics, NCNST of Vietnam, Tom 17, No 3, 1995.

Received November 15, 1997

TƯONG TÁC GIỮA CÁC PHÀ̀N TỬ ĐẶC TRUNG CHO KÍch ĐộNG CUỠNG BỨC VÀ THÔNG SỐ

Trong các hệ phi tuyến, những kích động cưỡng bức và thông số có độ bé bậc nhất và không cộng hưởng sẽ không có ảnh hưởng đến dao động trong xấp xì thứ nhất. Tuy nhiên, chứng tác động qua lại nhau trong xấp xỉ thứ hai và được nghiên cứu trong bài báo này. Kết quả cho thấy ảnh hưởng của thành phần kích động cưỡng bức chỉ xuất hiện khi có tác động của thành phần kích động thông số. Trong lúc đó, tác động của thành phần thông số tồn tại cả khi vắng mặt kích động cưỡng bức. Dao động dừng và sự ôn định của chúng của hệ trong trường hợp không cản và có cản được đặc biệt quan tâm nghiên cứu.

