A quantum chemical computation insight into the donor-acceptor bond interaction of silver complexes with tetrylene

Tran Duc Sy, Huynh Thi Phuong Loan, Dang Tan Hiep, Pham Van Tat, Duong Tuan Quang, Nguyen Thi Ai Nhung


We computationally investigate the nature of chemical bonding from linear to bent structures of N-heterocyclic carbene-analogues of silver complexes (called tetrylene) AgCl-NHEMe (Ag-NHE) with E = C – Pb using quantum chemical calculations at the BP86 level with the various basis sets def2-SVP, def2-TZVPP, and TZ2P+. The geometry calculations find that the equilibrium structures of Ag-NHE system show major differences in the bonded orientation of NHPb ligand in Ag-NHPb compared with NHE ligands the slighter homologues Ag-NHE (E = C - Sn). The bond dissociation energy results show that the Ag-carbene bond in Ag-NHC is a strong bond and decreases from the slighter to the heavier homologues. The EDA-NOCV results indicate that the ligand NHE in complexes is strong s-donors and very weak π donor. The NOCV pairs of the bonding show small π-back donation from the Ag to the NHEMe ligands.

Keywords. N-heterocyclic tetrylene, bond dissociation energy, quantum chemical calculations, bonding analysis.


N-heterocyclic tetrylene, bond dissociation energy, quantum chemical calculations, bonding analysis

Full Text:



E. O. Fischer, A. Maasbol. On the Existence of a Tungsten Carbonyl Carbene Complex, Angew. Chem. Int. Ed. Engl., 3, 580-581(1964).

A quantum chemical computation insight into the donor-acceptor bond interaction of silver complexes with tetrylene2. D. Nemcsok, K. Wichmann, G. Frenking. The Significance of π Interactions in Group 11 Complexes with N-Heterocyclic Carbenes, Organometallics, 23, 3640-3646 (2004).

S. Zhu, R. Liang, H. Jiang. A direct and practical approach for the synthesis of N-heterocyclic carbene coinage metal complexes, Tetrahedron, 68, 7949-7955 (2012).

A. C. Sentman S. Csihony, R. M. Waymouth, J. L. Hedrick. Silver(I)-Carbene Complexes/Ionic Liquids: Novel N -Heterocyclic Carbene Delivery Agents for Organocatalytic Transformations, J. Org. Chem., 70, 2391-2393 (2005).

I. J. B. Lin, C. S. Vasam. Silver(I) N-heterocyclic carbenes, Comment. Inorg. Chem., 25, 75-129 (2004).

J. C. Garrison, W. J. Youngs. Ag(I) N-Heterocyclic Carbene Complexes: Synthesis, Structure, and Application, Chem. Rev., 105, 3978-4008 (2005). 11

A. Kascatan-Nebioglu M. J. Panzner, C. A. Tessier, C. L. Cannon, W. J. Youngs. N-Heterocyclic carbene–silver complexes: A new class of antibiotics, Coord. Chem. Rev., 251, 884-895 (2007).

E. C. Hurst K. Wilson, I. J. S. Fairlamb, V. Chechik. N-Heterocyclic carbene coated metal nanoparticles, New J. Chem., 33, 1837-1840 (2009).

C. J. Serpell J. Cookson, A. L. Thompson, C. M. Brown, P. D. Beer. Haloaurate and halopalladate imidazolium salts: structures, properties, and use as precursors for catalytic metal nanoparticles, Dalton Trans., 42, 1385-1393 (2013).

X. Ling N. Schaeffer, S. Roland, M. Pileni. Nanocrystals: Why Do Silver and Gold N-Heterocyclic Carbene Precursors Behave Differently? Langmuir, 29, 12647-12656 (2013).

C. K. Lee C. S. Vasam, T. W. Huang, H. M. J. Wang,

R. Y. Yang, C. S. Lee, I. J. B. Lin. Silver(I) N-Heterocyclic Carbenes with Long N-Alkyl Chains, Organometallics, 25, 3768-3775 (2006).

O. Kühl. Sterically induced differences in N-heterocyclic carbene transition metal complexes, Coord. Chem. Rev., 253, 2481-2492 (2009).

M. Melaimi, M. Soleilhavoup, G. Bertrand. Stable Cyclic Carbenes and Related Species beyond Diaminocarbenes, Angew. Chem. Int. Ed., 49, 8810-8849 (2010).

T. A. N. Nguyen, G. Frenking. Transition-Metal Complexes of Tetrylones [(CO)5W-E(PPh3)2] and Tetrylenes [(CO) 5W-NHE] (E = C-Pb): A Theoretical Study, Chem. Eur. J., 18, 12733-12748 (2012).

T. A. N. Nguyen T. P. L. Huynh, T. X. P. Vo, T. H. Tran, D. S. Tran, T. H. Dang, T. Q. Duong. Structures, Energies, and Bonding Analysis of Monoaurated Complexes with N-Heterocyclic Carbene and Analogues, ASEAN J. Sc. Technol. Dev., 32, 1-15 (2015).

C. Boehme, G. Frenking. N-Heterocyclic Carbene, Silylene, and Germylene Complexes of MCl (M = Cu, Ag, Au). A Theoretical Study, Organometallics, 17, 5801-5809 (1998).

C.-Y. Liao K. T. Chan, P. L. Chiu, C. Y. Chen, H. M. Lee. Structural variation in silver complexes with N-heterocyclic carbene ligands bearing amido functionality, Inorg. Chim. Acta. 361, 2973-2978 (2008).

Y. Inagawa, S. Ishida, T. Iwamoto. Two-coordinate Dialkylsilylene–Coinage Metal Complexes, Chem. Lett., 43, 1665-1667 (2014).

N. Zhao J. Zhang, Y. Yang, H. Zhu, Y. Li, G. Fu. β-Diketiminate Germylene-Supported Pentafluorophenylcopper(I) and -silver(I) Complexes [LGe(Me)(CuC6F5)n]2 (n = 1, 2), LGe[C(SiMe3)N2]AgC6F5, and {LGe[C(SiMe3)N2](AgC6F5)2}2 (L = HC[C(Me)N-2,6-iPr2C6H3]2): Synthesis and Structural Characterization, Inorg. Chem., 51, 8710-8718 (2012).

P. B. Hitchcock M. F. Lappert, L. J. M. Pierssens. Novel SnII−AgI Reactions from Sn[CH(SiMe3)2]2 and AgX (X = NCS, CN, NCO, or I): SnII−AgI or SnIVX2 Complexes, Organometallics, 17, 2686-2688 (1998).