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ABSTRACT. In this paper the theorem of uniqueness of a classical solution of the system 

of non-linear 1-D Saint Venant equations is proved. This uniqueness theorem is setup for 
the system of non-linear 1-D Saint Venant equations in canonical form under respective 

initial and boqndary condiiions. 

1. Introduction 

The system of 1-D Saint Venant equations describes flows in a river or open 
channel. It became kernel of a mathematical modeling for the river flow simula­
t ion. Problem of uniqueness of a classical solution of this system of equations is 
important especially in the non-linear case. 

2. Boundary Condition for the System of 1-D Saint Venant Equa-
tions · 

2.1. System of 1-D Saint Venant Equations 

The System of 1-D Saint Venant Equations [1] describes a flow in river or 
open channel system. There are several forms of this system (see [2]). In this 
paper, we use the system of 1-D Saint Venant equations in the following form: 

ah ah A au 
-· +u-+ - - =0 
&t ax b ax . 
au ah au . 
- + g- + u - = -g(St- So) at ax ax 

with 0 :::; x :::; L and 0 :::; t :::; T (2.1) 

where: h - Depth of water in the river /channel 
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u- Velocity of the river/channel flow 
A - Cross section area of the river J channel flow 
b - Width of water in the river/ channel 
S 1 - Force due to bottom friction 
Sa- Force due to gravity 

The system of equations (2.1) is d~vised from the system of equations (2.29) in [2] 

assuming that cr~ss section A changes slowly alo~g X d.irecti~n (thus ( aaA) ~ 
X h=const 

0). 

2.2. Canonical Form of the System of 1-D Saint Venant Equations 

The system (2:1) is a system of first order partial differential equations. In 
order to analyze its qualities, it should be re-written in a canonical form (see [3]). 
The method for transforming a system of linear equations into a canonical form 
was presented in detail in [3]. Unfortunately, that technique is not applicable for 
the Saint Venant system of equations (2.1) due to its non-linearity. However (2.1) 
can be transformed into a canonical form by the following steps: 

Step 1. Transforming the system of equations · (2.1) into symmetrical form: For 
this purpose, we present (2.1) in the following ~ector form: 

(2.2) 

where 

A = A(U) = [: ~ ] , [ 
. 0 ] 

f = -g(S1 - So) 

Here matrix A is not symmetrical. So, to make it symmetrical we need the fol­
lowing transform function: 

z = <p(h) (2.3) 

where <p(h) need to be defined so that matrix B derived from (2.2) is a symmetrical 
matrix. It could be proved that <p(h) should have a form of: 

\O(h) = ,(9 j {jdr so 10'(h) = ,f91¥fi> · 
0 . 

{2.4) 

From {2.4) we have <p1(h) > 0 so <p(h) is a monotone increasing f~nction. 
Therefore exists an inverse function h = <p -l ( z). We shall suppose that the 
function h = <p - 1 (z) is smooth. 
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Next, note that 

I A(h) g 
cp (h) . b(h) = cp'(h) = 

gA(h) _ 
b(h) = c 

so the system (2.2) can be re-written in· the following form: 

!._U' + B!_U' = f' at ax 
here: 

B = B(U') = [ ~ :] , f' - [ 0 ] 
- - g(SJ- So) 

It is easy to find that eigenvalues for the matrix B are: 

~~ _:.. u + c and ~2 = u- c 

Lemma 1. The eigenvectors of the matrix Bare: 

and 

The proof of this lemma is simple. 

Step 2. We have the following matrix of the eigenvectors of the matrix B: 

so E - 1 = ! [ 1 1 .] 
2 1 -1 

Since the matrix E (and consequently E-1 ) is not depend on z and u. Thus we 
can transform system (2.2) into the following canonical form: 

(2.5) 

with 

cp(h) + u 
WI = 

2 

cp(h) - u 
W2 = 

. 2 
~1 = u + c ~2 = u :- c 

w = (w1,w2) t/J(w) = g(s1 - So)/2 
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The form of (2.5) is suitable for qualitative investigation of the system of Saint 
Venant equations (2.1). We will use this form in proving the uniqueness of a clas­
sical solution of the system (2.1). In several other papers, the system of equations 
(2.1) is written in the following characteric form: 

_aQ_ +(u±c) _aQ_ +B( - u±c) [-ay +(-u±c)-ay] = [ib+ ( -aA_) ] u 2 - .:._gA_Q-:-'=-'---IQ'--'-1 
at ax . . at ax ax h=const p 

. (2.6) 
where : y - water level; y = h + Ybi Yb - bottom 1evel. Obviously, the form (2.5) is 
simpler than the form (2.6) . In the next section·s, some time, instead of Wt, w 2 , 

we shall use h and u. It is easy to see that 

2.3. Boundary Condition for the System of Equations (2.5) 

For the system of Saint Venant equations in form (2.5) we need initial condi­
tions as: 

wi(x,O) = w[{x) while 0 ~ x ~ L. (2.7) 

The boundary conditions for system (2.5) need to be chosen in dependence of the 
signs of At and A2 at the boundaries. In more details they are : 

a) At x = 0: If 

At < 0; A2 < 0 then no boundary conditions are needed 

At > 0; A2 < 0 then one boundary condition 

Wt (0, t) = wf(t) is needed 

At > 0; A2 > 0 then two boundary conditions 

wt(O, t) ___: wf(t) and w2(0, t) = wf(t) are needed 

b) And at x = L: If 

At < 0; A2 < 0 then two boundary conditions 

w 1 (L, t) = wf(t) and w2 (L, t) = w~(t) are needed 

At > 0; A2 < 0 then one boundary condition 

w2 (L, t) = w~(t) is needed 

(2.8.1) 

(2.8.2) 

(2.8.3) 

(2.8.4) 

(2.8.5) 

At > 0; A2 > 0 then no boundary conditions are needed (2.8.6) 

The boundary conditions (2.8.1)-(2.8.6) are called in common as boundary condi­
tion (2.8). 
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3. Uniqueness Theorem 

3.1. Condition on Bottom Resistance for the Uniqueness Theorem 

We consider function Sf in the form of: (see [2], formula (2.39)) 

St = a(h)f3(u) 
g 

a(h) = C2R f3(u) = lulu 

with R = R(h) - Hydraulic radius; C- the Chezy coefficient 

. The function 80 was defined as in [2]: 

80 = - ayb with Yb - bottom level. ax 
We consider only case when R(h) > 0. 

3.2. Uniqueness Theorem 

Assuming that in a closed area 0 = [0, L] x [0, T] there exists a classical 
solution w(x, t) = [wi(x, t), w2(x, t)] of the boundary problem for the system of 
Saint Venant equations (2.5), under the initial conditions (2.7) and the boundary 
conditions (2.8). Then this solution is unique. 

3.3. Proof of the Uniqueness Theorem 

The tool used for proving the Theorem 3.2 will be integrals of energy (see 
[3]). Due to non-linearity of the system of Saint Venant equations, the 'proof of 
the uniqueness theorem in this case is more complicated in comparison with the 
hyperbolic linear case (see [3]). 

We will prove the unique solution in classical means, i.e. 

1) The functions ofw 1 , w 2 belongs to the C(l)(O). 

2) The functions ofw 17 w 2 satisfy system of equations (2.5), initial conditions 
(2.7) and boundary conditions (2.8). 

We will prove the Theorem 3.2 by contrarious method: Suppose that there 
exist two classical solutions of the system (2.5) as w' and w" satisfied the initial 
conditions (2. 7) and the boundary conditions (2.8): 

w' = w'(x, t) = [w~ (x, t), w~(x, t)] 
w" = w"(x, t) = [ w~'(x, t), w~(x, t) ] 

Define w = w' - w", and here in contrary with the linear case we can not conclude 
that w satisfies the system of Saint Venant equations. However we can evaluate 
the integrals of energy for w. Indeed since w~(x,t), wHx,t), w~'(x,t), w~(x,t) 
belong to the C(l) (0) then there exists a constant a, 0 ::; a < 00 so that 
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l ~w"l <a ax It -
with k = 1,2 

Thus 

lwkl ~ 2a and l:xwkj ~ 2a with k = 1,2 

Since both w' and w" satisfy system of equations (2.5) then we have 

(3.1) 

(3.2) 

(3.3) 

awl + >..I(w') aw~ - >.I(w") awf = - [ t/J(w') - t/J(w")]. (3.4) at ax ax 
aw" 

Subtracting and adding to the left hand side of (3.4) the term >.t(w') ax1 
, then 

we have 

where sl = t/J(w') - t/J(w") 

Similarly, we also have 

(3.5) 

(3.6) 

Multiply (3.5) with 2w1 and (3.6) with 2w2 then sum up them together we get 
that 

· where 

Consider the energy integral as follows: 

L 

I(t) = J (w; + w~)dx. 
0 

Integrating (3.7) with respect to x from 0 to Land with respect tot from t 1 to t2 
we can get: 
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t2 L 

J(t2) - J(t1) + J =I I [82 - 2SI(w1 - w2)) dxdt, 
. tl 0 

(3.9) 

where 

t2 

J =I { (AI(w')w~ + A2(w1)w~] lx=L- [AI(w')w~ + A2(w')w~] lx=O}dt 
tl . 

Due to boundary condition (2.8) we have J 2: 0: Indeed since (wi)2 2: 0 and 
(w2) 2 2: o, then at the boundary X= 0, if A} < 0 (i.e. -Al > o) then -AI(w')wr 2: 
0, if Ai > 0 (i.e. - .\. 1 < 0) then the identical boundary condition· for w' and w 11 

(thus w~ and wn makes (wi}2 = 0 since w1 = w~ - w~. Similarly for A1 and 
boundary x = L and for the other eigenvalue A2. 

According to the technique applied in [2} now we have to estimate the right 
hand side of (3.9) via J(t). ·· · ·. · 

After long computation, we can get the following results: 

Lemma 2. 

IS2l ::; 0:1 ((wi) 2 + (w2) 2) 

I2Sl(wl- w2)l $ o:2 ((wi)2 + (w2)2), 

(3.10) 

(3.11) 

where o:1 and o:2 are positive constants which depend only on a in (3.1) - (3.3). 

From (3.9) we have the following equality 

t2 t 

I(t2) + J = I(ti) +I I [S2 - 2SI{wl - w2)]dxdt 
tl 0 

and the from (3.10), (3.11) and the fact that J 2: 0 we obtain the inequality 

t2 

J(t2) ~ I(ti) + (o:l + o:2) I I(t)dt. 
tl 

We shall use the following lemma of integral inequality (see [3J, p.123). 

Lemma 3 (integral inequality) 

Suppose that with t, 0 $ t ::; T, a continuous function I(t), I(t) 2: 0, has 
derivative and for every t 1 , t 2, 0::; t 1 ::; t2 $ T, we have following inequality: 
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t2 h 

J(t2) ::; J(ti) + M / I(t)dt + N / y'I(i)dt with M > 0, N ~ 0 

t 1 t 1 

then: 

(3.12) 

From (3.12) we have 
I(t) ::; 1(0) exp[(a:I + a:2)t] (3.13) 

Because both solutions w', w" satisfied the initial condition (2. 7), then J(O) = 0. 
From the inequality (3.13) we get that I(t) = 0, i.e. w~ = w~' and w~ . w~. The 
Theorem 3.2 is proved. 

Conclusion 

In this paper, the uniqueness of the classical solution of the system of 1-D 
Saint Venant equations in the canonical form (2.5) is proved. It is important to 
get some analogical facts for the system of 1-D Saint Venant equations in the 
"natural" form (2.1) . These questions will he discussed in the next papers. 
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DJNH LY DUY NHAT NGHI~M co DIEN COA H~ PHUONG TRINH 
~ A .... 

SAINT VEN ANT PHI TUYEN M.QT CHIEU 

Trang bai bao, djnh ly duy nhat ella nghi~m c5 di~n ella h~ phU"(mg trlnh 
Saint Venant phi tuyen m{>t chi'eu da drr<?"c chti-ng minh. D!nh ly duy nhat drr<?"c 
thie't l~p cho h~ ph\l"(mg trlnh (y d~ng chinh tg,c v&i cac dieu ki~n bien va dieu 
ki~n ban dau trrO'Ilg Un.g. 
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