Open Access Open Access  Restricted Access Subscription Access

Phản ứng aldol chọn lọc lập thể. Phần 1: Các phát triển gần đây và ứng dụng trong tổng hợp hữu cơ.

Ngô Thị Thuận, Nguyễn Hiển, Đặng Thanh Tuấn

Abstract


The Aldol reaction is one of the most important C–C bond forming tools. Recent developments of chiral catalyst systems allowed the Aldol reaction to be carried out under mild conditions, affording products in high yields as well as high diastereo- and enantioselectivities with very good tolerance of functional groups. This review offers an overview of some important concepts in the stereoselectivity of the Aldol reaction and then highlights the recent developments of new chiral catalyst systems (focused on metal catalysts) which yielded the Aldol addition products in the excellent control of diastero- and enantioselectivities. In addition, several practical applications of the Aldol reaction in the total synthesis of complex molecules, such as bioactive natural products and pharmaceuticals, are demonstrated in this review.

Keywords. Aldol reaction, Mukaiyama-Aldol reaction, asymmetric Aldol reaction, stereoselectivity, enantioselectivity, enolate chemistry.


Keywords


Aldol reaction, Mukaiyama-Aldol reaction, asymmetric Aldol reaction, stereoselectivity, enantioselectivity, enolate chemistry

References


Wyatt P., Warren S. Organic Synthesis: Strategy and Control, Wiley (2007).

Banno K., Mukaiyama T. New synthesis of the pungent principles of ginger: zingerone, gingerol and shogaol, Bull. Chem. Soc. Jpn., 49, 1453 (1976).

Denniff P., Whiting D. A. Synthesis of (±)-[6]-gingerol (pungent principle of ginger) and relatives via directed aldol reactions, J. Chem. Soc. Chem. Commun., 712 (1976).

Dubois J. E., Fellman P. Influence de la geometrie de l'enolate sur la stereochimie de la condensation aldolique, Tetrahedron Lett., 1225 (1975).

Heathcock C. H., Buse C. T., Kleschnick W. A., Pirrung M. C., Sohn J. E., Lampe J. Acyclic stereoselection. 7. Stereoselective synthesis of 2-alkyl-3-hydroxy carbonyl compounds by aldol condensation, J. Org. Chem., 45, 1066 (1980).

Zimmerman H. E., Traxler M. D. The stereochemistry of the Ivanov and Reformatsky reactions, J. Am. Chem. Soc., 79, 1920 (1957).

Evans D. A., Vogel E., Nelson J. V. Stereoselective aldol condensations via boron enolates, J. Am. Chem. Soc., 101, 6120 (1979).

Evans D. A., Takacs J. M., McGee L. R., Ennis M. D., Mathre D. J., Bartroli J. Chiral enolate design,

Pure & Appl.Chem., 53, 1109 (1981).

Brown H. C., Dhar R. K., Bakshi R. K., Pandiarajan P. K., Singaram B. Major effect of the leaving group in dialkylboron chlorides and triflates in controlling the stereospecific conversion of ketones into either [E]- or [Z]-enol borinates, J. Am. Chem. Soc., 111, 3441 (1989).

Paterson I., Cumming J. G., Smith J. D., Ward R. A. Studies in marine macrolide synthesis: Boron and silicon-mediated coupling strategies for Swinholide A, Tetrahedron Lett., 35, 441 (1994).

Evans D. A., Takacs J. M., McGee L. R., Ennis M. D., Mathre D. J., Bartroli J. Chiral enolate design, Pure & Appl. Chem., 53, 1109 (1981).

Evans D. A., Bartroli J., Shih T. L. Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates, J. Am. Chem. Soc., 103, 2127 (1981).

Evans D. A., Gage J. R. Diastereoselective Aldol condensation usung a chiral oxazolidinone auxiliary: (2S*,3S*)-3-hydroxy-3-phenyl-2-methylpropanoic acid, Org. Synth., 68, 83 (1990).

Evans D. A., Tedrow J. S., Shaw J. T., Downey C. W. Diastereoselective magnesium halide-catalyzed anti-Aldol reactions of chiral N-acyloxazolidinones, J. Am. Chem. Soc., 124, 392 (2002).

Evans D. A., Downey C .W., Shaw J. T., Tedrow J. S. Magnesium halide-catalyzed anti-Aldol reactions of chiral N-acylthiazolidinethiones, Org. Lett., 4, 1127 (2002).

Waizumi N., Itoh T., Fukuyama T. Total synthesis of (−)-CP-263,114 (Phomoidride B), J. Am. Chem. Soc., 122, 7825 (2000).

Schetter B., Mahrwald R. Modern aldol methods for the total synthesis of polyketides, Angew. Chem. Int. Ed., 45, 7506 (2006).

Oppolzer W., Blagg J., Rodriguez I., Walther E. Bornane sultam-directed asymmetric synthesis of crystalline, enantiomerically pure syn aldols, J. Am. Chem. Soc., 112, 2767, (1990).

Oppolzer W., Starkemann C., Rodriguez I., Bernardinelli G. Enantiomerically pure, crystalline ‘anti’-aldols from N-acylbornanesultams: aldolization and structure of intermediate t-butyldimethylsilyl-N,O-ketene acetal, Tetrahedron Lett., 32, 61 (1991).

Brown H. C., Zweifel G. Hydroboration as a convenient procedure for the asymmetric synthesis of alcohols of high optical purity, J. Am. Chem. Soc., 83, 486 (1961).

Paterson I., Goodman J. M., Lister M. A., Schumann R. C., McClure C. K., Norcross R. D. Enantio- and diastereoselective aldol reactions of achiral ethyl and methyl ketones with aldehydes: the use of enol diisopinocampheylborinates, Tetrahedron, 46, 4663

(1990).

Paterson I., Norcross R. D., Ward R. A., Romea P., Lister M. A. Studies in Macrolide Synthesis: A Stereocontrolled Synthesis of Oleandolide Employing Reagent- and Substrate-Controlled Aldol Reactions of (S)-1-(Benzyloxy)-2-methylpentan-3-one, J. Am. Chem. Soc., 116, 11287 (1994).

Paterson I., De Savi C., Tudge M. Total synthesis of the microtubule-stabilizing agent (-)-Laulimalide, Org. Lett., 3, 3149 (2001).

Corey, E. J. nhận giải Nobel năm 1990 trong lĩnh vực Hóa học cho những đóng góp quan trọng trong việc phát triển các phương pháp tổng hợp hữu cơ.

Corey E. J., Kim S. S. Versatile chiral reagent for the highly enantioselective synthesis of either anti or syn ester aldols, J. Am. Chem. Soc., 112, 4976 (1990).

Kobayashi S., Fujishita Y, Mukaiyama T. The efficient catalytic asymmetric Aldol-type reaction, Chem. Lett., 1455 (1990).

Furuta K., Maruyama T., Yamamoto H. Catalytic asymmetric aldol reactions. Use of a chiral (acyloxy)borane complex as a versatile Lewis-acid catalyst, J. Am. Chem. Soc., 113, 1041 (1991).

Corey E. J., Cywin C. L, Roper T. D. Enantioselective Mukaiyama-aldol and aldol-dihydropyrone annulation reactions catalyzed by a tryptophan-derived oxazaborolidine, Tetrahedron Lett., 33, 6907 (1992).

Carreira E. M., Singer R. A., Lee W. Catalytic enantioselective Aldol additions with methyl and ethyl acetate O-silyl enolates: A chiral tridentate chelate as a ligand for titanium(IV), J. Am. Chem. Soc., 116, 8837 (1994).

Singer R. A., Carreira E. M. An in situ procedure for

catalytic, enantioselective acetate aldol addition. Application to the synthesis of (R)-(−)-epinephrine, Tetrahedron Lett., 38, 927 (1997).

Singer R. A., Shepard M. S., Carreira E. M. Catalytic, enantioselective acetate aldol additions to α,β-ynals: Preparation of optically active propargylic alcohols, Tetrahedron, 54, 7025 (1998).

Carreira E. M., Singer R. A. Advances in catalytic, enantioselective aldol addition reactions with novel Ti(IV) complexes, Drug Discovery Today, 1, 145 (1996).

Ollevier T., Plancq B. Highly enantioselective Mukaiyama aldol reaction in aqueous conditions using a chiral iron(II) bipyridine catalyst, Chem. Commun., 48, 2289 (2012).

Trost B. M., Brindle C. S. The direct catalytic asymmetric aldol reaction, Chem. Soc. Rev., 39, 1600 (2010).

Yamada Y. M. A., Yoshikawa N., Sasai H., Shibasaki M. Direct catalytic asymmetric aldol reactions of aldehydes with unmodified ketones, Angew. Chem. Int. Ed., 36, 1871 (1997).

Yoshikawa N., Yamada Y. M. A., Das J., Sasai H., Shibasaki M. Direct catalytic asymmetric aldol reaction, J. Am. Chem. Soc., 121, 4168 (1999).

Fujii K., Maki K., Kanai M., Shibasaki M. Formal catalytic asymmetric total synthesis of Fostriecin, Org. Lett., 5, 733 (2003).

Yamada Y. M. A., Shibasaki M. Direct catalytic asymmetric aldol reactions promoted by a novel barium complex, Tetrahedron Lett., 39, 5561 (1998).

Trost B. M., Ito H. A direct catalytic enantioselective Aldol reaction via a novel catalyst design, J. Am. Chem. Soc., 122, 12003 (2000).


Full Text: PDF

Refbacks

  • There are currently no refbacks.