Structure and chemical bond of carbodiylide complexes [W(CO)5{C(ECp*)2}] (E = B to Tl): DFT calculations

Nguyen Thi Ai Nhung


The bonding of the carbodiylide complexes [(CO)5W-{C(ECp*)2}] (W5-C1E) was calculated at the BP86 level with the basis sets def2-SVP, def2-TZVPP, and TZ2P+. The nature of the (CO)5W-{C(ECp*)2} bonds was analyzed by energy decomposition method. The calculated structures of complexes show that all ligands C(ECp*)2 (C1E) are bonded in a tilted orientation relative to the fragment W(CO)5 in W5-C1E and the tilting angle become much more acute when E becomes heavier. Analysis of the bonding reveals that [(CO)5W–{C(E’Cp*)2}]  donation in W5-C1B come from the s-lone-pair orbital of C(BCp*)2, while [(CO)5W–{C(E’Cp*)2}]  donation in the strongly tilted bonded complexes when E’ = Al to Tl comes from the p-lone-pair orbital of the carbodiylides C(E’Cp*)2. The W-C bonds have not only (CO)5W¬C(ECp*)2 strong s-donation but also a significant contribution π-donation and the trend of the W-C bond strength in W5-C1E complexes. EDA-NOCV calculations reveal that C(ECp*)2 ligands in W5-C1E complexes  are strong s-donors and weak p-donors which make them good spectator ligands that are well-suited for synthesizing robust catalysts for a variety of applications.

Keywords. Carbodiylides, energy decomposition analysis, bond dissociations energy, bonding analysis.


Carbodiylides, energy decomposition analysis, bond dissociations energy, bonding analysis

Full Text:



D. Weiss et al. [(dcpe)Pt(ECp*)2] (E = Al, Ga): Synthesis, Structure, and Bonding Situation of the First Aluminum(I) and Gallium(I) Complexes of Phosphine-Substituted Transition Metal Centers, Organometallics. 19(22), 4583-4588 (2000).

Y. Bunno, N. Murakami, Y. Suzuki, M. Kanai, T. Yoshino, S. Matsunaga, Cp*CoIII-Catalyzed Dehydrative C−H Allylation of 6 Arylpurines and Aromatic Amides Using Allyl Alcohols in Fluorinated Alcohols, Org. Lett., 18 (9), 2216-2219 (2016).

K. Fujimura, M. Ouchi, J. Tsujita, M. Sawamoto. Cationic Cp*–Ruthenium Catalysts for Metal-Catalyzed Living Radical Polymerization: Cocatalyst-Independent Catalysis Tuned by Counteranion, Macromolecules, 49(8), 2962-2970 (2016).

S. Figueiredo et al. Bis(pyrazolyl) methanetetracarbonyl-molybdenum(0) as precursor to a molybdenum(VI) catalyst for olefin epoxidation, J. Organomet. Chem. 723, 56-64 (2013).

J.Weiss, D. Stetzkamp, B. Nuber, R. A. Fischer, C. Boehme, G. Frenking, [(η5-C5Me5)Al-Fe(CO)4] Synthesis, Structure, and Bonding, Angew. Chem. Int. Ed. Engl., 36(12), 70-72 (1997).

J. Su, X.-W. Li, R. C. Crittendon, C. F. Campana, G. H. Robinson, Experimental Confirmation of an Iron−Gallium Multiple Bond: Synthesis, Structure, and Bonding of a Ferrogallyne, Organometallics, 16(21), 4511-4513 (1997).

A. H. Cowley, V. Lomeli, A. Voigt, Synthesis and Characterization of a Terminal Borylene (Boranediyl) Complex, J. Am. Chem. Soc., 120(25), 6401-6402 (1998).

T. A. N. Nguyen et al. Structures and Bonding Situation of Iron Complexes of Group-13 Half-Sandwich ECp* (E = B to Tl) Based on DFT Calculations, Z. Anorg. Allg. Chem., 642(8), 609-617 (2016).

T. Cadenbach, T. Bollermann, C. Gemel, I. Fernndez, M. von Hopffgarten, G. Frenking, R. Fischer. Twelve One-Electron Ligands Coordinating One Metal Center: Structure and Bonding of [Mo(ZnCH3)9(ZnCp*)3], Angew. Chem. Int. Ed., 47(47), 9150-9154 (2008).

C. Boehme, J. Uddin, G. Frenking. Chemical bonding in mononuclear transition metal complexes with Group 13 diyl ligands ER (E=B-Tl): Part X: Theoretical studies of inorganic compounds, Coord. Chem. Rev., 197(1), 249-276 (2000).

J. Uddin, G. Frenking. Energy Analysis of Metal-Ligand Bonding in Transition Metal Complexes with Terminal Group-13 Diyl Ligands (CO)4Fe-ER, Fe(EMe)5 and Ni(EMe)4(E = B−Tl; R = Cp, N(SiH3)2, Ph, Me) Reveals Significant π Bonding in Homoleptical Molecules, J. Am. Chem. Soc., 123(8), 1683-1693 (2001) .

J. Uddin, C. Boehme, G. Frenking. Nature of the Chemical Bond between a Transition Metal and a Group-13 Element: Structure and Bonding of Transition Metal Complexes with Terminal Group-13 Diyl Ligands ER (E = B to Tl; R = Cp, N(SiH3)2, Ph, Me), Organometallics., 19(4), 571-582 (2000).

J.Weiss, D. Stetzkamp, B. Nuber, R. A. Fischer, C. Boehme, G. Frenking. [(η5-C5Me5)Al-Fe(CO)4]-Synthesis, Structure, and Bonding, Angew. Chem. Int. Ed. Engl., 36(12), 70-72 (1997).

R. Kinjo, B. Donnadieu, M. A. Celik, G. Frenking, G. Bertrand. Synthesis and Characterization of a Neutral Tricoordinate Organoboron Isoelectronic with Amines, Science, 333(6042), 610-613 (2011).

Gaussian 03, Revision D.01. M. J. Frisch, J. A. Pople, Gaussian Inc., Wallingford, CT, 2004.

R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel. Electronic structure calculations on workstation computers: The program system turbomole, Chem. Phys. Lett., 162(3), 165-169 (1989).

A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 38(6), 3098-3100 (1988).

J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas, Phys. Rev. B, 33(12), 8822-8824 (1986).

A. Schäfer, H. Horn, R. Ahlrichs. Fully optimized contracted Gaussian basis sets for atoms Li to Kr, J. Chem. Phys., 97(4), 2571 (1992).

F. Weigend, R. Ahlrichs. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, Phys. Chem. Chem. Phys., 7(18), 3297 (2005).

B. Metz, H. Stoll, M. Dolg. Small-core multiconfiguration-Dirac–Hartree–Fock-adjusted pseudopotentials for post-d main group elements: Application to PbH and PbO, J. Chem. Phys., 113(7), 2563 (2000).

A. E. Reed, L. A. Curtiss, F. Weinhold. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint, Chem. Rev., 88(6), 899-926 (1988).

K. Wiberg. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane, Tetrahedron, 24(3), 1083-1096 (1968).

G. te Velde et al. Chemistry with ADF, J. Comput. Chem., 22(9), 931-967 (2001).

J. G. Snijders, E. J. Baerends, P. Vernoojs. Roothaan-Hartree-Fock-Slater atomic wave functions: Single-zeta, double-zeta, and extended Slater-type basis sets for87Fr-103Lr, At. Data. Nucl. Data Tables, 26(6), 483-509 (1982).

J. Krijn, E. J. Baerends. Fit Functions in the HFS-Method, Internal Report, Vrije Universiteit Amsterdam, The Netherlands (1984).

E. van Lenthe, A. Ehlers, E. J. Baerends. Geometry optimizations in the zero order regular approximation for relativistic effects, J. Chem. Phys., 110(18), 8943 (1999).

T. Ziegler, A. Rauk. CO, CS, N2, PF3 and CNCH3 as  donors and  acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method, Inorg. Chem., 18(7), 1755-1759 (1979).

A. Michalak, M. Mitoraij, T. Ziegler. A Combined Charge and Energy Decomposition Scheme for Bond Analysis, J. Chem. Theory. Comput., 5(4), 962-975


R. Tonner, G. Frenking. Divalent Carbon(0) Chemistry, Part 1: Parent Compounds, Chem. Eur. J., 14(11), 3260-3272 (2008).

P. Hassanzadeh, L. Andrews. Reactions of pulsed laser evaporated boron atoms with methane. 1. Synthesis and characterization of a novel molecule with carbon-boron double bonds: HBCBH, J. Am. Chem. Soc., 114(23), 9239-9240 (1992).

S. Klein and G. Frenking. Carbodiylides C(ECp*)2 (E = B – Tl): Another Class of Theoretically Predicted Divalent Carbon(0) Compounds, Angew. Chem. Int. Ed., 49(39), 7106-7110 (2010).

W. A. Herrmann, M. Denk, J. Behm,W. Scherer, F.-R. Klingan, H. Bock, B. Solouki, M. Wagner. Stable Cyclic Germanediyls (“Cyclogermylenes”): Synthesis, Structure, Metal Complexes, and Thermolyses, Angew. Chem. Int. Ed. Engl., 31(11), 1485-1488 (1992).