Open Access Open Access  Restricted Access Subscription Access

Nghiên cứu cơ chế phản ứng giữa gốc propargyl với phân tử cacbon monoxit (CO) bằng phương pháp hoá học lượng tử

Phạm Văn Tiến, Phan Thị Thùy, Phạm Thọ Hoàn, Nguyễn Thị Minh Huệ, Ngô Tuấn Cường


The reaction mechanism of the Propargyl radical and carbon monoxide has been studied by the Density Functional Theory (DFT) using the B3LYP functional in conjunction with the 6-311++G(3df,2p) basis sets. We used the natural population atomic (NPA) charges analysis and MO energy of reactants to predict initial direction of the reaction. The potential energy surface (PES) for the C3H3 and CO system was also established. Our calculated results indicate that products of this reaction can be (HCCCC + H2O), (HCCCH + HCO), (H2CCC + HCO), (r-HCCCCOH), (HCCO+C2H2), and (CCCCHO + H2). However, the formation of (HCCO+C2H2) is the most favorable. This study is a contribution to the understanding of the reaction mechanisms of the propargyl radical with many small radicals and molecules in the atmosphere and combustion chemistry.

Keywords. Reaction mechanism, propargyl radical, oxygen, density functional theory.


Reaction mechanism, propargyl radical, oxygen, density functional theory.


Đặng Thị Hồng Minh, Phạm Văn Tiến, Nguyễn Thị Minh Huệ, Nghiên cứu lý thuyết cơ chế phản ứng giữa gốc Propargyl với phân tử oxi bằng phương pháp phiếm hàm mật độ, Tạp chí Hóa học, 51(2C), 851-856 (2013).

Wei Quan Tian, Yan Alexander Wang. J. Org. Chem., 69(13), 4299-4308 (2004).

Ikchoon Lee, Chan Kyung Kim, Bon-Su Leea, Tae-Kyu Ha. J. Mol. Struct. (Theochem), 279, 191-205 (1993).

Wei Jiang SI, Shu Ping Zhuo, Guan Zhi Ju. Chinese Chemical Letters, 15(5), 627-630 (2004).

S. R. Schofield, N. J. Curson, M. Y. Simmons, O. Warschkow, N. A. Marks, H. F. Wilson, D. R. McKenzie, P. V. Smith, M. W. Radny. e-J. Surf. Sci. Nanotech., 4, 609-613 (2006).

Hema Munjal, K L Baluja. J. Phys. B: At. Mol. Opt. Phys., 40, 1713 (2007)

Michael D. Hoops and Bruce S. Ault. The Journal of Physical Chemistry A, 112(24), 5368-5377 (2008).

Kwon LK, Nam MJ, Youn SE, Joo SK, Lee H, Choi JH. Crossed-beam radical-radical reaction dynamics of O(3P)+ C3H3 -->H(2S)+C3H2O, Journal of Chemical Physics, 124(20), 204320 (2006).

Peter A. Hamilton and Timothy P. Murrells. J. Chem. Soc., Faraday Trans., 2(81), 1531-1541, (1985).

Adam J. Delson, Bruce S. Ault. The Journal of Physical Chemistry A, 110(51), 13786-13791 (2006).

Slawomir Berski, Zdzisław Latajka. Chemical Physics Letters, 426, 273-279 (2006).

Hue Minh Thi Nguyen, Shaun Avondale Carl, Jozef Peeters, Minh Tho Nguyen. Phys. Chem. Chem. Phys, 6, 4111-4117 (2004).

Shaun A. Carl, Hue Minh Thi Nguyen, Rehab Ibrahim M. Elsamra, Minh Tho Nguyen, and Jozef Peeters. Journal of Chemical Physics, 122, 114307 (2005).

Frank Jensen. Introduction to Computational Chemistry; Second edition, John Wiley & Sons, Ltd (2007).

M. J. Frisch, G. W. Trucks, H. B. Schlegel,.., J. A. Pople. Gaussian, Inc., Pittsburgh PA, (2009).

Steven E. Wheeler, Kenneth A. Robertson, Wesley D. Allen, and Henry F. Schaefer, Thermochemistry of Key Soot Formation Intermediates: C3H3 Isomers, Center for Computational Chemistry University of Georgia, Athens, GA 30602 (2007).

Full Text: PDF


  • There are currently no refbacks.