Open Access Open Access  Restricted Access Subscription Access

Red light emission of Mn doped beta-tricalcium phosphate -Ca3(PO4)2

Hoang Nhu Van, Bui Thi Hoan, Nguyen Duy-Hung, Phuong Dinh Tam, Nguyen Thi Khoi, Cao Xuan Thang, Pham` Vuong-Hung


This paper is the first report on the red light emission of manganese (Mn) doped beta-tricalcium phosphate (b-Ca3(PO4)2, TCP) synthesis by co-precipitation method followed by thermal annealing. The annealed Mndoped TCP phosphor showed dominant spheres with a diameter of about 500 nm. The influences of the Mnconcentration, annealing temperature, and atmospheres on the photoluminescence intensities of the phosphors were investigated and the results indicate that the annealing temperatures and Mn concentrations are the main factors. The phosphor showed visible emission peaks appeared at about 660 nm and 580 nm results in from the 4T1-6A1 transitions within Mn2+ ion. The Mn-TCP phosphor may serve as a candidate for light-emitting diode application in agriculture lighting.

Keywords. Hydroxyapatite; manganese; luminescence; tricalcium phosphate.


Hydroxyapatite; manganese; luminescence; tricalcium phosphate

Full Text:



X. Yin, M. J. Stott. - and -tricalcium phosphate: A density functional study, Phys. Rev. B, 68, 205205 (2003).

P. P. Mokoena, M. Gohain, B. C. B. Bezuidenhoudt, H. C. Swart, O. M. Ntwaeaborwa. Luminescent properties and particle morphology of Ca3(PO4)2:Gd3+,Pr3+ phosphor powder prepared by microwave assisted synthesis, J. Lumin., 155, 288-292 (2014).

Y. Zhang, Z. Mao, D. Wang, J. Zhao. Synchronous red and blue emitting Ca3(PO4)2:Eu2+, Mn2+phosphors applicable for plant-lighting, J. Mater. Res. Bull., 67, 1-4 (2015).

C. Paluszkiewicz, A. Ślósarczyk, D. Pijocha, M. Sitarz, M. Bućko, A. Zima, A. Chróścicka, M. Lewandowska-Szumieł. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite, J. Molecular Struct., 976, 301-309 (2010).

A. Shimada, Y. Taniguchi. Red and blue pulse timing control for pulse width modulation light dimming of light emitting diodes for plant cultivation, J. Photochem. Photobio. B: Biology, 104, 399-404 (2011).

J. Chen, C. Guo, Z. Yang, T. Li, J. Zhao. Li2SrSiO4:Ce3+,Pr3+, Phosphor with Blue, Red, and Near-Infrared Emissions Used for Plant Growth LED, J. Am. Ceram. Soc., 99, 218-225 (2016).

T. Dueck, G. Trouwborst, S. W. Hogewoning, E. Meinen. Can a high red: Far red ratio replace temperature-induced inflorescence development in Phalaenopsis?,Envir. Experi. Botany, 121, 139-144 (2016).

C. L. Teo, A. Idris, N.A.M. Zain, M. Taisir. Synergistic effect of optimizing light-emitting diode illumination quality and intensity to manipulate composition of fatty acid methyl esters from Nannochloropsis sp., Biores. Technol., 173, 284-290 (2014).

L. Ma, D. Wang, Z. Mao, Q. Lu, Z. Yuan. Investigation of Eu–Mn energy transfer in A3Mg Si2O8:Eu2 +,Mn 2 + (A =Ca,Sr,Ba) for light-emitting diodes for plant cultivation, Appl. Phys. Lett., 93, 144101 (2008).

Z. Mao, J. Chen, J. Li, D. Wang. Dual-responsive Sr2SiO4:Eu2+-Ba3MgSi2O8:Eu2+,Mn2+composite phosphor to human eyes and plant chlorophylls applications for general lighting and plant lighting, Chem. Eng. J., 284, 1003-1007 (2016).

M. P. Moreiraa, G. D. de Almeida Soares, J. Dentzer, K. Anselme, L. Á. de Sena, A. Kuznetsov, E. A dos Santos, Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium, Mater. Sci.Eng. C, 61, 736-743 (2016).

C. Rosticher, B. Viana, T. Maldiney, C. Richard, C. Chanéac. Persistent luminescence of Eu, Mn, Dy doped calcium phosphates for in-vivo optical imaging, J. Lumin., 170, 460-466 (2016).

V. Sivakumar, A. Lakshmanan. Pyrolysis synthesis of Zn2SiO4:Mn2+ phosphors-effect of fuel, flux and co-dopants, J. Lumin., 145, 420-424 (2014).

D. Y. Kong, M. Yu, C. K. Lin, X.M. Liu, J. Lin, J. Fang, Sol-gel Synthesis and Characterization of Zn2SiO4:Mn@SiO2 Spherical Core-Shell Particles, J. Electrochem. Soc.,152, H146-51 (2005).

P. Sajan, R. Vinod, M. Junaid Bushiri. High luminescent yield from Mn doped ZnS at yellow-orange region and 367 nm, J. Lumin., 158, 110-115 (2015).

N.S. Sabri, A.K. Yahya, M.K. Talari. Emission properties of Mn doped ZnO nanoparticles prepared by mechanochemical processing, J. Lumin., 132, 1735-1739 (2012).

S. Kannan, J. M. G. Ventura, A. F. Lemos, A. Barba, J. M. F. Ferreira. Effect of sodium addition on the preparation of hydroxyapatites and biphasic ceramics, Ceramics Int., 34, 7-13 (2008).

Y. M. Sung, J. C. Lee, J. W. Yang. Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder, J. Crystal

Growth, 262, 467-472 (2004).

V. H. Pham, N. N. Trung. Luminescence of europium doped silicon-substituted hydroxyapatite nanobiophosphor via a coprecipitation method, Mater. Lett., 136, 359-361 (2014).

X. Zhang, L. Zhou, M. Gong. High-brightness Eu3+-

doped Ca3(PO4)2 red phosphor for NUV light-emitting diodes application, Opt. Mater., 35, 993-997 (2013).

C. X. Thang, V. H. Pham. Luminescence variations in europium-doped silicon-substituted hydroxyapatite nanobiophosphor via three different methods, Mater. Sci. Eng. B, 197, 18-24 (2015).


  • There are currently no refbacks.