Catalytic activity of TiO$_2$/sepiolites in the degradation of rhodamine B aqueous solution

Nguyen Tien Thao*, Doan Thi Huong Ly1, Dinh Minh Hoan1, Han Thi Phuong Nga1,2

1Faculty of Chemistry, VNU University of Science – Vietnam National University, Hanoi
2Faculty of Environment, Vietnam National University of Agriculture

Received 7 July 2016; Accepted for publication 20 October 2017

Abstract

TiO$_2$/sepiolite catalysts were prepared by suspension of titanium dioxide and support in solvent accompanying by calcination. The characterization of the obtained powder has been examined by some physical means including XRD, SEM, FT-IR, UV-Vis. The sepiolite support possesses fibrous structure. X-ray diffraction analysis pointed out that the TiO$_2$ particles are firmly distributed on fibrous sepiolite matrix. All TiO$_2$/sepiolite samples were tested for the degradation of rhodamine B and showed a high catalytic activity. The experimental data showed that the degradation efficiency of rhodamine B is correlated with the amount of TiO$_2$ loadings and oxidant behavior. At room temperature, the conversion of rhodamine B reaches 99-100 % over 6.0 wt% TiO$_2$/sepiolite catalyst.

Keywords. TiO$_2$, rhodamine B, sepiolite, degradation, photocatalysis.

1. INTRODUCTION

The development of economy and industry in Vietnam also leads to some environmental issues during the last decades. A large quantity of organic contaminants in wastewater was exhausted into environments [1, 2]. Many of them are high chemical stability, low biodegradability, and potentially harmful to the human society. As Law on Environmental Protection was implemented on January 01, 2015 in Vietnam, all toxic contaminants in exhausted wastewater must be treated before releasing water into rivers, fields... Organic dyes and colored compounds are the sources of considerable water consumption and contamination. Thus, the complete oxidation of these dyes in their aqueous solutions offers an opportunity of direct removal of these chemicals or transformation into non-toxic products [2,3]. However, the efficiency of the classical oxidation processes for removal of the chemicals from wastewater is still limited. For this reason, new advanced oxidation techniques are quite promising. They use active catalysts activated by sunlight irradiation for the dye degradation under ambient conditions [2–4]. Among heterogeneous photocatalysts used, TiO$_2$ is reported as an effective semiconductor catalyst for removing stable organic compounds [3-5]. However, its catalytic activity sometimes varies with light frequency, phase, particle domain, dispersion... [4,5]. Thus, distribution of TiO$_2$ on matrix leads to an increased dispersion of active centers and improves catalytic activity. Among various inorganic materials reported, sepiolite a clay mineral having a unique structure related to its functional properties and adsorptibility [6, 7]. Many works have reported the potential adsorption ability of dyes on this clay [8-10]. This adsorptive property is an advantage to exploit its catalytic activity if this material consists of active components such as ZnO, FeOx, TiO$_2$,...

The purpose of the present study is to the preparation of TiO$_2$ on fibrous sepiolite carrier as catalysts for the oxidation of rhodamine B.

2. EXPERIMENTAL

2.1. Catalyst preparation and characterization

Sepiolite was purchased from Fuka Chemical Company and used without further purification. TiO$_2$ was purchased from Wako Company. A certain amount of TiO$_2$ was added into 25 mL of absolute ethanol under magnetic stirring at room temperature. The suspension was stirred for 10 minutes prior to adding a weighted quantity of dried sepiolite. The mixture was further stirred at room temperature for 3 hours and then evaporated at 70-75 °C for 15 hours to the yield a white powder. The solid was then
calcined at 400 °C for 2 hours to give TiO₂/sepiolite samples.

Powder X-ray diffraction (XRD) patterns were recorded on a D8 Advance-Bruker instrument using CuKα radiation (λ = 1.59 Å). Fourier transform infrared (FT-IR) spectra were recorded in 400 – 400 cm⁻¹ range on an FTIR spectrometer (DX-Perkin Elmer, USA). The scanning electron microscopy (SEM) microphotographs were obtained with a JEOL JSM-5410 LV. UV–vis spectra were collected with a UV-Visible spectrophotometer.

2.2. Degradation of rhodamine B

In photocatalytic experiments, 75 mL solution of 20 ppm of rhodamine B dye (RhB) and 0.45 grams of catalyst were added in to a beaker under magnetic stirring at room temperature under a fluorescent lamp with 36 W. Then, either 75 mL solution of H₂O₂ (30 %) was added dropwise into the beaker or 5.0 mL/min flow rate of air was bubbled into the reaction mixture. Dye samples of 2-5 mL were taken out at a regular interval (20 min) from the solution test, filtered and their absorbance was recorded at 553 nm using a CARY 100 UV-Vis spectrophotometer (Shimadzu). The degradation level is estimated by the following equation:

\[
\text{Degradation} = \frac{[\text{RhB}]_{\text{initial}} - [\text{RhB}]_{\text{final}}}{[\text{RhB}]_{\text{initial}}} \times 100
\]

3. RESULTS AND DISCUSSION

3.1. Catalyst Characterization

All TiO₂/sepiolite samples with different loadings were prepared and their XRD patterns were represented in figure 1. As seen in figure 1, the reflection signals at 2-theta of 20.6, 23.8, 26.7, 28.0, 35.6, 37.9, 39.9, 43.8° are indexed to the sepiolite phase (Joint Committee on Powder Diffraction Standards (JCPDS) Card No. 00-013-0558) [6, 7, 9]. Some weaker signals at 2-theta of 25.5, 37.8, 55.1° are essentially assigned to the TiO₂ anatase (CPJS 00-021-1272). These peaks are rather broadening, implying the formation of nanocrystalline titanium dioxide loaded on the support [4, 5, 11].

Figure 1: XRD patterns for TiO₂/sepiolite catalysts

Morphology and microstructure of the raw sepiolite and TiO₂/support are observed using scanning electron microscope and their micrographs are displayed in Fig. 2. The solid consists of a stick-like aggregation made up of lots of fibers and the length of sticks is approximately 1μm. The diameter of sticks is about 80 nm [12, 13]. No remarkable changes in the shape and size of Mg-O-Si sepiolite fibers were observed for the TiO₂ loading samples (Fig. 2B).

Figure 2: SEM images of sepiolite (A) and sample 15.0 wt% TiO₂/sepiolite (B)
Catalytic activity of TiO$_2$/sepiolites in...

Figure 3: IR spectra (left) and UV-spectra (right) of TiO$_2$ and TiO$_2$/sepiolite samples

FT-IR spectra of raw sepiolite and the TiO$_2$/support are illustrated in Fig. 3A. The weak bands at 3610 and 3415 cm$^{-1}$ for the three samples are assigned to the stretching vibrations of hydroxyl groups in the octahedral Mg sheet and external surface [8, 12, 13]. The band at 1650 cm$^{-1}$ is due to the bending vibration of O-H bond of chemisorbed water on the surface of the solids. The bands around 1026 and 472 cm$^{-1}$ which originate from stretching of Si-O in the Si-O-Si groups of the tetrahedral sheet still exist, indicating that the basic structure of sepiolite is well preserved [12, 13]. Fig. 3A also indicates no significant difference between the spectra of the TiO$_2$/clay before and after suspension of TiO$_2$.

Figure 3B presents the UV-Vis diffuse reflectance spectra of TiO$_2$/sepiolite. It is observed that two samples show a similar wavelength of the adsorption edge at 392 nm (Eg \approx 3.20 eV), in line with the theoretical value of TiO$_2$ photocatalysts [5, 14, 15]. Thus, no chemical interaction between titania and sepiolite was observed. The results suggest that the TiO$_2$/sepiolites have a suitable band gap for photocatalytic reactions [16].

3.2. Degradation of rhodamine B

The degradation of rhodamine B was investigated in water at room temperature, laboratory lamp-light with air flow rate or 30% H$_2$O$_2$ solution as oxidant. For comparison, a blank test was carried out under the same conditions and a small amount of rhodamine B was converted, confirming the stability of organic dye [10]. Figure 4A shows that pure TiO$_2$ oxide was also tested for the removal oxidation of rhodamine B with air. It is not supervising to see a gradually increased degradation degree of rhodamine B with reaction time since TiO$_2$ is a typical photocatalyst. Figure 4B displayed the temporal changes in UV-Vis spectra of the rhodamine B in the solution with reaction time.

Figure 4: Catalytic activity of TiO$_2$/sepiolite samples (A) and UV-Vis absorption spectra of rhodamine B during visible light irradiation over TiO$_2$ pure catalysts (20 ppm of rhodamine B, 0.30 grams of catalyst, room temperature)
A gradual decrease in the intensity of the strong absorption band with the peak maximum at 553 nm is observed during the photocatalytic degradation of RhB white no wavelength shift of the band at 553 nm, implying the de-ethylation process of rhodamine B over the catalyst (Fig. 4B) [4, 5, 17, 18]. However, the degradation efficiency of rhodamine B sharply goes up as TiO$_2$ particles were dispersed on sepiolite support. Indeed, the three TiO$_2$/sepiolite catalysts exhibit rather high photocatalytic activity as compared with that of TiO$_2$ pure experiment (Fig. 4).

Figure 4A shows that the degradation level reaches nearly 100 % after 4-8 hours on time. In order to expedite degradation process, air flow rate was replaced by H$_2$O$_2$ oxidant. The oxidation of rhodamine B aqueous solutions with H$_2$O$_2$ was carried out over TiO$_2$/sepiolite catalyst under ambient conditions. The catalytic activity of rhodamine B discoloration is represented in Figure 5. All catalyst samples show good activity in the oxidation of rhodamine B by H$_2$O$_2$. The discoloration reaction occurs more quickly and the degradation efficiency of rhodamine B increases after initiating reaction as seen in Fig. 5 [2, 18-20]. Evidently, the degradation efficiency of rhodamine B goes linearly up during 50 minute-reaction period and then gradually approaches about 100 %.

Sepiolite was used as support for TiO$_2$ catalysts in the oxidative removals of rhodamine B. The support has layered structure with fibrous morphology, TiO$_2$ was distributed on the sepiolite through the suspension and calculation route. TiO$_2$/sepiolite was an excellent catalyst for the photodegradation of rhodamine B in the presence of H$_2$O$_2$ or air. Under the same experimental conditions, H$_2$O$_2$ was more oxidative than air in the discoloration of rhodamine B. The catalytic activity was related to the amount of TiO$_2$ loadings and oxidant nature. An increased amount of TiO$_2$ led to a decreased degradation efficiency of rhodamine B. The highest conversion of rhodamine B was observed on 6.0 wt% TiO$_2$/sepiolite with the degradation efficiency of 99 % using either H$_2$O$_2$ or air as oxidant.

Acknowledgment. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.05-2017.04.

REFERENCES

4. Youji Li, Shuguo Sun, Mingyuan Ma, Yuzhu

Corresponding author: Nguyen Tien Thao
Faculty of Chemistry, Vietnam National University Hanoi
19, Le Thanh Tong Str, Hanoi, Vietnam
E-mail: ntthao@vnu.edu.vn/nttho@gmail.com; Tel.: +84.043.8253503.