Open Access Open Access  Restricted Access Subscription Access

Tổng hợp điện hóa màng natri hydroxyapatit trên nền thép không gỉ 316L

Võ Thị Hạnh, Phạm Thị Năm, Nguyễn Thị Thơm, Đỗ Thị Hải, Đinh Thị Mai Thanh

Abstract


Sodium dope hydroxylapatite (NaHAp) were deposited on the 316L stainless steel (316L SS) substrates by electrodeposition technique. The influences of precursor solution concentration, scanning potential ranges, scaning times, scanning rates and temperature to deposit NaHAp coating were researched. The analytical results of FTIR, SEM, Xray, AAS, thickness and adhension of the obtained coating at the solution containing Ca(NO3)2 3×10-2 M, NH4H2PO4 1.8×10-2 M and NaNO3 0.06 M; scanning potential ranges of 0÷-1.7 V/SCE; scaning times of 5; scanning rates of 5 mV/s showed that NaHAp coating was sigle phase, plate shape, dense and uniform with average size about 150×25 nm, thickness 7.8 µm, adhesion strength 7.16 MPa and Na+ ions doped on HAp with mass percentage of 1.5 %.

Keywords. 316L SS, electrochemical deposition, sodium dope hydroxyapatite coating.


Keywords


316L SS, electrochemical deposition, sodium dope hydroxyapatite coating.

References


M. M. Dewidar, K. A. Khalil, and J. K. Lim. Processing and mechanical properties of porous 316L stainless steel for biomedical applications, Transactions of Nonferrous Metals Society of China, 17, 468-473 (2007).

A. Sharifnabi, M. H. Fathi, B. Eftekhari Yekta, and M. Hossainalipour. The structural and bio-corrosion barrier performance of Mg-substituted fluorapatite coating on 316L stainless steel human body implant. Applied Surface Science, 288, 331-340 (2014).

E. A. Krylova, A. A. Ivanov, S. E. Krylov, I. G. Plashchina, P. V. Nefedov. Hydroxyapatite-Alginate Sructure as Living Cells Supporting System, N. N. Emanuel Institute of Biochemical Physics RAS, Russia (2004).

X. Fan, J. Chen, J. Zou, Q. Wan, Z. Zhou, and J. Ruan. Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid, Transactions of Nonferrous Metals Society of China, 19, 347-352 (2009).

C. Guzmán Vázquez, C. Piña Barba, N. Munguia, Stoichiometric Hydroxyapatite Obtained by Precipitation and Sol Gel Processes, Revista Mexicana de Fisica, 51(3), 284-293 (2005).

Dey, K. Mukhopadhyay, S. Gangadharan, M. K. Sinha, D. Basu, and N. R. Bandyopadhyay. Nanoindentation study of microplasma sprayed hydroxyapatite coating, Ceramics International, 35(6), 2295-2304 (2009).

L. Duta, F. N. Oktar, G. E. Stan, G. Popescu-Pelin, N. Serban, C. Luculescu, and I. N. Mihailescu. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition, Applied Surface Science, 265, 41-49 (2013).

Li Hejun, Xueni Zhao, Sheng Cao, Kezhi Li, Mengdi Chen, Zhanwei Xu, Jinhua Lu, and Leilei Zhang, Na-doped hydroxyapatite coating on carbon/carbon composites: Preparation, in vitro bioactivity and biocompatibility, Applied Surface Science, 263(0), 163-173 (2012).

Nguyễn Hữu Phú. Hóa lý và Hóa keo, Nxb. Khoa học và kỹ thuật, 185-197 (2006).

RL. Watters Calcium Hydroxyapatite (Certificate of Analysis, Standard Reference Material 2910a) 2008.

Wang, Jian, Yonglie Chao, Qianbing Wan, Zhimin Zhu, and Haiyang Yu. Fluoridated hydroxyapatite coatings on titanium obtained by electrochemical deposition, Acta Biomaterialia, 5(5), 1798-1807 (2009).

F. Bir, , H. Khireddine, A. Touati, D. Sidane, S. Yala, and H. Oudadesse, Electrochemical depositions of fluorohydroxyapatite doped by Cu2+, Zn2+, Ag+ on stainless steel substrates. Applied Surface Science, 258(18), 7021-7030 (2012).

H. J. M. Bowen. Environmental Chemistry of the Element, London: Academic Press, Inc. (1979).


Full Text: PDF

Refbacks

  • There are currently no refbacks.